Benchmarking Psychological Lexicons and Large Language Models for Emotion Detection in Brazilian Portuguese
Abstract
1. Introduction
1.1. Related Literature
1.2. Emotional Profiling in Brazilian Portuguese: Challenges and Limitations
2. Materials and Methods
2.1. Emotional Profiling Task
2.2. Confidence Interval Calculation
2.3. Datasets
2.3.1. Human-Annotated Portuguese Datasets
2.3.2. Large Language Models for Dataset Translation
Translate the following text from {source_lang} to {target_lang}: ‘{text}’.
Format your translation as a Python list and write nothing else than the Python list.
Translate accurately.
2.3.3. LLM-Generated Texts
which can be translated in English as“Você é um jornalista profissional. Escreva uma notícia jornalística entre 70 e 75 palavras sobre o tema ’{topic_pt}’, com um tom emocional MUITO forte de ’{emotion_pt}’, evidente ao longo de todo o texto. Comece com um parágrafo de reflexão marcado como ’**Parágrafo de reflexão:**’, seguido pela notícia final marcada como ’**Notícia Final:**’. Mantenha o estilo jornalístico, mas influenciado pela emoção de ’{emotion_pt}’.”
“You are a professional journalist. Write a news story of between 70 and 75 words on the topic ’{topic_pt}’, with a VERY strong emotional tone of ’{emotion_pt}’, evident throughout the text. Start with a reflection paragraph marked as ’**Reflection paragraph:**’, followed by the final news story marked as ’**Final News Story:**’. Keep the journalistic style, but influenced by the emotion of ’{emotion_pt}’.”
2.4. Emotional Profiling Models
2.4.1. Large Language Models for Emotional Annotation
Analyze the following text and identify the elicited emotions from these options: anger, disgust, fear, joy, sadness, surprise, trust, anticipation or neutral. Neutral is for when the text elicits no other emotion according to you. Return ONLY the emotions name in lowercase, nothing else. Text: {text}
Analyze the following text and identify the elicited emotions from these options: anger, disgust, fear, joy, sadness, surprise, trust or anticipation. Return ONLY the emotions name in lowercase, nothing else. Text: {text}
2.4.2. EmoAtlas
2.4.3. BERTimbau
2.4.4. Baseline Reference Model
3. Results
3.1. News Headlines
3.2. Stock Market Tweets
3.3. Indirect Annotated Data
3.4. Fingerprinting LLMs for Emotional Detection
3.5. Semantic Frame Analysis with EmoAtlas in Portuguese
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semeraro, A.; Vilella, S.; Improta, R.; De Duro, E.S.; Mohammad, S.M.; Ruffo, G.; Stella, M. EmoAtlas: An emotional network analyzer of texts that merges psychological lexicons, artificial intelligence, and network science. Behav. Res. Methods 2025, 57, 77. [Google Scholar] [CrossRef]
- Vieira da Silva, F.J.; Roman, N.T.; Carvalho, A.M. Stock market tweets annotated with emotions. Corpora 2020, 15, 343–354. [Google Scholar] [CrossRef]
- Barberia, L.; Schmalz, P.; Trevisan Roman, N.; Lombard, B.; Moraes de Sousa, T. It’s about What and How you say it: A Corpus with Stance and Sentiment Annotation for COVID-19 Vaccines Posts on X/Twitter by Brazilian Political Elites. In Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities, Albuquerque, NM, USA, 3–4 May 2025; Hämäläinen, M., Öhman, E., Bizzoni, Y., Miyagawa, S., Alnajjar, K., Eds.; The Association for Computational Linguistics: Kerrville, TX, USA, 2025; pp. 365–376. [Google Scholar]
