Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions
Abstract
:1. Introduction
2. Critical Issues for Chronic Disease and Care Management Research
2.1. Global Trends in Chronic Care and Outcomes Evaluation
2.2. Critical Needs for Assessing Patient-Centered Care Interventions
2.3. Challenges and Solutions for Designing Chronic Care Modalities in Promoting Coordinated or Guided Care
- Challenge One. The Lack of Theoretical Guidance in Selecting Predictor Variables
- Challenge Two. Inadequate Validation of Multidisciplinary Care
- Challenge Three. The Need for Conducting Prospective or Experimental Studies
- Challenge Four. The Rationale for Establishing an Integrated or Guided Care Model
2.4. Opportunities for Collaborative and Transdisciplinary Research on Chronic Care Management
3. Transdisciplinary Science in Search for Theoretically Relevant Predictors of Polychronic Conditions and Outcomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, T.T. Convergence of Artificial Intelligence Research in Healthcare: Trends and Approaches. J. Integr. Des. Process Sci. 2020, 1–15, Preprint. [Google Scholar] [CrossRef]
- Wan, T.T.H.; Terry, A.; McKee, B.; Kattan, W. KMAP-O framework for care management research of patients with type 2 diabetes. World J. Diabetes 2017, 8, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.T.; Wang, B.L. An Integrated Social and Behavioral System Approach to Evaluation of Healthcare Information Technology for Polychronic Conditions. J. Integr. Des. Process Sci. 2021, 25, 148–160. [Google Scholar] [CrossRef]
- Luh, S.; Lin, Y.M.; Wu, P.H. A single framework of precision performance of diabetes disease prognosis for better care with collaboration. J. Integr. Des. Process Sci. 2022. Pre-press. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Liu, J.-S.; Huang, T.-Y.; Wu, P.-H.; Chiu, Y.-W.; Kang, Y.; Hsu, C.-C.; Hwang, S.-J.; Luh, H. Data Analysis of the Risks of Type 2 Diabetes Mellitus Complications before Death Using a Data-Driven Modelling Approach: Methodologies and Challenges in Prolonged Diseases. Information 2021, 12, 326. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Li, Y.; Cao, X. The association between physical symptoms and self-care behaviours in heart failure patients with inadequate self-care behaviours: A cross-sectional study. BMC Cardiovasc. Disord. 2023, 23, 205. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.T.H.; Terry, A.; Cobb, E.; McKee, B.; Tregerman, R.; Barbaro, S.D.S. Strategies to modify the risk of heart failure read-mission: A systematic review and meta analysis. Health Serv. Res.-Manag. Epidemiol. 2017, 4, 2333392817701050. [Google Scholar]
- Hsu, C.-C.; Hwang, S.-J.; Wen, C.-P.; Chang, H.-Y.; Chen, T.; Shiu, R.-S.; Horng, S.-S.; Chang, Y.-K.; Yang, W.-C. High Prevalence and Low Awareness of CKD in Taiwan: A Study on the Relationship Between Serum Creatinine and Awareness From a Nationally Representative Survey. Am. J. Kidney Dis. 2006, 48, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Centers for Medicare and Medicaid Services. CMS Vendor Guidelines; Centers for Medicare and Medicaid Services: Baltimore, MD, USA, 2022.
- Nielsen, M.; Buelt, L.; Patel, K.; Nichols, L.M. The Patient-Centered Medical Home’s Impact on Cost and Quality: Annual Review of Evidence, 2014–2015. Patient-Centered Primary Care Collaborative. 2016. Available online: https://www.pcpcc.org/sites/default/files/resources (accessed on 11 July 2023).
