New Numerical and Measurements Flow Analyses Near Radars
Abstract
:1. Introduction
2. Literature Review
2.1. Wake Characteristics of Blunt Bodies
2.2. Turbulence Model
2.3. Model Validation
2.4. Vortex Detection
2.5. Wind Tunnel
3. Research Objectives
- (1)
- The design of a new methodology for numerical and experimental analysis of turbulent flows.
- (2)
- The quantitative metrics consideration to measure flow analysis improvements.
- (3)
- The analysis of a “turbulence reduction system” for blunt bodies.
4. Apparatus and Instrumentation
5. Experimental Approach
5.1. Empirical Equations
5.2. Experimental Data
6. Numerical Approach
6.1. CFD Models Design and Grid Domain
6.2. Boundary Layer Region Thickness
6.3. CFD Model Simulation Characteristics
6.4. CFD Validation
6.4.1. Linear Regression Method
6.4.2. Area Metric Method
7. Flow Analysis and Discussion
7.1. Original Radar Flow Analysis
7.2. Radar Mounted with a Turbulence Reduction System Flow Analysis
7.3. Metrics for Turbulent Flows
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.; Rho, J.; Kim, K.H.; Lee, N.-H. Fundamental studies on free stream acceleration effect on drag force in bluff bodies. J. Mech. Sci. Technol. 2011, 25, 695–701. [Google Scholar] [CrossRef]
- Degani, A.T.; Walker, J.D.A.; Smith, F.T. Unsteady separation past moving surfaces. J. Fluid Mech. 1998, 375, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Brahimi, M.T.; Paraschivoiu, I.D. Darrieus Rotor Aerodynamics in Turbulent Wind. ASME J. Sol. Energy Eng. 1995, 117, 128–136. [Google Scholar] [CrossRef]
- Mason, W.T.; Beebe, P.S. The Drag Related Flow Field Characteristics of Trucks and Buses. In Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles; Springer: Boston, MA, USA, 1978; pp. 45–93. [Google Scholar]
- Grigorie, L.T.; Botez, R.M.; Popov, A.V. How the Airfoil Shape of a Morphing Wing is Actuated and Controlled in a Smart Way. J. Aircr. Eng. ASCE Ed. 2015, 28, 04014043. [Google Scholar] [CrossRef]
- Sugar Gabor, O.; Koreanschi, A.; Botez, R.M.; Mamou, M.; Mébarki, Y. Numerical Simulation and Wind Tunnel Tests Investigation and Validation of a Morphing Wing-Tip Demonstrator Aerodynamic Performance. Aerosp. Sci. Technol. 2016, 53, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Koreanschi, A.; Sugar Gabor, O.; Botez, R.M. Drag Optimization of a Wing Equipped with a Morphing Upper Surface. Aeronaut. J. 2016, 120, 473–493. [Google Scholar] [CrossRef]
- Sugar Gabor, O.; Koreanschi, A.; Botez, R.M. Optimization of an Unmanned Aerial System Wing Using a Flexible Skin Morphing Wing. SAE Int. J. Aerosp. 2013, 6, 115–121. [Google Scholar] [CrossRef]
- Sugar Gabor, O.; Simon, A.; Koreanschi, A.; Botez, R.M. Improving the UAS-S4 Éhecatl airfoil high angle of attack performance characteristics using a morphing wing approach. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 23, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Tchatchueng Kammegne, M.J.; Grigorie, L.T.; Botez, R.M.; Koreanschi, A. Design and Wind Tunnel Experimental Validation of a Controlled New Rotary Actuation System for a Morphing Wing Application. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 132–145. [Google Scholar] [CrossRef]
- Sugar Gabor, O.; Simon, A.; Koreanschi, A.; Botez, R.M. Application of a Morphing Wing Technology on Hydra Technologies Unmanned Aerial System UAS-S4. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; Volume 1. [Google Scholar]
- Koreanschi, A.; Sugar-Gabor, O.; Botez, R.M. Numerical and Experimental Validation of a Morphed Wing Geometry Using Price-Païdoussis Wind Tunnel Testing. Aeronaut. J. 2016, 120, 757–795. [Google Scholar] [CrossRef]
- Sugar Gabor, O.; Koreanschi, A.; Botez, R.M. Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology. Aeronaut. J. 2016, 120, 1337–1364. [Google Scholar] [CrossRef]
- Rebuffet, P. Aérodynamique Expérimentale, 1st ed.; Paris Dunod: Paris, France, 1996; p. 566. [Google Scholar]
- Duell, E.G.; George, A.R. Measurements in the Unsteady Near Wakes of Ground Vehicle Bodies; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- Roshko, A. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies; Technical Note; National Advisory Committee for Aeronautics: Washington, DC, USA, 1954.
