Agentic AI Frameworks in SMMEs: A Systematic Literature Review of Ecosystemic Interconnected Agents
Abstract
1. Introduction
- RQ1: What are the recent advancements and trends in agentic AI research?
- RQ2: How does agentic AI differ from traditional AI in business contexts?
- RQ3: What frameworks are available for the implementation of agentic AI in SMMEs?
- RQ4: What are the barriers and enablers to adopting agentic AI in SMMEs?
2. Background to the Study
2.1. Evolution of AI and the Emergence of Agentic Systems
2.2. Core Principles and Architecture of Agentic AI for SMMEs
- Autonomy: The ability of autonomous decision-making through agentic AI systems allows agents to modify their environment and enhance their strategies in real time. The system needs autonomy to perform tasks such as demand forecasting where agents can function independently and reduce the need for supervision [26].
- Inter-Agent Communication: The system functions through communication protocols which allow agents to work together effectively for their activities. The system enables agents to share information while creating shared goals and performing coordinated inventory management and procurement operations [24,27].
- Decentralization: The decentralized structure of agentic AI systems distributes processing and decision-making functions across various agents, which reduces infrastructure expenses and allows for better scalability [28]. The system enables SMMEs to handle resources efficiently while adapting to changing market requirements.
- Collaboration: The agentic AI system enables agents to form dynamic partnerships that allow them to redistribute workloads and optimize operations through changing circumstances [29]. The collaborative process serves as an essential requirement for reaching common targets and achieving maximum operational efficiency.
2.3. Ecosystemic Perspective on Agentic AI
2.4. The Role of SMMEs in Economic Development
3. Methodology
3.1. Protocol Registration
3.2. Identification
- The AND operator was used to ensure that all specified keywords in the search string were present in the search results, making the query more specific and targeted.
- The OR operator allowed flexibility by including records where at least one of the specified terms appeared, thereby broadening the search scope and capturing related terminologies.
3.3. Screening
- Studies and gray literature published in English.
- Publications within the stipulated time frame (2019–2024), capturing agentic AI recent advancements.
- Studies or reports should focus on agentic AI and SMMEs, or incorporate agentic elements in these enterprises as a fundamental aspect of their approach.
- Peer-reviewed papers in conferences and journals, or credible gray literature.
- Full-text, open-access articles or accessible gray literature.
- Non-English articles and industry reports.
- Studies lacking empirical or theoretical contributions.
- Non-credible gray literature. For example, promotional materials, blogs without a transparent methodology.
- Duplicate records.
- Articles that are inaccessible, have restricted material, or do not meet peer review or credibility requirements.
3.4. Eligibility Criteria
3.5. Inclusion Criteria
4. SLR Results
4.1. Overview of Included Studies
4.2. Thematic Synthesis of Findings
4.2.1. Advancements and Trends in Agentic AI (RQ1)
4.2.2. Sector-Specific Applications and Differences from Traditional AI (RQ2)
4.2.3. Agentic AI Frameworks (RQ3)
4.2.4. Barriers and Enablers to Adoption (RQ4)
Barriers to Adopting Agentic AI in SMMEs
Enablers to Adopting Agentic AI in SMMEs
Benefits of Adoption of Agentic AI for SMMEs
4.2.5. Ethical Implications
5. Discussion
5.1. Synthesis of Key Findings
5.2. Real-World Applications of Agentic AI for SMMEs
5.3. Implications for SMMEs
5.4. Ethical and Socio-Economic Considerations
5.5. Limitations
6. Conclusions and Future Work
6.1. Framework Development and Practical Adoption Models
- Develop implementation frameworks tailored to sector-specific constraints and opportunities within different SMME contexts (e.g., retail, healthcare).
- Design low-code or no-code agentic platforms and toolkits to empower non-technical users in SMMEs.
6.2. Cost-Efficient and Scalable Deployments
- Investigate lightweight agentic AI architectures suitable for resource-constrained environments.
- Explore the use of local large language models (LLMs) and serverless computing to enhance cost and energy efficiency.
6.3. Security, Privacy, and Compliance
- Integrate robust cybersecurity protocols directly into agentic AI frameworks.
- Ensure framework designs align with data governance regulations, such as GDPR, POPIA, and other relevant standards applicable to SMMEs.
