Strengthening Transformer Tank Structural Integrity through Economic Stiffener Design Configurations Using Computational Analysis
Abstract
:1. Introduction
2. Materials
Material Selection
Property | Metric |
---|---|
Tensile strength, ultimate | 400–550 MPa |
Tensile strength, yield | 250 MPa |
Elongation at break (in 200 mm) | 20.0% |
Elongation at break (in 50 mm) | 23.0% |
Modulus of elasticity | 200 GPa |
Bulk modulus (typical for steel) | 140 GPa |
Poisson’s ratio | 0.260 |
Shear modulus | 79.3 GPa |
Density | 7.85 g/cm3 |
3. Methodology
3.1. Proposed Design
3.2. Numerical Method
3.3. Finite Element Analysis
3.4. Experimental Testing
4. Results and Discussion
4.1. Performance Assessment
4.2. Compliance with Standards
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
FEA | Finite element analysis |
HV | High voltage |
LV | Low voltage |
MPa | Mega Pascal |
ASTM | American Society for Testing and Materials |
ASTM A-36 | A standard specification for carbon structural steel |
IEC | International Electro-Technical Commission |
PPE | Personal protective equipment |
ANSYS | Analysis system |
H beam | A structural beam with an H-shaped cross-section |
FEM | Finite element method |
UTS | Ultimate tensile strength |
PXFR | Power transformer |
References
- Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G. Power Transformer Economic Evaluation in Decentralized Electricity Markets. IEEE Trans. Ind. Electron. 2012, 59, 2329–2341. [Google Scholar] [CrossRef]
- Wang, D.; Mao, C.; Lu, J.; Fan, S.; Peng, F. Theory and Application of Distribution Electronic Power Transformer. Electr. Power Syst. Res. 2007, 77, 219–226. [Google Scholar] [CrossRef]
- Kang, M.; Member, S.; Enjeti, P.N.; Member, S.; Pitel, I.J. Analysis and Design of Electronic Transformers for Electric Power Distribution System. IEEE Trans. Power Electron. 1999, 14, 1133–1141. [Google Scholar] [CrossRef]
- Nair, K.R.M. Power and Distribution Transformers; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003088578. [Google Scholar]
- Brodeur, S.; Lê, V.N.; Champliaud, H. A Nonlinear Finite-Element Analysis Tool to Prevent Rupture of Power Transformer Tank. Sustainability 2021, 13, 1048. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Nazir, M.T.; Li, J.; Wang, F.; Azam, M.M. Comprehensive Investigation on Service Aged Power Transformer Insulating Oil After Decades of Effective Performance in Field. Arab. J. Sci. Eng. 2020, 45, 6517–6528. [Google Scholar] [CrossRef]
- Electrical Machines and Systems (ICEMS). Design of in-wheel permanent magnet vernier machine to reduce the armature current density. In Proceedings of the 2013 International Conference on Electrical Machines and Systems, ICEMS 2013, Busan, Republic of Korea, 26–29 October 2013; IEEE: Piscataway, NJ, USA, 2013. ISBN 9781479914470.