- Hassani, H.; Beneki, C.; Unger, S.; Mazinani, M.T.; Yeganegi, M.R. Text Mining in Big Data Analytics. Big Data Cogn. Comput. 2020, 4, 1. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, J.; Tsai, B.; Ferrara, E.; Luceri, L. Synthetic politics: Prevalence, spreaders, and emotional reception of AI-generated political images on X. arXiv 2025, arXiv:2502.11248. [Google Scholar]
- Ekman, P.; Davidson, R.J. The Nature of Emotion: Fundamental Questions; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Plutchik, R. A psychoevolutionary theory of emotions. Soc. Sci. Inf./Sur Les Sci. Soc. 1982, 21, 529–553. [Google Scholar] [CrossRef]
- Stella, M. Cognitive network science for understanding online social cognitions: A brief review. Top. Cogn. Sci. 2022, 14, 143–162. [Google Scholar] [CrossRef]
- Abramski, K.; Ciringione, L.; Rossetti, G.; Stella, M. Voices of rape: Cognitive networks link passive voice usage to psychological distress in online narratives. Comput. Hum. Behav. 2024, 158, 108266. [Google Scholar] [CrossRef]
- Fillmore, C.J.; Baker, C.F. Frame semantics for text understanding. In Proceedings of the WordNet and Other Lexical Resources Workshop, NAACL, Pittsburgh, PA, USA, 3–4 June 2001; Volume 6. [Google Scholar]
- Bianchi, F.; Nozza, D.; Hovy, D. FEEL-IT: Emotion and Sentiment Classification for the Italian Language. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, Online, 19–23 April 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 2766–2774. [Google Scholar]
- Sprugnoli, R. MultiEmotions-IT: A New Dataset for Opinion Polarity and Emotion Analysis for Italian. In Proceedings of the 7th Italian Conference on Computational Linguistics (CLiC-it 2020), Bologna, Italy, 1–3 March 2020; Accademia University Press: Torino, Italy, 2020; pp. 402–408. [Google Scholar]
- Quispe, L.V.; Tohalino, J.A.; Amancio, D.R. Using virtual edges to improve the discriminability of co-occurrence text networks. Phys. A Stat. Mech. Its Appl. 2021, 562, 125344. [Google Scholar] [CrossRef]
- Silva, F.N.; Amancio, D.R.; Bardosova, M.; Costa, L.d.F.; Oliveira, O.N., Jr. Using network science and text analytics to produce surveys in a scientific topic. J. Inf. 2016, 10, 487–502. [Google Scholar] [CrossRef]
- Abdillah, J.; Asror, I.; Wibowo, Y.F.A. Emotion Classification of Song Lyrics Using Bidirectional LSTM Method with GloVe Word Representation Weighting. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2020, 4, 723–729. [Google Scholar] [CrossRef]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1532–1543. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.; Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; et al. A Survey on Large Language Model Based Autonomous Agents. Front. Comput. Sci. 2024, 18, 1–26. [Google Scholar] [CrossRef]
- Zhai, X.; Chu, X.; Chai, C.S.; Jong, M.S.Y.; Istenic, A.; Spector, M.; Liu, J.B.; Yuan, J.; Li, Y. A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity 2021, 2021, 8812542. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Raza, M.; Jahangir, Z.; Riaz, M.B.; Saeed, M.J.; Sattar, M.A. Industrial applications of large language models. Sci. Rep. 2025, 15, 13755. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.; Kovaleva, O.; Rumshisky, A. A Primer in BERTology: What We Know About How BERT Works. Trans. Assoc. Comput. Linguist. 2020, 8, 842–866. [Google Scholar] [CrossRef]