6.4. Multi-Agent vs. Single-Agent Architectures
- Conduct empirical studies to evaluate the effectiveness, cost-efficiency, and maintainability of multi-agent versus single-agent systems for various SMME tasks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinnaraju, A. AI-powered consumer segmentation and targeting: A theoretical framework for precision marketing by autonomous (Agentic) AI. Int. J. Sci. Res. Arch. 2025, 14, 401–424. [Google Scholar] [CrossRef]
- Ajiga, D.I.; Ndubuisi, N.L.; Asuzu, O.F.; Owolabi, O.R.; Tubokirifuruar, T.S.; Adeleye, R.A. AI-driven predictive analytics in retail: A review of emerging trends and customer engagement strategies. Int. J. Manag. Entrep. Res. 2024, 6, 307–321. [Google Scholar] [CrossRef]
- Ergün, E.; Tuna, S. Enhancing Travel Experience: Predicting Flight Delays for Informed Journey Planning. Int. J. Appl. Methods Electron. Comput. 2024, 12, 40–47. [Google Scholar] [CrossRef]
- Šiber Makar, K. Driven by Artificial Intelligence (AI)—Improving Operational Efficiency and Competitiveness in Business. In Proceedings of the 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 22–26 May 2023; pp. 1142–1147. [Google Scholar] [CrossRef]
- Chukwuani, V.N.; Egiyi, M.A. Automation of accounting processes: Impact of artificial intelligence. Int. J. Res. Innov. Soc. Sci. 2020, 4, 444–449. [Google Scholar]
- Akoh, E.I. Adoption of artificial intelligence for manufacturing SMEs’ growth and survival in South Africa: A systematic literature review. Int. J. Res. Bus. Soc. Sci. 2024, 13, 23–37. [Google Scholar] [CrossRef]
- Gabelaia, I. The Impact of Artificial Intelligence in Shaping Advertising Strategies for SMEs: Systematic Literature Review and Qualitative Research. J. Mark. Res. Case Studies 2024, 2024, 209492. [Google Scholar] [CrossRef]
- Kitchenham, B.A.; Charters, S.M. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report, Version 2.3 Ebse Technical Report. ebse. 2007. Available online: https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf (accessed on 24 December 2024).
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Balaji, P.G.; Srinivasan, D. An introduction to multi-agent systems. In Innovations in Multi-Agent Systems and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–27. [Google Scholar]
- Bahrpeyma, F.; Reichelt, D. A review of the applications of multi-agent reinforcement learning in smart factories. Front. Robot. AI 2022, 9, 1027340. [Google Scholar] [CrossRef]
- Wang, J.; Duan, Z. Agent AI with LangGraph: A Modular Framework for Enhancing Machine Translation Using Large Language Models. arXiv 2024, arXiv:2412.03801. [Google Scholar]
- Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Zhang, S.; Zhu, E.; Li, B.; Jiang, L.; Zhang, X.; Wang, C. Autogen: Enabling next-gen llm applications via multi-agent conversation framework. arXiv 2023, arXiv:2308.08155. [Google Scholar]
- Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; et al. The rise and potential of large language model based agents: A survey. arXiv 2023, arXiv:2309.07864. [Google Scholar] [CrossRef]
- Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2022, 55, 895–943. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Global Edition; Pearson Education: Upper Saddle River, NJ, USA, 2021. [Google Scholar]
- Wooldridge, M. An Introduction to Multiagent Systems; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bvuma, S.; Marnewick, C. An information and communication technology adoption framework for small, medium and micro-enterprises operating in townships South Africa. S. Afr. J. Entrep. Small Bus. Manag. 2020, 12, 12. [Google Scholar] [CrossRef]
- Nitsche, B.; Brands, J.; Treiblmaier, H.; Gebhardt, J. The impact of multiagent systems on autonomous production and supply chain networks: Use cases, barriers and contributions to logistics network resilience. Supply Chain. Manag. Int. J. 2023, 28, 894–908. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, J. Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+ CrewAI. arXiv 2024, arXiv:2411.18241. [Google Scholar]
