Dual-Output Mode Analysis of Multimode Laguerre-Gaussian Beams via Deep Learning
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Service, R.F. Light Beams With a Twist Could Give a Turbo Boost to Fiber-Optic Cables. Science 2013, 340, 1513. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, L.; Zhang, K.; Ma, J. Channel capacity of OAM based FSO communication systems with partially coherent Bessel–Gaussian beams in anisotropic turbulence. Opt. Commun. 2018, 418, 32–36. [Google Scholar] [CrossRef]
- Du, J.; Wang, J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Opt. Lett. 2015, 40, 4827–4830. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhu, L.; Chen, S.; Du, C.; Mo, Q.; Wang, J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt. Express 2016, 24, 11716–11726. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Hu, Y.; Zhang, X.; Li, M.; Zhu, Z.; Rui, G.; He, J.; Cui, Y. Angular momentum separation in focused fractional vector beams for optical manipulation. Opt. Express 2021, 29, 14705–14719. [Google Scholar] [CrossRef]
- Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express 2021, 29, 12967–12975. [Google Scholar] [CrossRef] [PubMed]
- Vallone, G.D.; Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons. Phys. Rev. Lett. 2014, 113, 060503. [Google Scholar] [CrossRef]
- Cozzolino, D.; Bacco, D.; Da Lio, B.; Ingerslev, K.; Ding, Y.; Dalgaard, K.; Kristensen, P.; Galili, M.; Rottwitt, K.; Ramachandran, S.; et al. Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication. Phys. Rev. Appl. 2019, 11, 064058. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Willner, A.E.; Li, L.; Xie, G.; Ren, Y.; Huang, H.; Yue, Y.; Ahmed, N.; Willner, M.J.; Willner, A.J.; Yan, Y.; et al. Orbital-angular-momentum-based reconfigurable optical switching and routing. Photon Res. 2016, 4, B5–B8. [Google Scholar] [CrossRef]
- Wang, A.; Zhu, L.; Wang, L.; Ai, J.; Chen, S.; Wang, J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express 2018, 26, 10038–10047. [Google Scholar] [CrossRef] [PubMed]
- Turunen, J.; Tervonen, E.; Friberg, A.T. Coherence theoretic algorithm to determine the transverse-mode structure of lasers. Opt. Lett. 1989, 14, 627–629. [Google Scholar] [CrossRef]
- Tervonen, E.; Turunen, J.; Friberg, A.T. Transverse laser-mode structure determination from spatial coherence measurements: Experimental results. Appl. Phys. B 1989, 49, 409–414. [Google Scholar] [CrossRef]
- Cutolo, A.; Isernia, T.; Izzo, I.; Pierri, R.; Zeni, L. Transverse mode analysis of a laser beam by near- and far-field intensity measurements. Appl. Opt. 1995, 34, 7974–7978. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wei, H.; Kirk, A.G. Intensity-based modal decomposition of optical beams in terms of Hermite–Gaussian functions. J. Opt. Soc. Am. A 2000, 17, 1086–1091. [Google Scholar] [CrossRef]
- Wang, K.; Dou, J.; Kemao, Q.; Di, J.; Zhao, J. Y-Net: A one-to-two deep learning framework for digital holographic reconstruction. Opt. Lett. 2019, 44, 4765–4768. [Google Scholar] [CrossRef]
- Liu, A.; Lin, T.; Han, H.; Zhang, X.; Chen, Z.; Gan, F.; Lv, H.; Liu, X. Analyzing modal power in multi-mode waveguide via machine learning. Opt. Express 2018, 26, 22100–22109. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, M.; Situ, G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express 2018, 26, 22603–22614. [Google Scholar] [CrossRef]
- Lyu, M.; Wang, W.; Wang, H.; Wang, H.; Li, G.; Chen, N.; Situ, G. Deep-learning-based ghost imaging. Sci. Rep. 2017, 7, 17865. [Google Scholar] [CrossRef]