- Hutto, C.; Gilbert, E. Vader: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. In Proceedings of the International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8, pp. 216–225. [Google Scholar]
- Mohammad, S.M.; Turney, P.D. Crowdsourcing a Word-Emotion Association Lexicon. Comput. Intell. 2013, 29, 436–465. [Google Scholar] [CrossRef]
- Dodds, P.S.; Harris, K.D.; Kloumann, I.M.; Bliss, C.A.; Danforth, C.M. Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE 2011, 6, e26752. [Google Scholar] [CrossRef]
- Hammes, L.O.A.; de Freitas, L.A. Utilizando bertimbau para a classificação de emoções em português. In Proceedings of the Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana (STIL), Online, 29 November–3 December 2021; SBC: Tokyo, Japan, 2021; pp. 56–63. [Google Scholar]
- Kansaon, D.P.; Brandão, M.A.; de Paula Pinto, S.A. Análise de Algoritmos para Detecção de Emoções em Tweets em Português Brasileiro. Rev. Sist. Comput. (ISYS) 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Oliveira, F.B.; Sichman, J.S. Portuguese Emotion Detection Model Using BERTimbau Applied to COVID-19 News and Replies. In Proceedings of the Intelligent Systems, Amsterdam, The Netherlands, 28–29 August 2025; Paes, A., Verri, F.A.N., Eds.; Springer: Cham, Switzerland, 2025; pp. 265–280. [Google Scholar] [CrossRef]
- Martinazzo, B.; Dosciatti, M.M.; Paraiso, E.C. Identifying emotions in short texts for brazilian portuguese. In Proceedings of the IV International Workshop on Web and Text Intelligence (WTI 2012), Curitiba, Brazil, 20–25 October 2012; p. 16. [Google Scholar]
- Souza, F.; Nogueira, R.; Lotufo, R. BERTimbau: Pretrained BERT Models for Brazilian Portuguese. In Proceedings of the Intelligent Systems; Cerri, R., Prati, R.C., Eds.; Springer: Cham, Switzerland, 2020; pp. 403–417. [Google Scholar]
- Veríssimo, V.; Costa, R. Using Data Augmentation and Neural Networks to Improve the Emotion Analysis of Brazilian Portuguese Texts. In Proceedings of the 26th Brazilian Symposium on Multimedia and the Web (WebMedia), Ribeirão Preto, Brazil, 23–27 October 2020; ACM: New York, NY, USA, 2020; pp. 9–16. [Google Scholar] [CrossRef]
- de Souza, K.F.; Pereira, M.H.R.; Dalip, D.H. UniLex: Método Léxico para Análise de Sentimentos Textuais sobre Conteúdo de Tweets em Português Brasileiro. Abakós 2017, 5, 79–96. [Google Scholar] [CrossRef]
- Carvalho, F.; Santos, G.; Guedes, G.P. AffectPT-br: An Affective Lexicon Based on LIWC 2015. In Proceedings of the 37th International Conference of the Chilean Computer Science Society (SCCC), Santiago, Chile, 5–9 November 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Resampling Methods. In An Introduction to Statistical Learning: With Applications in Python; Springer International Publishing: Cham, Switzerland, 2023; pp. 201–228. [Google Scholar] [CrossRef]
- Demszky, D.; Movshovitz-Attias, D.; Ko, J.; Cowen, A.; Nemade, G.; Ravi, S. GoEmotions: A Dataset of Fine-Grained Emotions. arXiv 2020, arXiv:2005.00547. [Google Scholar]
- Team, G.; Kamath, A.; Ferret, J.; Pathak, S.; Vieillard, N.; Merhej, R.; Perrin, S.; Matejovicova, T.; Ramé, A.; Rivière, M.; et al. Gemma 3 technical report. arXiv 2025, arXiv:2503.19786. [Google Scholar] [CrossRef]
- Aldawsari, A.H.; Hamad. Evaluating Translation Tools: Google Translate, Bing Translator, and Bing AI on Arabic Colloquialisms. Arab World English Journal (AWEJ) Special Issue on ChatGPT 2024. Available online: https://ssrn.com/abstract=4814733 (accessed on 10 June 2025).