- Sivakumar, S. Agentic AI in Predictive AIOps: Enhancing IT Autonomy and Performance. Int. J. Sci. Res. Manag. 2024, 12, 1631–1638. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Li, L.; Su, F.; Zhang, W.; Mao, J.Y. Digital transformation by SME entrepreneurs: A capability perspective. Inf. Syst. J. 2018, 28, 1129–1157. [Google Scholar] [CrossRef]
- Kumar, P.; Choubey, D.; Amosu, O.R.; Ogunsuji, Y.M. AI-enhanced inventory and demand forecasting: Using AI to optimize inventory management and predict customer demand. World J. Adv. Res. Rev. 2024, 23, 1931–1944. [Google Scholar] [CrossRef]
- Kedi, W.E.; Ejimuda, C.; Idemudia, C.; Ijomah, T.I. AI Chatbot integration in SME marketing platforms: Improving customer interaction and service efficiency. Int. J. Manag. Entrep. Res. 2024, 6, 2332–2341. [Google Scholar] [CrossRef]
- Dittakavi, R.S.S. AI-optimized cost-aware design strategies for resource-efficient applications. J. Sci. Technol. 2023, 4, 1–10. [Google Scholar] [CrossRef]
- Xu, L.; Mak, S.; Minaricova, M.; Brintrup, A. On implementing autonomous supply chains: A multi-agent system approach. Comput. Ind. 2024, 161, 104120. [Google Scholar] [CrossRef]
- Jiménez, A.; Díaz, V.G.; Castro, S.J.B. A Decentralized Framework for Multi-Agent Robotic Systems. Sensors 2018, 18, 417. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. AI Agents Collaboration Under Resource Constraints: Practical Implementations. Int. J. Artif. Intell. Res. Dev. 2025, 3, 51–63. [Google Scholar] [CrossRef]
- Chawla, C.; Chatterjee, S.; Gadadinni, S.S.; Verma, P.; Banerjee, S. Agentic AI: The building blocks of sophisticated AI business applications. J. AI Robot. Workplace Autom. 2024, 3, 1–15. [Google Scholar] [CrossRef]
- Oviya, S.; Sharadha, N.; Bhuvaneswari, E.; Vijayalakshmi, S.; Sushma, K. The impact of automation and AI in revolutionising traditional accounting methods. J. Inform. Educ. Res. 2024, 4. [Google Scholar] [CrossRef]
- Alnoman, A. Edge Computing Services for Smart Cities: A Review and Case Study. In Proceedings of the 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 31 October–2 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Matekenya, W.; Moyo, C. Innovation as a driver of SMME performance in South Africa: A quantile regression approach. Afr. J. Econ. Manag. Stud. 2022, 13, 452–467. [Google Scholar] [CrossRef]
- Abisuga-Oyekunle, O.A.; Patra, S.K.; Muchie, M. SMEs in sustainable development: Their role in poverty reduction and employment generation in sub-Saharan Africa. Afr. J. Sci. Technol. Innov. Dev. 2020, 12, 405–419. [Google Scholar] [CrossRef]
- Banking Association of South Africa. The Role of Small and Medium Enterprises (SMEs) in South Africa’s Economy. Available online: https://www.banking.org.za/what-we-do/sme/ (accessed on 20 December 2024).
- Bhorat, H.; Asmal, Z.; Lilenstein, K.; Van der Zee, K. SMMEs in South Africa: Understanding the Constraints on Growth and Performance; DPRU, University of Cape Town: Cape Town, South Africa, 2018. [Google Scholar]
- Independent Communications Authority of South Africa (ICASA). State of the ICT Sector in South Africa 2024 Report. 2024. Available online: https://www.icasa.org.za/legislation-and-regulations/state-of-the-ict-sector-in-south-africa-2024-report (accessed on 24 December 2024).
- Department of Trade, Industry and Competition. Annual Report 2022/2023. 2023. Available online: https://www.thedtic.gov.za/wp-content/uploads/Annual-Report.pdf (accessed on 24 December 2024).
- OECD. OECD SME and Entrepreneurship Outlook 2023; OECD Publishing: Paris, France, 2023. [Google Scholar]
- Shavit, Y.; Agarwal, S.; Brundage, M.; Adler, S.; O’Keefe, C.; Campbell, R.; Lee, T.; Mishkin, P.; Eloundou, T.; Hickey, A.; et al. Practices for Governing Agentic AI Systems. Research Paper, OpenAI. December 2023. Available online: https://cdn.openai.com/papers/practices-for-governing-agentic-ai-systems.pdf (accessed on 24 December 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Critical Appraisal Skills Programme. Critical Appraisal Skills Programme Checklist for Systematic Reviews. 2020. Available online: https://casp-uk.net/casp-tools-checklists/ (accessed on 24 December 2024).
- Tyndall, J. AACODS Checklist. 2010. Available online: https://policycommons.net/artifacts/4855940/untitled/5692885/ (accessed on 24 December 2024).