- Pan, Z.; Deng, J.; Xie, Z.; Peng, X.; Hou, M.; Zhou, H. Research on Simulation and Verification Experiment Method for Pressure Characteristics of Converter Transformer Tank under Internal Arc Fault. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering, CEEPE 2023, Guangzhou, China, 12–14 May 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 1128–1134. [Google Scholar]
- Wang, K.; Li, L. Structural analysis and optimal design of a spherical thin-walled stainless steel water tank without reinforced tie ribs. J. Vibroeng. 2024, 26, 983–1000. [Google Scholar] [CrossRef]
- Akbari, M.; Rezaei-Zare, A. Transformer Bushing Thermal Model for Calculation of Hot-Spot Temperature Considering Oil Flow Dynamics. IEEE Trans. Power Deliv. 2021, 36, 1726–1734. [Google Scholar] [CrossRef]
- Guo, M.; Fang, M.; Wang, L.; Hu, J.; Qi, J. Performance Optimization Design Study of Box-Type Substations Subjected to the Combined Effects of Wind, Snow, and Seismic Loads. Appl. Sci. 2024, 14, 3958. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, C.; Mei, D.; Zhang, S. Proceedings of the 5th International Symposium on Plasma and Energy Conversion; Springer Proceedings in Physics: Cham, Switzerland, 2024; Volume 398. [Google Scholar]
- Novosel, J.; Bošnjak, B.; Kelemen, F.; Capuder Bikić, K.; Pregartner, H.; Case, J. Influence of the Power Transformer Tank Design on the Sound Level. Procedia Eng. 2017, 202, 280–287. [Google Scholar] [CrossRef]
- Schmidt, E. Finite element analyses in the design optimization of winding support and tank wall of power transformers. In Proceedings of the Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), Niagara Falls, ON, Canada, 2–5 May 2004. [Google Scholar]
- Dastous, J.B.; Taschler, E.; Bélanger, S.; Sari, M. A Comparison of Numerical Methods for Modeling Overpressure Effects from Low Impedance Faults in Power Transformers. Procedia Eng. 2017, 202, 202–223. [Google Scholar] [CrossRef]
- Aragon-Verduzco, D.A.; Olivares-Galvan, J.C.; Campero-Littlewood, E.; Ocon-Valdez, R.; Teuffer-Zuniga, L.; Magdaleno-Adame, S. Behavior of Magnetic Properties of Power Transformers Structural Steel A36 at Different Temperatures. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Klechka, E.W. Corrosion of Storage Tanks. In Corrosion: Environments and Industries; ASM International: Novelty, OH, USA, 2006; pp. 89–96. [Google Scholar]
- Simões, C.L.; Costa Pinto, L.M.; Simoes, R.; Bernardo, C.A. Integrating Environmental and Economic Life Cycle Analysis in Product Development: A Material Selection Case Study. Int. J. Life Cycle Assess 2013, 18, 1734–1746. [Google Scholar] [CrossRef]
- Williams, J.; Hoffman, J.; Kumosa, M.; Predecki, P. Case Study: A Change of Geometry and Material for Next-Generation Large Power Transformer Tanks. In Recent Advances on the Mechanical Behaviour of Materials; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Gopalakrishnan, P.; Ramakrishnan, S.S.; Shankar, P.; Palaniappa, M. Interrupted Boriding of Medium-Carbon Steels. Metall. Mater. Trans. A 2002, 33, 1475–1485. [Google Scholar] [CrossRef]
- Aragon-Verduzco, D.A.; Olivares-Galvan, J.C.; Escarela-Perez, R.; Campero-Littlewood, E.; Ocon-Valdez, R.; Magdaleno-Adame, S. Experimental Procedure to Obtain Electromagnetic Properties of A-36 Low Carbon Steel Plates Utilized in Transformers. In Proceedings of the 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), Morelia, Mexico, 20–24 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Trinh, Q.N.; Tashiro, S.; Suga, T.; Yamaoka, H.; Inose, K.; Watanabe, K.; Hyoma, K.; Tanabe, Y.; Bui, V.H.; Tanaka, M. Effect of Oxygen in Shielding Gas on Weldability in Plasma-GMA Hybrid Welding Process of High-Tensile Strength Steel. Int. J. Adv. Manuf. Technol. 2024, 134, 283–296. [Google Scholar] [CrossRef]
- Dembiczak, T.; Knapiński, M. Shaping Microstructure and Mechanical Properties of High-Carbon Bainitic Steel in Hot-Rolling and Long-Term Low-Temperature Annealing. Materials 2021, 14, 384. [Google Scholar] [CrossRef]
- Indah Sari, F.; Mursid Nugraha Arifuddin, A.; Uswah Pawara, M.; Aras Mubarak, A. Experimental Test of Tensile Strength of Barge Deck Plate Welded Joints. Int. J. Metacentre 2022, 2, 9–17. [Google Scholar]
- Singer, F.; Pytel, A. Strength of Materials Solution Manual, 4th ed.; Harper & Row: New York, NY, USA, 1987. [Google Scholar]
- PiccolI, P.R.T.; Cabral, S.H.L.; de Oliveira, L.F.; Iaronka, O.; Harmel, D.; Sapeli, J.E.; Vieira, J.P. Experımental Method for Evaluatıng Electrıc and Magnetıc Propertıes of Structural Steel Used in Power Transformer Tank, Advanced Research Workshop on Transformers, 3–5 October 2016. La Toja Island-Spain. Available online: https://www.researchgate.net/publication/309286789_Experimental_Method_for_Evaluating_Electric_and_Magnetic_Properties_of_Structural_Steel_Used_in_Power_Transformer_Tank (accessed on 8 October 2024).