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Vianna, D.; Carneiro, F.; Carvalho, J.; Plastino, A.; Paes, A. Sentiment analysis in Portuguese tweets: An evaluation of diverse word representation models. Lang. Resour. Eval. 2024, 58, 223–272. [Google Scholar] [CrossRef]
- Ashery, A.F.; Aiello, L.M.; Baronchelli, A. Emergent social conventions and collective bias in LLM populations. Sci. Adv. 2025, 11, eadu9368. [Google Scholar] [CrossRef]
- Cau, E.; Failla, A.; Rossetti, G. Bots of a Feather: Mixing Biases in LLMs’ Opinion Dynamics. In Proceedings of the International Conference on Complex Networks and Their Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 166–176. [Google Scholar]
- Binz, M.; Akata, E.; Bethge, M.; Brändle, F.; Callaway, F.; Coda-Forno, J.; Dayan, P.; Demircan, C.; Eckstein, M.K.; Éltető, N.; et al. A foundation model to predict and capture human cognition. Nature 2025, 644, 1002–1009. [Google Scholar] [CrossRef]
Emotion | Score | BERTimbau | Baseline | EmoAtlas | Mistral |
---|---|---|---|---|---|
raiva (anger) | Accuracy | 0.75 (0.73, 0.77) | 0.76 (0.75, 0.78) | 0.79 (0.77, 0.81) | 0.87 (0.85, 0.89) |
Precision | 0.22 (0.18, 0.27) | 0.14 (0.10, 0.18) | 0.23 (0.18, 0.29) | 0.53 (0.46, 0.60) | |
Recall | 0.32 (0.26, 0.38) | 0.14 (0.10, 0.18) | 0.23 (0.18, 0.29) | 0.49 (0.42, 0.55) | |
medo (fear) | Accuracy | 0.84 (0.82, 0.85) | 0.76 (0.74, 0.77) | 0.72 (0.69, 0.74) | 0.80 (0.79, 0.82) |
Precision | 0.44 (0.38, 0.50) | 0.14 (0.10, 0.18) | 0.26 (0.22, 0.30) | 0.39 (0.35, 0.44) | |
Recall | 0.49 (0.43, 0.55) | 0.14 (0.10, 0.19) | 0.54 (0.48, 0.60) | 0.68 (0.62, 0.74) | |
alegria (joy) | Accuracy | 0.86 (0.84, 0.87) | 0.75 (0.74, 0.77) | 0.81 (0.80, 0.83) | 0.86 (0.84, 0.87) |
Precision | 0.50 (0.33, 0.67) | 0.14 (0.11, 0.19) | 0.30 (0.24, 0.37) | 0.51 (0.41, 0.60) | |
Recall | 0.07 (0.04, 0.11) | 0.14 (0.10, 0.19) | 0.21 (0.16, 0.26) | 0.23 (0.17, 0.28) | |
tristeza (sadness) | Accuracy | 0.87 (0.86, 0.89) | 0.75 (0.74, 0.77) | 0.81 (0.79, 0.82) | 0.56 (0.54, 0.59) |
Precision | 0.56 (0.50, 0.62) | 0.14 (0.10, 0.19) | 0.32 (0.26, 0.38) | 0.24 (0.21, 0.27) | |
Recall | 0.54 (0.48, 0.60) | 0.14 (0.10, 0.19) | 0.32 (0.26, 0.37) | 0.94 (0.91, 0.97) | |
surpresa (surprise) | Accuracy | 0.86 (0.85, 0.88) | 0.75 (0.74, 0.77) | 0.80 (0.78, 0.82) | 0.87 (0.86, 0.89) |
Precision | 0.64 (0.51, 0.77) | 0.14 (0.11, 0.19) | 0.17 (0.11, 0.23) | 0.70 (0.59, 0.81) | |
