AI-Based Computer Vision Techniques and Expert Systems
Abstract
1. Introduction
2. Expert Systems as AI Base
2.1. Problem Solving Via Expert Systems
2.2. History of Expert Systems
3. Past and Present of Computer Vision Techniques
4. Application of Knowledge-Based Computer Vision Techniques
- A model system with independent 3D and 2D models;
- Each model expresses one shape concept that is expressed using inheritance through the ISA relationship between models;
- Model representation, reasoning mechanism, and image processing are described in an object-oriented framework;
- A function for understanding incomplete line drawings is implemented.
- Only the essence of an object that is the subject of a single concept is used to suppress slight differences in individual objects as much as possible;
- Although shape representation is used to enable the representation of term (i), the process of matching with the actual image should not be ignored;
- The structure is expressed explicitly using the PART OF relation;
- It is structured to deepen the understanding sequentially by describing the relationships between concepts using is-a relationships.
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Al-Oraiqat, A.M.; Smirnova, T.; Drieiev, O.; Smirnov, O.; Polishchuk, L.; Khan, S.; Hasan, Y.M.Y.; Amro, A.M.; AlRawashdeh, H.S. Method for Determining Treated Metal Surface Quality Using Computer Vision Technology. Sensors 2022, 22, 6223. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Grasso, V.; Bourdel, N.; Croner, R.; Spolverato, G.; Frigerio, I.; Illanes, A.; Abu Hilal, M.; Park, A.; Elyan, E. The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature. Sensors 2022, 22, 4918. [Google Scholar] [CrossRef] [PubMed]
- Dudek, P.; Richardson, T.; Bose, L.; Carey, S.; Chen, J.; Greatwood, C.; Liu, Y.; Mayol-Cuevas, W. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 2022, 7, eabl7755. [Google Scholar] [CrossRef] [PubMed]
- Abellanas, M.; Elena, M.J.; Keane, P.A.; Balaskas, K.; Grewal, D.S.; Carreño, E. Artificial Intelligence and Imaging Processing in Optical Coherence Tomography and Digital Images in Uveitis. Ocul. Immunol. Inflamm. 2022, 30, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Kitaguchi, D.; Takeshita, N.; Hasegawa, H.; Ito, M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann. Gastroenterol. Surg. 2021, 6, 29–36. [Google Scholar] [CrossRef]
- Hellsten, T.; Karlsson, J.; Shamsuzzaman, M.; Pulkkis, G. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation. Rehabil. Process Outcome 2021, 10, 11795727211022330. [Google Scholar] [CrossRef]
- Hassan, H.; Ren, Z.; Zhao, H.; Huang, S.; Li, D.; Xiang, S.; Kang, Y.; Chen, S.; Huang, B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput. Biol. Med. 2022, 141, 105123. [Google Scholar] [CrossRef] [PubMed]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Vollero, L.; Vadalà, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10909. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Liu, J.; Li, H.; Han, Y.; Zhou, R.; Zhang, Y. The application of computer vision to visual prosthesis. Artif. Organs 2021, 45, 1141–1154. [Google Scholar] [CrossRef]
- Victória Matias, A.; Atkinson Amorim, J.G.; Buschetto Macarini, L.A.; Cerentini, A.; Casimiro Onofre, A.S.; De Miranda Onofre, F.B.; Daltoé, F.P.; Stemmer, M.R.; von Wangenheim, A. What is the state of the art of computer vision-assisted cytology? A Systematic Literature Review. Comput. Med. Imaging Graph 2021, 91, 101934. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of Weed Detection Methods Based on Computer Vision. Sensors 2021, 21, 3647. [Google Scholar] [CrossRef]
- Louis, C.M.; Erwin, A.; Handayani, N.; Polim, A.A.; Boediono, A.; Sini, I. Review of computer vision application in in vitro fertilization: The application of deep learning-based computer vision technology in the world of IVF. J. Assist. Reprod. Genet. 2021, 38, 1627–1639. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. A Review: Development of Computer Vision-Based Lameness Detection for Dairy Cows and Discussion of the Practical Applications. Sensors 2021, 21, 753. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Dórea, J.R.R.; Rosa, G.J.M. Image Analysis and Computer Vision Applications in Animal Sciences: An Overview. Front. Vet. Sci. 2020, 7, 551269. [Google Scholar] [CrossRef]
- Patel, K.; Parmar, B. Assistive device using computer vision and image processing for visually impaired; review and current status. Disabil. Rehabil. Assist. Technol. 2022, 17, 290–297. [Google Scholar] [CrossRef]
- Minaee, S.; Liang, X.; Yan, S. Modern Augmented Reality: Applications, Trends, and Future Directions. arXiv 2022, arXiv:2202.09450. Available online: https://arxiv.org/abs/2202.09450 (accessed on 24 February 2022).