- Li, Z.; Li, Y.; Tan, Y.; Sun, S.; Ou, Q.; Wang, S. Analysis and Development of Short Circuit Capability of 400 MVA/500 kV Single Phase Autotransformer. In Proceedings of the International Conference on Advanced Electrical Equipment and Reliable Operation, AEERO 2021, Beijing, China, 15–17 October 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Preedawiphat, P.; Mahayotsanun, N.; Sa-ngoen, K.; Noipitak, M.; Tuengsook, P.; Sucharitpwatskul, S.; Dohda, K. Mechanical Investigations of Astm A36 Welded Steels with Stainless Steel Cladding. Coatings 2020, 10, 844. [Google Scholar] [CrossRef]
- IEC Standard 60076-1; Power Transformers—Part 1: General. IEC: Geneva, Switzerland, 2011.
Time | Pressure (kg/cm2) | Left Side (mm) | Center (mm) | Right Side (mm) |
---|---|---|---|---|
8.30 AM | 0 | 31 | 30 | 30 |
9.15 AM | 0.4 | 26 | 25 | 24 |
9.35 AM | 0.7 | 24 | 20 | 21 |
9.50 AM | 0.9 | 20 | 18 | 18 |
10.00 AM | 1 | 20 | 17 | 18 |
11.00 AM | 0 | 28 | 27 | 27 |
Elastic Deformation (mm) | 11 | 13 | 12 | |
Plastic Deformation (mm) | 3 | 3 | 3 |
Model | Maximum Stress (MPa) | Maximum Deflection (mm) | Weight (kg) | Stiffeners | Wall Thickness (mm) | Add-ons | |
---|---|---|---|---|---|---|---|
Thickness (mm) | Width (mm) | ||||||
a | 316.11 | 10.562 | 5442.45 | 25 | 260 | 10 | No |
b | 313.21 | 11.448 | 5354.62 | 25 | 300 | 10 | No |
c | 304.59 | 9.3764 | 5848.98 | 30 | 260 | 10 | No |
d | 299.63 | 9.4941 | 5842.14 | 25 | 260 | 12 | No |
e | 297.02 | 9.1918 | 5744.55 | 25 | 260 | 10 | Support added on both sides of each stiffener |
f | 325.12 | 11.321 | 5488.74 | 25 | 260 | 10 | 03 Nos 12 mm thickness H beam at center |
g | 273.57 | 7.1607 | 5708.92 | 25 | 260 | 10 | 03 Nos 16 mm thickness H beam at center |
h | 305.68 | 9.7617 | 5811.10 | 40 | 260 | 10 | 03 Nos at center |
i | 319.09 | 9.2778 | 5767.61 | 40 | 260 | 10 | 04 Nos at positions 3, 5, 6, and 8 |
j | 300.61 | 9.2043 | 5851.81 | 40 | 260 | 10 | 04 Nos at positions 2, 4, 6, and 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Rahman, A.; Islam, A.; Khondoker, M.A.H. Strengthening Transformer Tank Structural Integrity through Economic Stiffener Design Configurations Using Computational Analysis. Appl. Mech. 2024, 5, 717-730. https://doi.org/10.3390/applmech5040039
Hasan MM, Rahman A, Islam A, Khondoker MAH. Strengthening Transformer Tank Structural Integrity through Economic Stiffener Design Configurations Using Computational Analysis. Applied Mechanics. 2024; 5(4):717-730. https://doi.org/10.3390/applmech5040039
Chicago/Turabian StyleHasan, Md Milon, Arafater Rahman, Asif Islam, and Mohammad Abu Hasan Khondoker. 2024. "Strengthening Transformer Tank Structural Integrity through Economic Stiffener Design Configurations Using Computational Analysis" Applied Mechanics 5, no. 4: 717-730. https://doi.org/10.3390/applmech5040039
APA StyleHasan, M. M., Rahman, A., Islam, A., & Khondoker, M. A. H. (2024). Strengthening Transformer Tank Structural Integrity through Economic Stiffener Design Configurations Using Computational Analysis. Applied Mechanics, 5(4), 717-730. https://doi.org/10.3390/applmech5040039