Recall | 0.13 (0.09, 0.17) | 0.14 (0.10, 0.19) | 0.11 (0.07, 0.14) | 0.20 (0.15, 0.25) |
Emotion | Score | BERTimbau | Baseline | EmoAtlas | Mistral |
---|---|---|---|---|---|
raiva (anger) | Accuracy | 0.92 (0.91, 0.93) | 0.87 (0.86, 0.88) | 0.90 (0.88, 0.91) | 0.92 (0.91, 0.93) |
Precision | 0.42 (0.33, 0.52) | 0.07 (0.04, 0.11) | 0.22 (0.16, 0.30) | 0.42 (0.34, 0.50) | |
Recall | 0.24 (0.18, 0.31) | 0.07 (0.04, 0.11) | 0.17 (0.12, 0.23) | 0.35 (0.28, 0.43) | |
antecipação (anticipation) | Accuracy | – | 0.72 (0.71, 0.74) | 0.71 (0.69, 0.73) | 0.76 (0.74, 0.78) |
Precision | – | 0.17 (0.13, 0.20) | 0.16 (0.13, 0.19) | 0.28 (0.23, 0.32) | |
Recall | – | 0.16 (0.13, 0.20) | 0.18 (0.14, 0.22) | 0.28 (0.24, 0.32) | |
nojo (disgust) | Accuracy | 0.81 (0.80, 0.83) | 0.69 (0.67, 0.71) | 0.80 (0.79, 0.82) | 0.82 (0.81, 0.84) |
Precision | 0.65 (0.51, 0.78) | 0.19 (0.16, 0.23) | 0.44 (0.34, 0.54) | 0.73 (0.62, 0.83) | |
Recall | 0.07 (0.05, 0.09) | 0.19 (0.16, 0.23) | 0.11 (0.08, 0.13) | 0.12 (0.09, 0.15) | |
medo (fear) | Accuracy | 0.94 (0.93, 0.95) | 0.89 (0.88, 0.90) | 0.81 (0.79, 0.82) | 0.93 (0.92, 0.94) |
Precision | 0.47 (0.20, 0.73) | 0.06 (0.02, 0.10) | 0.09 (0.06, 0.12) | 0.21 (0.11, 0.33) | |
Recall | 0.05 (0.02, 0.09) | 0.06 (0.02, 0.10) | 0.25 (0.18, 0.32) | 0.08 (0.04, 0.13) | |
alegria (joy) | Accuracy | 0.89 (0.87, 0.90) | 0.80 (0.79, 0.81) | 0.85 (0.84, 0.87) | 0.88 (0.87, 0.89) |
Precision | 0.46 (0.36, 0.57) | 0.11 (0.08, 0.15) | 0.22 (0.16, 0.29) | 0.45 (0.37, 0.53) | |
Recall | 0.14 (0.10, 0.18) | 0.11 (0.08, 0.15) | 0.13 (0.09, 0.17) | 0.23 (0.18, 0.28) | |
tristeza (sadness) | Accuracy | 0.88 (0.87, 0.90) | 0.79 (0.78, 0.80) | 0.82 (0.81, 0.84) | 0.78 (0.77, 0.80) |
Precision | 0.61 (0.45, 0.77) | 0.12 (0.08, 0.16) | 0.22 (0.16, 0.27) | 0.28 (0.24, 0.32) | |
Recall | 0.08 (0.05, 0.12) | 0.12 (0.08, 0.16) | 0.18 (0.14, 0.22) | 0.50 (0.45, 0.56) | |
surpresa (surprise) | Accuracy | 0.87 (0.86, 0.89) | 0.78 (0.77, 0.80) | 0.85 (0.83, 0.86) | 0.87 (0.86, 0.89) |
Precision | 0.43 (0.31, 0.56) | 0.12 (0.09, 0.16) | 0.20 (0.14, 0.27) | 0.46 (0.33, 0.59) | |
Recall | 0.09 (0.06, 0.12) | 0.12 (0.09, 0.16) | 0.08 (0.05, 0.12) | 0.09 (0.06, 0.12) | |
confiança (trust) | Accuracy | – | 0.67 (0.66, 0.69) | 0.69 (0.67, 0.71) | 0.79 (0.78, 0.81) |
Precision | – | 0.20 (0.17, 0.24) | 0.26 (0.22, 0.30) | 0.43 (0.17, 0.70) | |