- Menter, F.R.; Kuntz, M. Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles. In The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Cestino, E.; Frulla, G.; Spina, M.; Catelani, D.; Linari, M. Numerical Simulation and experimental validation of slender wings flutter behavior. J. Aerosp. Eng. 2019, 233, 5913–5928. [Google Scholar]
- Kalitzin, G.; Medic, G.; Iaccarino, G.; Durbin, P. Near-wall Behaviour of RANS Turbulence Models and Implications for Wall Functions. J. Comput. Phys. 2005, 204, 265–291. [Google Scholar] [CrossRef]
- Durbin, P.A. Separated Flow Computations with the k-e-v2 Model. AIAA J. 1995, 33, 659–664. [Google Scholar] [CrossRef]
- Frunzulică, F.; Dumitrescu, H.; Dumitrache, A. A numerical investigation on the dynamic stall of a vertical axis wind turbine. Proc. Appl. Math. Mech. 2013, 13, 295–296. [Google Scholar] [CrossRef]
- Fröhlich, J.; von Terzi, D. Hybrid LES/RANS Methods for Simulation of Turbulent Flows. Prog. Aerosp. Sci. 2008, 44, 349–377. [Google Scholar] [CrossRef]
- ASME. Guide for Verification and Validation in Computational Solid Mechanics; Release 10; The American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Ferson, S.; Oberkampf, W.; Ginzburg, L. Model validation and predictive capability for the thermal challenge problem. Comput. Methods Appl. Mech. Eng. 2008, 197, 29–32. [Google Scholar] [CrossRef]
- Brahimi, M.T.; Allet, A.; Paraschivoiu, I. Aerodynamic Analysis Models for Vertical-Axis Wind Turbines. Int. J. Rotating Mach. 1995, 2, 15–21. [Google Scholar] [CrossRef]
- Romeo, G.; Cestino, E.; Pacino, M.; Borello, F.; Correa, G. Design and testing of a propeller for a two-seater aircraft powered by fuel cells. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2012, 226, 804–816. [Google Scholar] [CrossRef]
- Correa, G.; Santarelli, M.; Borello, F.; Cestino, E.; Romeo, G. Flight test validation of the dynamic model of a fuel cell system for ultra-light aircraft. J. Aerosp. Eng. 2015, 229, 917–932. [Google Scholar] [CrossRef]
- Dubief, Y.; Delcayre, F. Coherent-vortex identification in turbulence. J. Turbul. 2000, 1, 011. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, Stream and Convergence Zones in Turbulent Flows; Summer Program of the Center for Turbulence Research, NASA Ames/Stanford University: Stanford, CA, USA, 1988; pp. 193–207. [Google Scholar]
- Mariotti, A.; Buresti, G.; Salvetti, M.V. Separation delay through contoured transverse grooves on a 2D boat-tailed bluff body: Effects on drag reduction and wake flow features. Eur. J. Mech. B Fluids 2019, 74, 351–362. [Google Scholar] [CrossRef]
- Rocchio, B.; Mariotti, A.; Salvetti, M.V. Flow around a 5:1 rectangular cylinder: Effects of upstream-edge rounding. J. Wind Eng. Ind. Aerodyn. 2020, 204, 104237. [Google Scholar] [CrossRef]
- Maskell, E.C. A Theory of the Blockage Effect on Bluff Bodies and Stalled Wings in a Closed Wind Tunnel; ARC R&M 3400; Aeronautical Research Council London: London, UK, 1968.
- FLIR Inc. Available online: https://www.flir.ca/support/products/ranger-r20ss/ (accessed on 11 January 2021).
- Martin, S. PC-based data acquisition in an industrial environment. In Proceedings of the IEE Colloquium on PC-Based Instrumentation, London, UK, 31 January 1990. [Google Scholar]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low-Speed Wind Tunnel Testing, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Garner, H.C.; Rogers, E.; Acum, W.; Maskell, E.C. Subsonic Wind Tunnel Wall Correction; National Physical Laboratory: Teddington, UK, 1966. [Google Scholar]
- Eisenlohr, H.; Eckelmann, H. Vortex Splitting and its Consequences in the Vortex Street Wake of Cylinders at Low Reynolds Number. Phys. Fluids 1989, 1, 189–192. [Google Scholar] [CrossRef]
- Katz, A.; Sankaran, V. Mesh quality effects on the accuracy of CFD solutions on unstructured meshes. J. Comput. Phys. 2011, 230, 7670–7686. [Google Scholar] [CrossRef]
- Bradshaw, P. Understanding and predictions of turbulent flow. Int. J. Heat Fluid Flow 1997, 18, 45–54. [Google Scholar] [CrossRef]
- Spalart, P. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Menter, F. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. [Google Scholar] [CrossRef]
- Kroll, N.; Rossow, C.C.; Schwamborn, D.; Becker, K.; Heller, G. A Numerical Flow Simulation Tool for Transport Aircraft Design. In Proceedings of the 23rd ICAS Congress, Toronto, ON, Canada, 8–13 September 2002. [Google Scholar]
- Jameson, A.; Pierce, M.; Martinelli, L.; Pierce, N.A. Optimum Aerodynamic Design using Navier-Stokes Equations. Theoret. Comput. Fluid Dyn. 1998, 10, 213–237. [Google Scholar] [CrossRef] [Green Version]
- Fluent User’s Manual. Available online: https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_ug/flu_ug.html (accessed on 9 February 2021).
- Chatenet, Q.; Tahan, A.; Gagnon, M.; Chamberland-Lauzon, J. Numerical model validation using experimental data: Application of the area metric on a Francis runner. In Proceedings of the 28th IAHR Symposium on Hydraulic Machinery and Systems, Grenoble, France, 4–8 July 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, M.F.; Botez, R.M.; Gauthier, G. New Numerical and Measurements Flow Analyses Near Radars. Appl. Mech. 2021, 2, 303-330. https://doi.org/10.3390/applmech2020019
Salinas MF, Botez RM, Gauthier G. New Numerical and Measurements Flow Analyses Near Radars. Applied Mechanics. 2021; 2(2):303-330. https://doi.org/10.3390/applmech2020019
Chicago/Turabian StyleSalinas, Manuel Flores, Ruxandra Mihaela Botez, and Guy Gauthier. 2021. "New Numerical and Measurements Flow Analyses Near Radars" Applied Mechanics 2, no. 2: 303-330. https://doi.org/10.3390/applmech2020019
APA StyleSalinas, M. F., Botez, R. M., & Gauthier, G. (2021). New Numerical and Measurements Flow Analyses Near Radars. Applied Mechanics, 2(2), 303-330. https://doi.org/10.3390/applmech2020019