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.J.W.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D.J. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Lungu, A.J.; Swinkels, W.; Claesen, L.; Tu, P.; Egger, J.; Chen, X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery. Expert. Rev. Med. Devices 2021, 18, 47–62. [Google Scholar] [CrossRef]
- Lex, J.R.; Koucheki, R.; Toor, J.; Backstein, D.J. Clinical applications of augmented reality in orthopaedic surgery: A comprehensive narrative review. Int. Orthop. 2022, in press. [CrossRef]
- Tanzer, M.; Laverdière, C.; Barimani, B.; Hart, A. Augmented Reality in Arthroplasty: An Overview of Clinical Applications, Benefits, and Limitations. J. Am. Acad. Orthop. Surg. 2022, 30, e760–e768. [Google Scholar] [CrossRef]
- Maier, M.; Blume, F.; Bideau, P.; Hellwich, O.; Abdel Rahman, R. Knowledge-augmented face perception: Prospects for the Bayesian brain-framework to align AI and human vision. Conscious Cogn. 2022, 101, 103301. [Google Scholar] [CrossRef] [PubMed]
- Fooken, J.; Kreyenmeier, P.; Spering, M. The role of eye movements in manual interception: A mini-review. Vision Res. 2021, 183, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, Y.; Habuza, T.; Talako, T.; Pazniak, M.; Likhorad, E.; Pazniak, A.; Beliakouski, P.; Gelovani, J.G.; Gorkom, K.N.; Almansoori, T.M.; et al. Deep Learning-Based Automatic Assessment of Lung Impairment in COVID-19 Pneumonia: Predicting Markers of Hypoxia With Computer Vision. Front. Med. 2022, 9, 882190. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.B.; Jagadeesh, K.R.; Prabu, P.; Venkatachalam, K.; Trojovský, P. Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection. PeerJ Comput. Sci. 2022, 8, e1040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Li, Y.; Zhang, Y. Single- and Cross-Modality Near Duplicate Image Pairs Detection via Spatial Transformer Comparing CNN. Sensors 2021, 21, 255. [Google Scholar] [CrossRef]
- Xia, C.; Pan, Z.; Li, Y.; Chen, J.; Li, H. Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. Int. J. Adv. Manuf. Technol. 2022, 120, 551–562. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A new lightweight deep neural network for surface scratch detection. Int. J. Adv. Manuf. Technol. 2022, 123, 1999–2015. [Google Scholar] [CrossRef]
- Ritter, N.; Straub, J. Implementation of Hardware-Based Expert Systems and Comparison of Their Performance to Software-Based Expert Systems. Machines 2021, 9, 361. [Google Scholar] [CrossRef]
- Shah, A.; Zhan, E.; Sun, J.J.; Verma, A.; Yue, Y.; Chaudhuri, S. Learning Differentiable Programs with Admissible Neural Heuristics. arXiv 2020, arXiv:2007.12101v5. Available online: https://arxiv.org/abs/2007.12101 (accessed on 28 March 2021).
- Liu, B.; Mei, C. Lifelong Knowledge Learning in Rule-based Dialogue Systems. arXiv 2020, arXiv:2011.09811v1. Available online: https://arxiv.org/abs/2011.09811 (accessed on 19 November 2020).