Recall | – | 0.20 (0.17, 0.24) | 0.29 (0.24, 0.33) | 0.01 (0.00, 0.02) |
Emotion | Score | BERTimbau | Baseline | EmoAtlas | Mistral |
---|---|---|---|---|---|
raiva (anger) | Accuracy | 0.85 (0.84, 0.86) | 0.66 (0.65, 0.68) | 0.74 (0.72, 0.75) | 0.83 (0.82, 0.84) |
Precision | 0.63 (0.60, 0.66) | 0.21 (0.19, 0.23) | 0.34 (0.31, 0.37) | 0.68 (0.64, 0.71) | |
Recall | 0.69 (0.66, 0.72) | 0.21 (0.19, 0.24) | 0.26 (0.24, 0.29) | 0.40 (0.37, 0.43) | |
nojo (disgust) | Accuracy | 0.86 (0.85, 0.87) | 0.77 (0.76, 0.78) | 0.82 (0.81, 0.83) | 0.78 (0.77, 0.79) |
Precision | 0.49 (0.45, 0.52) | 0.13 (0.11, 0.15) | 0.29 (0.26, 0.33) | 0.32 (0.29, 0.34) | |
Recall | 0.64 (0.60, 0.67) | 0.13 (0.11, 0.16) | 0.28 (0.25, 0.31) | 0.56 (0.52, 0.59) | |
medo (fear) | Accuracy | 0.94 (0.93, 0.94) | 0.83 (0.82, 0.84) | 0.77 (0.76, 0.78) | 0.93 (0.92, 0.94) |
Precision | 0.64 (0.60, 0.68) | 0.10 (0.07, 0.12) | 0.20 (0.18, 0.23) | 0.65 (0.60, 0.69) | |
Recall | 0.80 (0.76, 0.83) | 0.10 (0.07, 0.12) | 0.48 (0.44, 0.53) | 0.56 (0.51, 0.60) | |
alegria (joy) | Accuracy | 0.92 (0.92, 0.93) | 0.65 (0.64, 0.67) | 0.76 (0.75, 0.77) | 0.87 (0.86, 0.88) |
Precision | 0.92 (0.90, 0.93) | 0.22 (0.20, 0.24) | 0.47 (0.44, 0.50) | 0.73 (0.70, 0.75) | |
Recall | 0.72 (0.70, 0.75) | 0.22 (0.20, 0.25) | 0.51 (0.48, 0.54) | 0.66 (0.64, 0.69) | |
tristeza (sadness) | Accuracy | 0.92 (0.91, 0.93) | 0.67 (0.66, 0.69) | 0.75 (0.74, 0.76) | 0.84 (0.83, 0.85) |
Precision | 0.85 (0.82, 0.87) | 0.20 (0.18, 0.23) | 0.36 (0.33, 0.40) | 0.59 (0.57, 0.62) | |
Recall | 0.74 (0.71, 0.76) | 0.20 (0.18, 0.23) | 0.30 (0.28, 0.33) | 0.67 (0.65, 0.70) | |
surpresa (surprise) | Accuracy | 0.93 (0.92, 0.93) | 0.73 (0.72, 0.74) | 0.81 (0.80, 0.82) | 0.89 (0.88, 0.90) |
Precision | 0.75 (0.72, 0.78) | 0.16 (0.14, 0.18) | 0.34 (0.30, 0.39) | 0.77 (0.73, 0.80) | |
Recall | 0.82 (0.79, 0.84) | 0.16 (0.14, 0.19) | 0.18 (0.15, 0.20) | 0.44 (0.41, 0.48) |
Emotion | Score | BERTimbau | Baseline | EmoAtlas | Mistral |
---|---|---|---|---|---|
raiva (anger) | Accuracy | 0.86 (0.85, 0.87) | 0.66 (0.65, 0.67) | 0.73 (0.72, 0.74) | 0.84 (0.83, 0.85) |
Precision | 0.66 (0.63, 0.68) | 0.21 (0.19, 0.23) | 0.33 (0.30, 0.36) | 0.70 (0.67, 0.73) | |
Recall | 0.74 (0.72, 0.77) | 0.21 (0.19, 0.24) | 0.25 (0.23, 0.28) | 0.44 (0.41, 0.47) | |
nojo (disgust) | Accuracy | 0.86 (0.85, 0.87) | 0.77 (0.76, 0.78) | 0.82 (0.81, 0.83) | 0.77 (0.76, 0.78) |