- Guo, T.; Chen, X.; Wang, Y.; Chang, R.; Pei, S.; Chawla, N.V.; Wiest, O.; Zhang, X. Large language model based multi-agents: A survey of progress and challenges. arXiv 2024, arXiv:2402.01680. [Google Scholar]
- Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–45. [Google Scholar] [CrossRef]
- Ruan, J.; Chen, Y.; Zhang, B.; Xu, Z.; Bao, T.; Du, G.; Shi, S.; Mao, H.; Li, Z.; Zeng, X.; et al. Tptu: Task planning and tool usage of large language model-based ai agents. In Proceedings of the NeurIPS 2023 Foundation Models for Decision Making Workshop, New Orleans, LA, USA, 15 December 2023. [Google Scholar]
- Piest, J.P.S.; Iacob, M.E.; van Sinderen, M.; Gemmink, M.; Goossens, B. A Reinforcement Learning Platform for Small and Medium-sized Enterprises in Logistics. In Proceedings of the 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), Gold Coast, Australia, 25–29 October 2021; IEEE: New York, NY, USA, 2021; pp. 289–298. [Google Scholar]
- Casper, S.; Davies, X.; Shi, C.; Gilbert, T.K.; Scheurer, J.; Rando, J.; Freedman, R.; Korbak, T.; Lindner, D.; Freire, P.; et al. Open problems and fundamental limitations of reinforcement learning from human feedback. arXiv 2023, arXiv:2307.15217. [Google Scholar]
- Ahmed, I.; Jeon, G.; Piccialli, F. From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where. IEEE Trans. Ind. Inform. 2022, 18, 5031–5042. [Google Scholar] [CrossRef]
- Liao, Q.V.; Singh, M.; Zhang, Y.; Bellamy, R. Introduction to explainable AI. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–3. [Google Scholar]
- Chander, B.; John, C.; Warrier, L.; Gopalakrishnan, K. Toward trustworthy artificial intelligence (TAI) in the context of explainability and robustness. ACM Comput. Surv. 2024, 57, 1–9. [Google Scholar] [CrossRef]
- Tocchetti, A.; Corti, L.; Balayn, A.; Yurrita, M.; Lippmann, P.; Brambilla, M.; Yang, J. AI robustness: A human-centered perspective on technological challenges and opportunities. ACM Comput. Surv. 2022, 57, 1–38. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Z.; Li, L.; Guan, C.; Yu, Y. A survey of progress on cooperative multi-agent reinforcement learning in open environment. arXiv 2023, arXiv:2312.01058. [Google Scholar]
- Durante, Z.; Huang, Q.; Wake, N.; Gong, R.; Park, J.S.; Sarkar, B.; Taori, R.; Noda, Y.; Terzopoulos, D.; Choi, Y.; et al. Agent AI: Surveying the horizons of multimodal interaction. arXiv 2024, arXiv:2401.03568. [Google Scholar]
- Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Trans. Wirel. Commun. 2019, 19, 447–457. [Google Scholar] [CrossRef]
- Le, J. Generative Modeling with Diffusion. arXiv 2024, arXiv:2412.10948. [Google Scholar]
- Chan, E.R.; Nagano, K.; Chan, M.A.; Bergman, A.W.; Park, J.J.; Levy, A.; Aittala, M.; De Mello, S.; Karras, T.; Wetzstein, G. Generative novel view synthesis with 3D-aware diffusion models. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 4217–4229. [Google Scholar]
- Chen, D.; Youssef, A.; Pendse, R.; Schleife, A.; Clark, B.K.; Hamann, H.; He, J.; Laino, T.; Varshney, L.; Wang, Y.; et al. Transforming the Hybrid Cloud for Emerging AI Workloads. arXiv 2024, arXiv:2411.13239. [Google Scholar]
- Ogbu, D. Agentic AI in Computer Vision Domain-Recent Advances and Prospects. Int. J. Res. Publ. Rev. 2023, 4, 5102–5120. [Google Scholar] [CrossRef]
- Awan, M.J.; Khan, R.A.; Nobanee, H.; Yasin, A.; Anwar, S.M.; Naseem, U.; Singh, V.P. A recommendation engine for predicting movie ratings using a big data approach. Electronics 2021, 10, 1215. [Google Scholar] [CrossRef]
- Henrys, K. Role of Predictive Analytics in Business. 2021. Available online: https://ssrn.com/abstract=3829621 (accessed on 24 December 2024).
- Madakam, S.; Holmukhe, R.M.; Jaiswal, D.K. The future digital work force: Robotic process automation (RPA). J. Inf. Syst. Technol. Manag. 2019, 16, e201916001. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present and future. AI Open 2021, 2, 225–250. [Google Scholar] [CrossRef]
- Pu, Z.; Wang, H.; Liu, Z.; Yi, J.; Wu, S. Attention enhanced reinforcement learning for multi agent cooperation. IEEE Trans. Neural Networks Learn. Syst. 2022, 34, 8235–8249. [Google Scholar] [CrossRef]
- Visakh, P.; Meena, P.; Anoop, V. Conversational Artificial Intelligence in Digital Healthcare: A Bibliometric Analysis. In Proceedings of the International Conference on Multi-Disciplinary Trends in Artificial Intelligence, Hyderabad, India, 21–22 July 2023; Springer: Cham, Switzerland, 2023; pp. 723–734. [Google Scholar]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting black-box models: A review on explainable artificial intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Najdek, M.; Paciorek, M.; Turek, W.; Byrski, A. Three New Design Patterns for Scalable Agent-Based Computing and Simulation. Informatica 2024, 35, 379–400. [Google Scholar] [CrossRef]