- Hossein, S.; Zander, P.-O.; Kamal, M.; Chowdhury, L. Belief-Rule-Based Expert Systems for Evaluation of E- Government: A Case Study. arXiv 2014, arXiv:1403.5618. Available online: https://arxiv.org/abs/1403.5618 (accessed on 9 March 2015). [CrossRef]
- Price, C.I.; White, P.; Balami, J.; Bhattarai, N.; Coughlan, D.; Exley, C.; Flynn, D.; Halvorsrud, K.; Lally, J.; McMeekin, P.; et al. Improving emergency treatment for patients with acute stroke: The PEARS research programme, including the PASTA cluster RCT. Southampt. Natl. Inst. Health Care Res. 2022, in press. [CrossRef] [PubMed]
- Le Breton, S.; Sylvia, S.; Saini, S.; Mousad, A.; Chilton, M.; Lee, S.; Li, L.; MacAskill, M.; Ross, G.; Gentile, J.; et al. A validated algorithm using current literature to judge the appropriateness of anatomic total shoulder arthroplasty utilizing the RAND/UCLA appropriateness method. J. Shoulder Elbow Surg. 2022, 31, e332–e345. [Google Scholar] [CrossRef]
- Wang, P.; Shi, T.; Agarwal, K.; Choudhury, S.; Reddy, C.K. Attention-based Aspect Reasoning for Knowledge Base Question Answering on Clinical Notes. arXiv 2021, arXiv:2108.00513. Available online: https://arxiv.org/abs/2108.00513 (accessed on 22 July 2022).
- Rajabi, M.; Hossani, S.; Dehghani, F. A literature review on current approaches and applications of fuzzy expert systems. arXiv 2019, arXiv:1909.08794. Available online: https://arxiv.org/abs/1909.08794 (accessed on 19 September 2019).
- Yu, Z.; Carver, J.C.; Rothermel, G.; Menzies, T. Assessing Expert System-Assisted Literature Reviews With a Case Study. arXiv 2019, arXiv:1909.07249. Available online: https://arxiv.org/abs/1909.07249 (accessed on 8 April 2022). [CrossRef]
- Huang, X.; Tang, X.; Zhang, W.; Pei, S.; Zhang, J.; Zhang, M.; Liu, Z.; Chen, R.; Huang, Y. A Generic Knowledge Based Medical Diagnosis Expert System. arXiv 2021, arXiv:2110.04439. Available online: https://arxiv.org/abs/2110.04439 (accessed on 26 October 2021).
- Akanbi, A.K.; Masinde, M. Towards the Development of a Rule-based Drought Early Warning Expert Systems using Indigenous Knowledge. arXiv 2018, arXiv:1809.08101. Available online: https://arxiv.org/abs/1809.08101 (accessed on 19 September 2018).
- Duan, X.; Wang, X.; Zhao, P.; Shen, G.; Zhu, W. DeepLogic: Joint Learning of Neural Perception and Logical Reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, in press. [CrossRef]
- Kramer, P. Iconic Mathematics: Math Designed to Suit the Mind. Front. Psychol. 2022, 13, 890362. [Google Scholar] [CrossRef]
- Matsuda, N.; Takagi, K. Effect of the Choice of Connectives on the Relation between the Logic of Constant Domains and Classical Predicate Logic. arXiv 2021, arXiv:2107.03972. Available online: https://arxiv.org/abs/2107.03972 (accessed on 8 July 2021).
- Díaz-Caro, A.; Dowek, G. Extensional proofs in a propositional logic modulo isomorphisms. arXiv 2020, arXiv:2002.03762. Available online: https://arxiv.org/abs/2002.03762 (accessed on 11 February 2022).
- Bergstra, J.A.; Ponse, A.; Staudt, D.J.C. Propositional logic with short-circuit evaluation: A non-commutative and a commutative variant. arXiv 2018, arXiv:1810.02142. Available online: https://arxiv.org/abs/1810.02142 (accessed on 4 October 2018).
- Fronda, N.; Abbas, H. Differentiable Inference of Temporal Logic Formulas. arXiv 2022, arXiv:2208.05440. Available online: https://arxiv.org/abs/2208.05440 (accessed on 10 August 2022). [CrossRef]
- Xu, Z.; Chen, Y.; Topcu, U. Adaptive Teaching of Temporal Logic Formulas to Learners with Preferences. arXiv 2020, arXiv:2001.09956. Available online: https://arxiv.org/abs/2001.09956 (accessed on 27 January 2020). [CrossRef]
- Straub, J. Expert System Gradient Descent Style Training: Development of a Defensible Artificial Intelligence Technique. arXiv 2021, arXiv:2103.04314. Available online: https://arxiv.org/abs/2103.04314 (accessed on 7 March 2021). [CrossRef]
- Coley, C.W.; Eyke, N.S.; Jensen, K.F. Autonomous discovery in the chemical sciences part I: Progress. arXiv 2020, arXiv:2003.13754. Available online: https://arxiv.org/abs/2003.13754 (accessed on 30 March 2020). [CrossRef]
- Young, A.; Wang, B.; Röst, H. MassFormer: Tandem Mass Spectrum Prediction with Graph Transformers. arXiv 2021, arXiv:2111.04824. Available online: https://arxiv.org/abs/2111.04824 (accessed on 15 November 2021).