Precision | 0.48 (0.45, 0.51) | 0.13 (0.11, 0.16) | 0.29 (0.26, 0.33) | 0.31 (0.29, 0.34) | |
Recall | 0.75 (0.72, 0.78) | 0.13 (0.11, 0.16) | 0.26 (0.23, 0.29) | 0.63 (0.59, 0.67) | |
medo (fear) | Accuracy | 0.94 (0.93, 0.94) | 0.83 (0.82, 0.84) | 0.78 (0.76, 0.79) | 0.93 (0.93, 0.94) |
Precision | 0.62 (0.58, 0.66) | 0.10 (0.07, 0.12) | 0.20 (0.17, 0.22) | 0.67 (0.62, 0.71) | |
Recall | 0.84 (0.80, 0.87) | 0.10 (0.07, 0.12) | 0.44 (0.39, 0.48) | 0.58 (0.53, 0.62) | |
alegria (joy) | Accuracy | 0.93 (0.92, 0.94) | 0.65 (0.64, 0.67) | 0.78 (0.77, 0.79) | 0.88 (0.88, 0.89) |
Precision | 0.91 (0.89, 0.93) | 0.22 (0.20, 0.25) | 0.50 (0.47, 0.53) | 0.75 (0.73, 0.78) | |
Recall | 0.76 (0.74, 0.79) | 0.22 (0.20, 0.25) | 0.51 (0.48, 0.54) | 0.72 (0.69, 0.74) | |
tristeza (sadness) | Accuracy | 0.92 (0.92, 0.93) | 0.67 (0.66, 0.69) | 0.76 (0.75, 0.77) | 0.85 (0.84, 0.86) |
Precision | 0.80 (0.77, 0.82) | 0.20 (0.18, 0.23) | 0.38 (0.35, 0.42) | 0.63 (0.60, 0.65) | |
Recall | 0.84 (0.82, 0.86) | 0.21 (0.18, 0.23) | 0.31 (0.28, 0.33) | 0.72 (0.69, 0.75) | |
surpresa (surprise) | Accuracy | 0.94 (0.93, 0.95) | 0.73 (0.72, 0.74) | 0.81 (0.80, 0.82) | 0.89 (0.88, 0.90) |
Precision | 0.80 (0.78, 0.83) | 0.16 (0.14, 0.19) | 0.34 (0.29, 0.38) | 0.78 (0.75, 0.82) | |
Recall | 0.84 (0.82, 0.86) | 0.16 (0.14, 0.19) | 0.17 (0.14, 0.19) | 0.46 (0.43, 0.49) |
Emotion | Score | BERTimbau | Baseline | EmoAtlas | Mistral |
---|---|---|---|---|---|
raiva (anger) | Accuracy | 0.93 (0.92, 0.94) | 0.77 (0.75, 0.78) | 0.86 (0.85, 0.88) | 0.91 (0.89, 0.92) |
Precision | 0.72 (0.67, 0.77) | 0.13 (0.10, 0.17) | 0.43 (0.31, 0.55) | 0.61 (0.56, 0.65) | |
Recall | 0.79 (0.73, 0.83) | 0.13 (0.10, 0.17) | 0.10 (0.07, 0.14) | 0.85 (0.80, 0.89) | |
antecipação (anticipation) | Accuracy | – | 0.77 (0.76, 0.79) | 0.71 (0.69, 0.73) | 0.47 (0.45, 0.49) |
Precision | – | 0.13 (0.09, 0.17) | 0.26 (0.22, 0.29) | 0.20 (0.18, 0.22) | |
Recall | – | 0.13 (0.09, 0.17) | 0.65 (0.59, 0.70) | 0.99 (0.98, 1.00) | |
nojo (disgust) | Accuracy | 0.87 (0.85, 0.88) | 0.81 (0.80, 0.82) | 0.89 (0.88, 0.91) | 0.94 (0.93, 0.95) |
Precision | 0.43 (0.38, 0.48) | 0.11 (0.07, 0.15) | 0.56 (0.20, 0.89) | 0.77 (0.71, 0.82) | |
Recall | 0.76 (0.71, 0.82) | 0.11 (0.06, 0.15) | 0.02 (0.00, 0.04) | 0.68 (0.61, 0.74) | |
medo (fear) | Accuracy | 0.84 (0.82, 0.85) | 0.78 (0.76, 0.79) | 0.86 (0.85, 0.88) | 0.87 (0.85, 0.88) |