- Topsakal, O.; Akinci, T.C. Creating large language model applications utilizing langchain: A primer on developing llm apps fast. In Proceedings of the International Conference on Applied Engineering and Natural Sciences, Konya, Turkey, 10–12 July 2023; pp. 1050–1056. [Google Scholar]
- Soh, J.; Singh, P. Semantic Kernel, Plugins, and Function Calling. In Data Science Solutions on Azure: The Rise of Generative AI and Applied AI; Springer: Berlin/Heidelberg, Germany, 2024; pp. 191–221. [Google Scholar]
- Misra, S.; Tandon, P.; Panda, P.C. Optimization of Hugging Face Transformers for Fake News Detection. In Proceedings of the 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 21–23 December 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Hong, S.; Zheng, X.; Chen, J.; Cheng, Y.; Wang, J.; Zhang, C.; Wang, Z.; Yau, S.K.S.; Lin, Z.; Zhou, L.; et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv 2023, arXiv:2308.00352. [Google Scholar]
- Zhuge, M.; Wang, W.; Kirsch, L.; Faccio, F.; Khizbullin, D.; Schmidhuber, J. GPTSwarm: Language Agents as Optimizable Graphs. In Proceedings of the Forty-First International Conference on Machine Learning, Vienna, Austria, 21–27 July 2023. [Google Scholar]
- Reis, J.A.; Almeida, J.R.; Almeida, T.M.; Oliveira, J.L. Using Flowise to Streamline Biomedical Data Discovery and Analysis. In Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, 25–27 June 2024; IEEE: New York, NY, USA, 2024; pp. 695–700. [Google Scholar]
- Ge, Y.; Hua, W.; Mei, K.; Tan, J.; Xu, S.; Li, Z.; Zhang, Y. Openagi: When llm meets domain experts. Adv. Neural Inf. Process. Syst. 2024, 36, 5539–5568. [Google Scholar]
- Inavolu, S.M. Exploring AI-Driven Customer Service: Evolution, Architectures, Opportunities, Challenges and Future Directions. Int. J. Multidiscip. Res. 2024, 13, 156–163. [Google Scholar]
- Qiu, J.; Lam, K.; Li, G.; Acharya, A.; Wong, T.Y.; Darzi, A.; Yuan, W.; Topol, E.J. LLM-based agentic systems in medicine and healthcare. Nat. Mach. Intell. 2024, 6, 1418–1420. [Google Scholar] [CrossRef]
- Rosemann, A.; Zhang, X. Exploring the social, ethical, legal, and responsibility dimensions of artificial intelligence for health-a new column in Intelligent Medicine. Intell. Med. 2022, 2, 103–109. [Google Scholar] [CrossRef]
- Adelakun, B.O.; Onwubuariri, E.R.; Adeniran, G.A.; Ntiakoh, A. Enhancing fraud detection in accounting through AI: Techniques and case studies. Financ. Account. Res. J. 2024, 6, 978–999. [Google Scholar] [CrossRef]
- Agentic, A. The New Frontier in GenAI: An Executive Playbook; PricewaterhouseCoopers: London, UK, 2024. [Google Scholar]
- Yee, L.; Chui, M.; Roberts, R.; Xu, S. Why Agents are the Next Frontier of Generative AI. 2024. Available online: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai (accessed on 24 December 2024).
- Gartner. Innovation Insight: AI Agents. Technical Report, Gartner. 2024. Available online: https://www.gartner.com/en/documents/5332663 (accessed on 24 December 2024).
- Oldemeyer, L.; Jede, A.; Teuteberg, F. Investigation of artificial intelligence in SMEs: A systematic review of the state of the art and the main implementation challenges. Manag. Rev. Q. 2024, 75, 1185–1227. [Google Scholar] [CrossRef]
- Iyelolu, T.V.; Agu, E.E.; Idemudia, C.; Ijomah, T.I. Driving SME innovation with AI solutions: Overcoming adoption barriers and future growth opportunities. Int. J. Sci. Technol. Res. Arch. 2024, 7, 036–054. [Google Scholar] [CrossRef]
- Hansen, E.B.; Bøgh, S. Artificial intelligence and internet of things in small and medium-sized enterprises: A survey. J. Manuf. Syst. 2021, 58, 362–372. [Google Scholar] [CrossRef]
- Modisane, P.; Jokonya, O. Evaluating the benefits of cloud computing in small, medium and micro-sized enterprises (SMMEs). Procedia Comput. Sci. 2021, 181, 784–792. [Google Scholar] [CrossRef]
- Muminova, E.; Ashurov, M.; Akhunova, S.; Turgunov, M. AI in Small and Medium Enterprises: Assessing the Barriers, Benefits, and Socioeconomic Impacts. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Chaudhuri, R.; Chatterjee, S.; Vrontis, D.; Chaudhuri, S. Innovation in SMEs, AI dynamism, and sustainability: The current situation and way forward. Sustainability 2022, 14, 12760. [Google Scholar] [CrossRef]
- Jannelli, V.; Schoepf, S.; Bickel, M.; Netland, T.; Brintrup, A. Agentic LLMs in the Supply Chain: Towards Autonomous Multi-Agent Consensus-Seeking. arXiv 2024, arXiv:2411.10184. [Google Scholar]
- Watson, N.; Hessami, A.; Fassihi, F.; Abbasi, S.; Jahankhani, H.; El-Deeb, S.; Caetano, I.; David, S.; Newman, M.; Moriarty, S.; et al. Guidelines for Agentic AI Safety: Agentic AI Safety Experts Focus Group. September 2024. Available online: https://e-space.mmu.ac.uk/635454/ (accessed on 24 December 2024).