- Lohani, S.; Knutson, E.M.; O’donnell, M.; Huver, S.D.; Glasser, R.T. On the use of deep neural networks in optical communications. Appl. Opt. 2018, 57, 4180–4190. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, S.; Liu, H.; Chen, X. Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Phys. Rev. Lett. 2019, 123, 183902. [Google Scholar] [CrossRef] [PubMed]
- Park, S.R.; Cattell, L.; Nichols, J.M.; Watnik, A.; Doster, T.; Rohde, G.K. De-multiplexing vortex modes in optical communications using transport-based pattern recognition. Opt. Express 2018, 26, 4004–4022. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt. 2017, 56, 3386–3396. [Google Scholar] [CrossRef] [PubMed]
- Bekerman, A.; Froim, S.; Hadad, B.; Bahabad, A. Beam profiler network (BPNet): A deep learning approach to mode demultiplexing of Laguerre–Gaussian optical beams. Opt. Lett. 2019, 44, 3629–3632. [Google Scholar] [CrossRef]
- Zhao, Q.; Hao, S.; Wang, Y.; Wang, L.; Wan, X.; Xu, C. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network. Appl. Opt. 2018, 57, 10152–10158. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Wang, D.; Wu, S.; Zhan, Y. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt. Express 2018, 26, 10494–10508. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, P.; Zhang, X.; He, Y.; Zhou, X.; Ye, H.; Li, Y.; Xu, S.; Chen, S.; Fan, D. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express 2019, 27, 16671–16688. [Google Scholar] [CrossRef]
- Cui, X.; Yin, X.; Chang, H.; Liao, H.; Chen, X.; Xin, X.; Wang, Y. Experimental study of machine-learning-based orbital angular momentum shift keying decoders in optical underwater channels. Opt. Commun. 2019, 452, 116–123. [Google Scholar] [CrossRef]
- Courtial, J.; Padgett, M.J. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt. Commun. 1999, 159, 13–18. [Google Scholar] [CrossRef]
- Hall, D.G. Vector-beam solutions of Maxwell’s wave equation. Opt. Lett. 1996, 21, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Kwan, H.K. Simple sigmoid-like activation function suitable for digital hardware implementation. Electron. Lett. 1992, 28, 1379–1380. [Google Scholar] [CrossRef]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- An, Y.; Huang, L.; Li, J.; Leng, J.; Yang, L.; Zhou, P. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express 2019, 27, 10127–10137. [Google Scholar] [CrossRef] [PubMed]
- Brüning, R.; Gelszinnis, P.; Schulze, C.; Flamm, D.; Duparré, M. Comparative analysis of numerical methods for the mode analysis of laser beams. Appl. Opt. 2013, 52, 7769–7777. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Xu, Y.; Zhao, R.; Hong, X.; Lu, R.; Feng, X.; Chen, Y.; Zou, J.; Zhang, C.; Qin, Y.; et al. Dual-Output Mode Analysis of Multimode Laguerre-Gaussian Beams via Deep Learning. Optics 2021, 2, 87-95. https://doi.org/10.3390/opt2020009
Yuan X, Xu Y, Zhao R, Hong X, Lu R, Feng X, Chen Y, Zou J, Zhang C, Qin Y, et al. Dual-Output Mode Analysis of Multimode Laguerre-Gaussian Beams via Deep Learning. Optics. 2021; 2(2):87-95. https://doi.org/10.3390/opt2020009
Chicago/Turabian StyleYuan, Xudong, Yaguang Xu, Ruizhi Zhao, Xuhao Hong, Ronger Lu, Xia Feng, Yongchuang Chen, Jincheng Zou, Chao Zhang, Yiqiang Qin, and et al. 2021. "Dual-Output Mode Analysis of Multimode Laguerre-Gaussian Beams via Deep Learning" Optics 2, no. 2: 87-95. https://doi.org/10.3390/opt2020009
APA StyleYuan, X., Xu, Y., Zhao, R., Hong, X., Lu, R., Feng, X., Chen, Y., Zou, J., Zhang, C., Qin, Y., & Zhu, Y. (2021). Dual-Output Mode Analysis of Multimode Laguerre-Gaussian Beams via Deep Learning. Optics, 2(2), 87-95. https://doi.org/10.3390/opt2020009