- Cheung, W.W.W.L.; Pitcher, T.J.; Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserve. 2005, 124, 97–111. [Google Scholar] [CrossRef]
- Soltani, A.; Battikh, T.; Jabri, I.; Lakhoua, N. A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomed. Signal Process. Control 2018, 40, 366–377. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Chen, X.; Wu, C.; Cui, Z.; Niu, C. Fuzzy modelling of surface scratching in contact sliding. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 012022. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Chen, X.; Wu, C.; Cui, Z.; Niu, C. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence. Int. J. Adv. Manuf. Technol. 2021, 112, 853–865. [Google Scholar] [CrossRef]
- Karimian, S. Choose qualified instructor for university based on rule-based weighted expert system. arXiv 2022, arXiv:2208.04657. Available online: https://arxiv.org/abs/2208.04657 (accessed on 9 August 2022).
- Chary, M.; Boyer, E.W.; Burns, M.W. Diagnosis of Acute Poisoning Using Explainable Artificial Intelligence. arXiv 2021, arXiv:2102.01116. Available online: https://arxiv.org/abs/2102.01116 (accessed on 1 February 2021). [CrossRef] [PubMed]
- Shanbhogue, M.H.; Thirumaleshwar, S.; Tegginamath, P.K.; Somareddy, H.K. Artificial Intelligence in Pharmaceutical Field—A Critical Review. Curr. Drug Deliv. 2021, 18, 1456–1466. [Google Scholar] [CrossRef]
- Fitzpatrick, B.; Liang, X.S.; Straub, J. Fake News and Phishing Detection Using a Machine Learning Trained Expert System. arXiv 2021, arXiv:2108.08264. Available online: https://arxiv.org/abs/2108.08264 (accessed on 4 August 2021).
- Nguyen, A.; O’Dwyer, J.; Vu, T.; Webb, P.M.; Johnatty, S.E.; Spurdle, A.B. Generating high-quality data abstractions from scanned clinical records: Text-mining-assisted extraction of endometrial carcinoma pathology features as proof of principle. BMJ Open 2020, 10, e037740. [Google Scholar] [CrossRef]
- Straub, L.; Gagne, J.J.; Maro, J.C.; Nguyen, M.D.; Beaulieu, N.; Brown, J.S.; Kennedy, A.; Johnson, M.; Wright, A.; Zhou, L.; et al. Evaluation of Use of Technologies to Facilitate Medical Chart Review. Drug Saf. 2019, 42, 1071–1080. [Google Scholar] [CrossRef]
- Kumari, L.; Singh, S.; Rathore, V.V.S.; Sharma, A. Lexicon and Attention based Handwritten Text Recognition System. arXiv 2022, arXiv:2209.04817. Available online: https://arxiv.org/abs/2209.04817 (accessed on 11 September 2022). [CrossRef]
- Such, F.P.; Peri, D.; Brockler, F.; Hutkowski, P.; Ptucha, R. Fully Convolutional Networks for Handwriting Recognition. arXiv 2019, arXiv:1907.04888. Available online: https://arxiv.org/abs/1907.04888 (accessed on 10 July 2019).