- Xie, Z.; Nikolayeva, O.; Luo, J.; Li, D. Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques. Prev. Chronic Dis. 2019, 16, E130. [Google Scholar] [CrossRef] [Green Version]
- Agliata, A.; Giordano, D.; Bardozzo, F.; Bottiglieri, S.; Facchiano, A.; Tagliaferri, R. Machine Learning as a Support for the Diagnosis of Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 6775. [Google Scholar] [CrossRef]
- Wan, T.T.H. Population Health Management for Polychronic Conditions: Evidence Based Research Approaches; Springer: New York, NY, USA, 2018. [Google Scholar]
- Nash, D.; Wohlforth, C. How COVID Crashed the System: A Guide to Fixing American Health Care; Rowan & Littlefield Publishers: New York, NY, USA, 2022. [Google Scholar]
- Wan, T.T.H. Artificial intelligence research in primary care management. Qual. Prim. Care 2018, 26, 114–116. [Google Scholar]
- Goff, Z.; House, A.; Guthrie, E.; Weston, H.; Mansbridge, L. Diabetes care in the acute psychiatric inpatient setting: A logic model for service delivery. Gen. Hosp. Psychiatry 2022, 78, 135–137. [Google Scholar] [CrossRef]
- Wan, T.T.; Matthews, S.; Luh, H.; Zeng, Y.; Wang, Z.; Yang, L. A Proposed Multi-Criteria Optimization Approach to Enhance Clinical Outcomes Evaluation for Diabetes Care: A Commentary. Health Serv. Res. Manag. Epidemiol. 2022, 9, 23333928221089125. [Google Scholar] [CrossRef] [PubMed]
- Cabral, B.P.; Braga, L.A.M.; Syed-Abdul, S.; Mota, F.B. Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers. Curr. Oncol. 2023, 30, 3432–3446. [Google Scholar] [CrossRef]
- Lai, H.; Huang, H.; Keshavjee, K.; Guergachi, A.; Gao, X. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr. Disord. 2019, 19, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Xie, W.; Li, L.; Wang, L.; You, Q.; Chen, L.; Li, J.; Ke, Y.; Fang, J.; Liu, L.; et al. Development a validation of a pre-diction model for elevated arterial stiffness in Chinese patients with diabetes using machine learning. Front. Physiol. 2021, 12, 714195. [Google Scholar] [CrossRef]
- Rav-Marathe, K.; Wan, T.T.; Marathe, S. The Effect of Health Education on Clinical and Self-Reported Outcomes of Diabetes in a Medical Practice. J. Integr. Des. Process Sci. 2016, 20, 45–63. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2011, 29, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H., Jr.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomized trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, B.A.; Wan, T.T.H. Disease management organization approach to chronic illness. Int. J. Public Policy 2010, 6, 260–277. [Google Scholar] [CrossRef]
- Wan, T.T.H. Evidence-Based Health Care Management: Multivariate Modeling Approaches; Kluwer Academic Publishers: Boston, MA, USA, 2002. [Google Scholar]
- Cianfrocco, H. Paving a Path for Better Polychronic Care: How Collaboration, Prioritization, and Engagement Can Improve Outcomes. Harvard Business Review Analytical Services. 2021. Available online: www.optum.com/content/dam/optum3/optum/en/resources/white-papers/hbras_optum-white-paper-1-21-2021.pdf (accessed on 11 July 2023).