- Gupta, A.; Mills, S.; Firth-Butterfield, K. Scaling AI: Here’s Why You Should First Invest in Responsible AI. World Economic Forum Agenda. Available online: https://www.weforum.org/stories/2022/11/artificial-intelligence-invest-responsible-ai/ (accessed on 24 December 2024).
- AIM Research. Agentic AI Is Here and These 8 Startups Are Leading the Way in 2024. 2024. Available online: https://aimresearch.co/ai-startups/agentic-ai-is-here-and-these-8-startups-are-leading-the-way-in-2024 (accessed on 24 December 2024).
- Bhimani, M.; McCarthy, A. Our AI Agent Breaks Barriers to Care, Driving Improved Health Outcomes. 2024. Available online: https://www.hippocraticai.com/breaking-barriers (accessed on 24 December 2024).
- Purdy, M. What Is Agentic AI, and How Will It Change Work? Harvard Business Review. 12 December 2024. Available online: https://hbr.org/2024/12/what-is-agentic-ai-and-how-will-it-change-work (accessed on 24 December 2024).
- Kavanagh, K. Google Machine Learning and Generative AI for Solutions Architects: Build Efficient and Scalable AI/ML Solutions on Google Cloud; Packt Publishing Ltd.: Birmingham, UK, 2024. [Google Scholar]
- Samdani, G.; Paul, K.; Saldanha, F. Serverless Architectures for Agentic AI Deployment. World J. Adv. Eng. Technol. Sci. 2022, 7, 320–333. [Google Scholar] [CrossRef]
- Mishra, A. Machine Learning in the AWS Cloud: Add Intelligence to Applications with Amazon Sagemaker and Amazon Rekognition; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Soudi, M.S.; Bauters, M. AI guidelines and ethical readiness inside SMEs: A review and recommendations. Digit. Soc. 2024, 3, 3. [Google Scholar] [CrossRef]
Database | Initial Search Results | Screened Articles | Full-Text Assessed | Relevant Articles |
---|---|---|---|---|
IEEE Xplore | 938 | 135 | 45 | 10 |
Science Direct | 473 | 97 | 23 | 5 |
Scopus | 1412 | 454 | 59 | 11 |
Springer | 1375 | 307 | 42 | 5 |
Web of Science | 843 | 126 | 31 | 7 |
Gray Literature | 450 | 181 | 62 | 23 |
Snowballing | 73 | – | – | 5 |
Total | 5564 | 1300 | 262 | 66 |
No | Question | Scoring Criteria | Example |
---|---|---|---|
QA1 | Does the study satisfy the requirements for inclusion and exclusion? | Yes (3): Fully meets all criteria (e.g., English, 2019–2024, SMME-focused, peer-reviewed or credible gray literature). Partial (2): Meets most criteria but has minor deviations (e.g., partial SMME focus). No (1): Fails to meet key criteria (e.g., not SMME-focused). | Yes: A 2022 study on LangChain in small retail (meets all criteria). No: A study on AI in large enterprises (not SMME-focused). |
QA2 | Is the reporting comprehensible and consistent? | Yes (3): Clear, logical structure with consistent terminology and methodology. Partial (2): Minor inconsistencies or unclear sections (e.g., vague methods). No (1): Incomprehensible or highly inconsistent reporting. | Yes: Study with a clear methodology and consistent AI terminology. Partial: Study with unclear data collection methods. |
QA3 | What is the reliability of the findings? | Yes (3): Robust methodology (e.g., empirical data, statistical analysis, reproducible results or transparent gray literature methods). Partial (2): Methodology present but unclear or limited (e.g., small sample size). No (1): No methodology or unreliable findings (e.g., anecdotal evidence). | Yes: Empirical study or industry report with clear data sources. No: Theoretical paper with no data or methods. |