- Sa-Couto, L.; Wichert, A. Simple Convolutional-Based Models: Are They Learning the Task or the Data? Neural Comput. 2021, 33, 3334–3350. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K. Margined winner-take-all: New learning rule for pattern recognition. Neural Netw. 2018, 97, 152–161. [Google Scholar] [CrossRef]
- Pan, X.; Xu, J.; Pan, Y.; Wen, L.; Lin, W.; Bai, K.; Fu, H.; Xu, Z. AFINet: Attentive Feature Integration Networks for image classification. Neural Netw. 2022, 155, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Herzog, N.J.; Magoulas, G.D. Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry. Int. J. Neural Syst. 2022, 32, 2250053. [Google Scholar] [CrossRef]
- Sourav, M.S.U.; Wang, H. Intelligent Identification of Jute Pests Based on Transfer Learning and Deep Convolutional Neural Networks. Neural Process Lett. 2022, in press. [CrossRef]
- Usman, M.; Zia, T.; Tariq, A. Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography. J. Digit. Imaging 2022, 11, 1–18. [Google Scholar] [CrossRef]
- Taye, M.; Morrow, D.; Cull, J.; Smith, D.H.; Hagan, M. Deep Learning for FAST Quality Assessment. J. Ultrasound Med. 2022, 42, 71–79. [Google Scholar] [CrossRef]
- Arcot Desai, S.; Tcheng, T.; Morrell, M. Non-linear Embedding Methods for Identifying Similar Brain Activity in 1 Million iEEG Records Captured From 256 RNS System Patients. Front. Big Data 2022, 5, 840508. [Google Scholar] [CrossRef]
- Stančić, A.; Vyroubal, V.; Slijepčević, V. Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images. J. Imaging 2022, 8, 20. [Google Scholar] [CrossRef]
- Albahli, S.; Ahmad Hassan Yar, G.N. AI-driven deep convolutional neural networks for chest X-ray pathology identification. J. Xray Sci. Technol. 2022, 30, 365–376. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, M.; Zhang, J.; Ng, W.W.Y.; Chen, C.L.P. BASS: Broad Network Based on Localized Stochastic Sensitivity. IEEE Trans. Neural Netw. Learn Syst. 2022, in press. [CrossRef] [PubMed]
- Wei, W.; Tao, H.; Chen, W.; Wu, X. Automatic recognition of micronucleus by combining attention mechanism and AlexNet. BMC Med. Inform. Decis. Mak. 2022, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.S.; Zhang, Y.R.; Ren, J.Y.; Li, Q.L.; Chen, M.; Sang, T.; Li, W.X.; Li, J.; Cui, X.W. Ultrasound-based deep learning using the VGGNet model for the differentiation of benign and malignant thyroid nodules: A meta-analysis. Front. Oncol. 2022, 12, 944859. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant. Sci. 2022, 13, 1031748. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.D.; Bui, N.D.; Do, H.K. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors 2022, 22, 7530. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.; Nayak, A.; Sree, R.P.; Srinivas, M. INASNET: Automatic identification of coronavirus disease (COVID-19) based on chest X-ray using deep neural network. ISA Trans. 2022, 124, 82–89. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, Y.; Shi, S.; Zhang, Y.; Yin, S.; Liu, X.; Peng, Q.; Huang, S.; Jiang, Y.; Cui, C.; et al. How much can AI see in early pregnancy: A multi-center study of fetus head characterization in week 10-14 in ultrasound using deep learning. Comput. Methods Programs Biomed. 2022, 226, 107170. [Google Scholar] [CrossRef]
- Tao, Y.; Hu, H.; Li, J.; Li, M.; Zheng, Q.; Zhang, G.; Ni, M. A preliminary study on the application of deep learning methods based on convolutional network to the pathological diagnosis of PJI. Arthroplasty 2022, 4, 49. [Google Scholar] [CrossRef]
- Gholamiankhah, F.; Mostafapour, S.; Abdi Goushbolagh, N.; Shojaerazavi, S.; Layegh, P.; Tabatabaei, S.M.; Arabi, H. Automated Lung Segmentation from Computed Tomography Images of Normal and COVID-19 Pneumonia Patients. Iran. J. Med. Sci. 2022, 47, 440–449. [Google Scholar] [CrossRef]
- Wang, W.; Tian, Y.; Xu, Y.; Zhang, X.X.; Li, Y.S.; Zhao, S.F.; Bai, Y.H. 3cDe-Net: A cervical cancer cell detection network based on an improved backbone network and multiscale feature fusion. BMC Med. Imaging 2022, 22, 130. [Google Scholar] [CrossRef]