- Yang, X.; Ma, R.C.; So, W.-Y.; Kong, A.P.; Ko, G.T.; Ho, C.-S.; Lam, C.W.; Cockram, C.S.; Tong, P.C.; Chan, J.C. Development and validation of a risk score for hospitalization for heart failure in patients with Type 2 Diabetes Mellitus. Cardiovasc. Diabetol. 2008, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yi, Q.; Wang, Y.; Wang, J.; Yu, H.; Zhang, J.; Hu, M.; Xu, J.; Wu, Z.; Hou, L.; et al. Long-term glycemic variability and risk of adverse health outcomes in patients with diabetes: A systematic review and meta-analysis of cohort studies. Diabetes Res. Clin. Pract. 2022, 192, 110085. [Google Scholar] [CrossRef] [PubMed]
- The ADVANCE Collaborative Group; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhu, J.; Sun, N.; Wang, L.; Xie, C.; Tang, Q.; Mao, X.; Fu, X.; Brickell, A.; Hao, Y.; et al. Development and validation of prediction models for hypertension risks in rural Chinese populations. J. Glob. Health 2019, 9, 020601. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-C.; Wang, H.-C.; Li, C.-I.; Liu, C.-S.; Lin, W.-Y.; Lin, C.-H.; Yang, S.-Y.; Lin, C.-C. Establishment and validation of a prediction model for ischemic stroke risks in patients with type 2 diabetes. Diabetes Res. Clin. Prac. 2018, 138, 220–228. [Google Scholar] [CrossRef]
- Garlo, K.G.; White, W.B.; Bakris, G.L.; Zannad, F.; Wilson, C.A.; Kupfer, S.; Vaduganathan, M.; Morrow, D.A.; Cannon, C.P.; Charytan, D.M. Kidney Biomarkers and Decline in eGFR in Patients with Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2018, 13, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Niu, M.J.; Li, C.-I.; Liu, C.-S.; Lin, C.-H.; Yang, S.-Y.; Li, T.-C. Development and validation of a risk prediction model for chronic kidney disease among individuals with type 2 diabetes. Sci. Rep. 2022, 12, 4794. [Google Scholar] [CrossRef]
- Nelson, R.G.; Grams, M.E.; Ballew, S.H.; Sang, Y.; Azizi, F.; Chadban, S.J.; Chaker, L.; Dunning, S.C.; Fox, C.; Hirakawa, Y.; et al. Development of Risk Prediction Equations for Incident Chronic Kidney Disease. JAMA 2019, 322, 2104–2114. [Google Scholar] [CrossRef]
- Jardine, M.J.; Hata, J.; Woodward, M.; Perkovic, V.; Ninomiya, T.; Arima, H.; Zoungas, S.; Cass, A.; Patel, A.; Marre, M.; et al. Prediction of Kidney-Related Outcomes in Patients With Type 2 Diabetes. Am. J. Kidney Dis. 2012, 60, 770–778. [Google Scholar] [CrossRef]
- Li, T.-C.; Li, C.-I.; Liu, C.-S.; Lin, W.-Y.; Lin, C.-H.; Yang, S.-Y.; Chiang, J.-H.; Lin, C.-C. Development and validation of prediction models for the risks of diabetes-related hospitalization and in-hospital mortality in patients with type 2 diabetes. Metab. Clin. Exp. 2018, 85, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, C.; Wang, M.; Yang, S.; Li, T.; Lin, C. Building clinical risk score systems for predicting the all-cause and expanded cardiovascular-specific mortality of patients with type 2 diabetes. Diabetes Obes. Metab. 2021, 23, 467–479. [Google Scholar] [CrossRef]
- De Cosmo, S.; Copetti, M.; Lamacchia, O.; Fontana, A.; Massa, M.; Morini, E.; Pacilli, A.; Fariello, S.; Palena, A.; Rauseo, A.; et al. Development and Validation of a Predicting Model of All-Cause Mortality in Patients With Type 2 Diabetes. Diabetes Care 2013, 36, 2830–2835. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.E.; Elley, C.R.; Kenealy, T.; Drury, P.L. Development and validation of a predictive risk model for all-cause mor-tality in type 2 diabetes. Diabetes Res. Clin. Pract. 2015, 108, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Prado, D.; Palazón-Bru, A.; Rosa, D.M.F.-D.; Carbonell-Torregrosa, M.; Martínez-Díaz, A.M.; Gil-Guillén, V.F. Predictive models for all-cause and cardiovascular mortality in type 2 diabetic inpatients. A cohort study. Int. J. Clin. Prac. 2015, 69, 474–484. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, T.T.H.; Wan, H.S. Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions. AI 2023, 4, 482-490. https://doi.org/10.3390/ai4030026
Wan TTH, Wan HS. Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions. AI. 2023; 4(3):482-490. https://doi.org/10.3390/ai4030026
Chicago/Turabian StyleWan, Thomas T. H., and Hunter S. Wan. 2023. "Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions" AI 4, no. 3: 482-490. https://doi.org/10.3390/ai4030026
APA StyleWan, T. T. H., & Wan, H. S. (2023). Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions. AI, 4(3), 482-490. https://doi.org/10.3390/ai4030026