QA4 | Is the source credible? | Yes (3): Peer-reviewed in high-impact journal (Q1 quartile) or reputable gray literature source (OECD, Gartner, McKinsey, etc). Partial (2): Peer-reviewed in a less reputable journal (Q3 or Q4) or less authoritative gray literature. No (1): Not peer-reviewed or in a predatory journal. | Yes: Article in IEEE Transactions on AI (Q1 journal). Partial: Article in a Q3 conference or minor consultancy report. |
QA5 | Are the study’s findings in line with the primary objective? | Yes (3): Directly addresses agentic AI in SMMEs (e.g., implementation challenges, frameworks). Partial (2): Indirectly relevant (general AI in SMMEs, not agentic-specific). No (1): Unrelated to agentic AI or SMMEs. | Yes: Study on AutoGen’s application in SMME logistics. No: Study on traditional AI in large firms. |
Study ID | Author | Year | QA1 | QA2 | QA3 | QA4 | QA5 | Total Score |
---|---|---|---|---|---|---|---|---|
S1 | [14] | 2023 | 3 | 2 | 2 | 3 | 2 | 12 |
S2 | [47] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S3 | [27] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S4 | [48] | 2024 | 3 | 3 | 2 | 3 | 2 | 13 |
S5 | [49] | 2023 | 2 | 3 | 2 | 3 | 2 | 12 |
S6 | [50] | 2021 | 3 | 3 | 3 | 3 | 3 | 15 |
S7 | [51] | 2023 | 3 | 3 | 2 | 3 | 3 | 14 |
S8 | [52] | 2022 | 2 | 2 | 3 | 3 | 2 | 12 |
S9 | [53] | 2021 | 2 | 2 | 3 | 2 | 2 | 11 |
S10 | [54] | 2024 | 3 | 3 | 2 | 3 | 2 | 13 |
S11 | [55] | 2022 | 3 | 2 | 3 | 2 | 3 | 13 |
S12 | [15] | 2022 | 3 | 3 | 3 | 3 | 2 | 14 |
S13 | [56] | 2023 | 3 | 3 | 2 | 3 | 2 | 13 |
S14 | [57] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S15 | [32] | 2021 | 3 | 2 | 3 | 2 | 2 | 12 |
S16 | [58] | 2019 | 2 | 2 | 3 | 2 | 2 | 11 |
S17 | [59] | 2024 | 3 | 3 | 2 | 2 | 2 | 12 |
S18 | [60] | 2023 | 3 | 2 | 3 | 2 | 2 | 12 |
S19 | [61] | 2024 | 3 | 2 | 2 | 2 | 3 | 12 |
S20 | [62] | 2023 | 3 | 3 | 3 | 2 | 3 | 14 |
S21 | [63] | 2021 | 2 | 2 | 2 | 2 | 1 | 9 |
S22 | [64] | 2021 | 2 | 2 | 2 | 2 | 2 | 10 |
S23 | [65] | 2019 | 2 | 2 | 1 | 1 | 2 | 8 |
S24 | [40] | 2023 | 3 | 3 | 3 | 3 | 3 | 15 |
S25 | [66] | 2021 | 3 | 2 | 3 | 3 | 3 | 14 |
S26 | [67] | 2022 | 3 | 3 | 2 | 2 | 3 | 13 |
S27 | [68] | 2023 | 3 | 3 | 3 | 2 | 2 | 13 |
S28 | [30] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S29 | [69] | 2024 | 3 | 3 | 2 | 1 | 3 | 12 |
S30 | [70] | 2019 | 3 | 2 | 3 | 2 | 2 | 12 |
S31 | [71] | 2024 | 3 | 2 | 3 | 2 | 2 | 12 |
S32 | [72] | 2023 | 3 | 3 | 3 | 3 | 3 | 15 |
S33 | [12] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S34 | [13] | 2023 | 3 | 3 | 3 | 3 | 3 | 15 |
S35 | [20] | 2024 | 3 | 2 | 3 | 2 | 3 | 13 |
S36 | [73] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S37 | [74] | 2023 | 3 | 2 | 3 | 2 | 2 | 12 |
S38 | [75] | 2023 | 3 | 2 | 2 | 2 | 2 | 11 |
S39 | [76] | 2023 | 3 | 3 | 2 | 2 | 3 | 13 |
S40 | [77] | 2024 | 3 | 2 | 3 | 2 | 2 | 12 |
S41 | [78] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S42 | [79] | 2024 | 3 | 3 | 2 | 2 | 2 | 12 |
S43 | [80] | 2024 | 3 | 3 | 2 | 2 | 2 | 12 |
S44 | [81] | 2022 | 3 | 3 | 3 | 1 | 2 | 12 |
S45 | [82] | 2024 | 3 | 3 | 2 | 2 | 2 | 12 |
S46 | [83] | 2024 | 3 | 3 | 2 | 3 | 3 | 14 |
S47 | [84] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S48 | [85] | 2024 | 3 | 3 | 2 | 3 | 2 | 13 |
S49 | [86] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S50 | [87] | 2024 | 3 | 3 | 3 | 2 | 3 | 14 |
S51 | [88] | 2021 | 3 | 3 | 2 | 2 | 3 | 13 |
S52 | [89] | 2021 | 3 | 3 | 2 | 2 | 3 | 13 |
S53 | [90] | 2024 | 3 | 3 | 3 | 3 | 3 | 15 |
S54 | [91] | 2022 | 3 | 3 | 2 | 2 | 3 | 13 |
S55 | [92] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S56 | [18] | 2020 | 3 | 2 | 3 | 2 | 3 | 13 |
S57 | [93] | 2024 | 3 | 3 | 2 | 2 | 2 | 12 |
S58 | [39] | 2023 | 3 | 3 | 3 | 2 | 3 | 14 |
S59 | [94] | 2022 | 3 | 3 | 2 | 2 | 3 | 13 |
S60 | [95] | 2024 | 3 | 3 | 3 | 2 | 3 | 14 |
S61 | [96] | 2024 | 3 | 3 | 3 | 2 | 3 | 14 |