Precision | 0.44 (0.40, 0.48) | 0.13 (0.09, 0.16) | 0.40 (0.31, 0.48) | 0.49 (0.44, 0.53) | |
Recall | 0.99 (0.97, 1.00) | 0.13 (0.09, 0.17) | 0.20 (0.16, 0.25) | 0.97 (0.94, 0.99) | |
alegria (joy) | Accuracy | 0.94 (0.93, 0.95) | 0.78 (0.77, 0.80) | 0.78 (0.76, 0.80) | 0.73 (0.71, 0.75) |
Precision | 0.74 (0.69, 0.79) | 0.12 (0.08, 0.16) | 0.31 (0.27, 0.35) | 0.31 (0.28, 0.34) | |
Recall | 0.80 (0.74, 0.84) | 0.12 (0.08, 0.16) | 0.66 (0.60, 0.72) | 0.96 (0.93, 0.98) | |
tristeza (sadness) | Accuracy | 0.88 (0.87, 0.90) | 0.75 (0.73, 0.77) | 0.86 (0.84, 0.87) | 0.64 (0.62, 0.66) |
Precision | 0.57 (0.52, 0.61) | 0.15 (0.11, 0.18) | 0.54 (0.38, 0.71) | 0.29 (0.26, 0.32) | |
Recall | 0.91 (0.87, 0.94) | 0.15 (0.11, 0.19) | 0.06 (0.04, 0.09) | 0.98 (0.97, 1.00) | |
surpresa (surprise) | Accuracy | 0.94 (0.92, 0.94) | 0.80 (0.78, 0.81) | 0.84 (0.82, 0.85) | 0.94 (0.93, 0.95) |
Precision | 0.71 (0.65, 0.76) | 0.11 (0.08, 0.15) | 0.30 (0.24, 0.36) | 0.83 (0.77, 0.88) | |
Recall | 0.73 (0.67, 0.78) | 0.11 (0.07, 0.16) | 0.32 (0.26, 0.38) | 0.63 (0.57, 0.70) | |
confiança (trust) | Accuracy | – | 0.79 (0.78, 0.80) | 0.86 (0.84, 0.87) | 0.89 (0.88, 0.91) |
Precision | – | 0.12 (0.08, 0.16) | 0.42 (0.37, 0.47) | 0.54 (0.48, 0.59) | |
Recall | – | 0.12 (0.08, 0.16) | 0.56 (0.50, 0.63) | 0.70 (0.64, 0.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues Aparecido, T.D.; Carrillo, A.; Camargo, C.Q.; Stella, M. Benchmarking Psychological Lexicons and Large Language Models for Emotion Detection in Brazilian Portuguese. AI 2025, 6, 249. https://doi.org/10.3390/ai6100249
Domingues Aparecido TD, Carrillo A, Camargo CQ, Stella M. Benchmarking Psychological Lexicons and Large Language Models for Emotion Detection in Brazilian Portuguese. AI. 2025; 6(10):249. https://doi.org/10.3390/ai6100249
Chicago/Turabian StyleDomingues Aparecido, Thales David, Alexis Carrillo, Chico Q. Camargo, and Massimo Stella. 2025. "Benchmarking Psychological Lexicons and Large Language Models for Emotion Detection in Brazilian Portuguese" AI 6, no. 10: 249. https://doi.org/10.3390/ai6100249
APA StyleDomingues Aparecido, T. D., Carrillo, A., Camargo, C. Q., & Stella, M. (2025). Benchmarking Psychological Lexicons and Large Language Models for Emotion Detection in Brazilian Portuguese. AI, 6(10), 249. https://doi.org/10.3390/ai6100249