S62 | [97] | 2024 | 3 | 3 | 3 | 2 | 3 | 14 |
S63 | [98] | 2024 | 3 | 3 | 2 | 2 | 3 | 13 |
S64 | [99] | 2022 | 3 | 3 | 2 | 2 | 3 | 13 |
S65 | [100] | 2019 | 3 | 2 | 2 | 2 | 3 | 12 |
S66 | [101] | 2024 | 3 | 3 | 3 | 2 | 3 | 14 |
Theme | RQ | Representative Codes | Example Study | Key Insights |
---|---|---|---|---|
Advancements in Agentic AI | RQ1 | LLMs, multi-agent systems, autonomy | Xi et al. (2023) [14], [S1] | LLMs enhance automation, but SMME applications need empirical focus. |
Sector-Specific Applications | RQ2 | Retail, logistics, flexibility | Pu et al. (2022) [67], [S26] | Agentic AI outperforms traditional AI in dynamic SMME sectors. |
Frameworks | RQ3 | AutoGen, LangChain, scalability | Wu et al. (2023) [13], Topsakal & Akinci (2023) [72], [S32,S34] | Open-source frameworks suit SMMEs but require setup expertise. |
Barriers and Enablers | RQ4 | Cost, skills, cloud computing | Oldemeyer et al. (2024) [86], [S49] | Cloud platforms mitigate costs; training addresses skill gaps. |
Ethical Implications | RQ1, RQ4 | Bias, job displacement, privacy | Watson et al. (2024) [93], [S57] | XAI and training mitigate ethical risks in SMMEs. |
Aspect | Traditional AI | Agentic AI | Cost Implications |
---|---|---|---|
Learning | Fixed algorithms | Adapts to new data | Lower via open-source tools |
Autonomy | Human oversight needed | Independent decisions | Reduces labor costs |
Flexibility | Rigid programming | Adjusts to changes | Minimizes rework costs |
Collaboration | Isolated tasks | Interconnected agents | Enhances team efficiency |
Transparency | Opaque decisions | Explainable decisions | Builds trust, no extra cost |
Application | Data analysis | Real-time strategies | Broadens SMME capabilities |
Framework | Cost | Scalability | SMME Suitability | Limitations |
---|---|---|---|---|
LangChain | Low (open-source) | High | User-friendly, ideal for small teams | Requires technical setup |
AutoGen | Low (open-source) | Moderate | Modular, suits logistics | Limited documentation |
CrewAI | Low (open-source) | Moderate | Strong for multi-agent collaboration | Moderate scalability |
Semantic Kernel | Low (open-source) | High | Integrates LLMs and tools | Complex for non-technical users |
Barrier | Enabler | Mitigation Strategy |
---|---|---|
Financial Constraints | Cloud Computing | Adopt cost-effective cloud platforms (e.g., AWS) |
Lack of Technical Expertise | Training Programs | Partner with industries and universities for AI workshops |
Data-Related Issues | Open-Source Tools | Use data-cleaning tools in frameworks like LangChain |
Cultural Resistance | Leadership Support | Implement transparent AI communication plans |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olujimi, P.A.; Owolawi, P.A.; Mogase, R.C.; Wyk, E.V. Agentic AI Frameworks in SMMEs: A Systematic Literature Review of Ecosystemic Interconnected Agents. AI 2025, 6, 123. https://doi.org/10.3390/ai6060123
Olujimi PA, Owolawi PA, Mogase RC, Wyk EV. Agentic AI Frameworks in SMMEs: A Systematic Literature Review of Ecosystemic Interconnected Agents. AI. 2025; 6(6):123. https://doi.org/10.3390/ai6060123
Chicago/Turabian StyleOlujimi, Peter Adebowale, Pius Adewale Owolawi, Refilwe Constance Mogase, and Etienne Van Wyk. 2025. "Agentic AI Frameworks in SMMEs: A Systematic Literature Review of Ecosystemic Interconnected Agents" AI 6, no. 6: 123. https://doi.org/10.3390/ai6060123
APA StyleOlujimi, P. A., Owolawi, P. A., Mogase, R. C., & Wyk, E. V. (2025). Agentic AI Frameworks in SMMEs: A Systematic Literature Review of Ecosystemic Interconnected Agents. AI, 6(6), 123. https://doi.org/10.3390/ai6060123