- Ksibi, A.; Zakariah, M.; Ayadi, M.; Elmannai, H.; Shukla, P.K.; Awal, H.; Hamdi, M. Improved Analysis of COVID-19 Influenced Pneumonia from the Chest X-Rays Using Fine-Tuned Residual Networks. Comput. Intell. Neurosci. 2022, 2022, 9414567. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Xu, C. A New Generation of ResNet Model Based on Artificial Intelligence and Few Data Driven and Its Construction in Image Recognition Model. Comput. Intell. Neurosci. 2022, 2022, 5976155. [Google Scholar] [CrossRef]
- Yu, H.; Miao, X.; Wang, H. Bearing Fault Reconstruction Diagnosis Method Based on ResNet-152 with Multi-Scale Stacked Receptive Field. Sensors 2022, 22, 1705. [Google Scholar] [CrossRef]
- Yao, J.; Chepelev, L.; Nisha, Y.; Sathiadoss, P.; Rybicki, F.J.; Sheikh, A.M. Evaluation of a deep learning method for the automated detection of supraspinatus tears on MRI. Skeletal Radiol. 2022, 51, 1765–1775. [Google Scholar] [CrossRef]
- Fang, G.; Huang, Z.; Wang, Z. Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 2022, 12, 827522. [Google Scholar] [CrossRef]
- Fan, X.; Feng, X.; Dong, Y.; Hou, H. COVID-19 CT image recognition algorithm based on transformer and CNN. Displays 2022, 72, 102150. [Google Scholar] [CrossRef]
- Turki, H.; Shafee, T.; Hadj Taieb, M.A.; Ben Aouicha, M.; Vrandečić, D.; Das, D.; Hamdi, H. Wikidata: A large-scale collaborative ontological medical database. J. Biomed. Inform. 2019, 99, 103292. [Google Scholar] [CrossRef]
- Mazandu, G.K.; Hotchkiss, J.; Nembaware, V.; Wonkam, A.; Mulder, N. The Sickle Cell Disease Ontology: Recent development and expansion of the universal sickle cell knowledge representation. Database 2022, 2022, baac014. [Google Scholar] [CrossRef]
- Pedro, A.; Pham-Hang, A.T.; Nguyen, P.T.; Pham, H.C. Data-Driven Construction Safety Information Sharing System Based on Linked Data, Ontologies, and Knowledge Graph Technologies. Int. J. Environ. Res. Public Health 2022, 19, 794. [Google Scholar] [CrossRef]
- Singh, V.; Kalliolias, G.D.; Ostaszewski, M.; Veyssiere, M.; Pilalis, E.; Gawron, P.; Mazein, A.; Bonnet, E.; Petit-Teixeira, E.; Niarakis, A. RA-map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database 2020, 2020, baaa017. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Xi, J.; Han, W. A Learning-Based Approach for Lane Departure Warning Systems with a Personalized Driver Model. arXiv 2021, arXiv:1702.01228. Available online: https://arxiv.org/abs/1702.01228 (accessed on 4 February 2017). [CrossRef]
- Dong, Y.; Patil, S.; van Arem, B.; Farah, H. A Hybrid Spatial-temporal Deep Learning Architecture for Lane Detection. arXiv 2021, arXiv:2110.04079. Available online: https://arxiv.org/abs/2110.04079 (accessed on 20 July 2022). [CrossRef]
- Guo, T.; Wang, Y.; Solorio, L.; Allebach, J.P. Training a universal instance segmentation network for live cell images of various cell types and imaging modalities. arXiv 2022, arXiv:2207.14347. Available online: https://arxiv.org/abs/2207.14347 (accessed on 28 July 2022).
- Ben-Haim, T.; Raviv, T.R. Graph Neural Network for Cell Tracking in Microscopy Videos. arXiv 2022, arXiv:2202.04731. Available online: https://arxiv.org/abs/2202.04731 (accessed on 17 July 2022).
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, and Productivity. Adv. Intel. syst. 2021, 4, 2100099. [Google Scholar] [CrossRef]
- Bao, M.; Wu, J.; Yao, X.; Fedkiw, R. Deep Energies for Estimating Three-Dimensional Facial Pose and Expression. arXiv 2018, arXiv:1812.02899. Available online: https://arxiv.org/abs/1812.02899 (accessed on 7 December 2018).
- Kimura, S.; Iwai, D.; Punpongsanon, P.; Sato, K. Multifocal Stereoscopic Projection Mapping. arXiv 2021, arXiv:2110.07726. Available online: https://arxiv.org/abs/2110.07726 (accessed on 8 October 2021). [CrossRef]
- Sung, G.; Sokal, K.; Uboweja, E.; Bazarevsky, V.; Baccash, J.; Bazavan, E.G.; Chang, C.-L.; Grundmann, M. On-device Real-time Hand Gesture Recognition. arXiv 2021, arXiv:2111.00038. Available online: https://arxiv.org/abs/2111.00038 (accessed on 29 October 2021).
- Jha, A.; Ishita; Shenwai, P.G.; Batra, A.; Kotian, S.; Modi, P. GesSure- A Robust Face-Authentication enabled Dynamic Gesture Recognition GUI Application. arXiv 2022, arXiv:2207.11033. Available online: https://arxiv.org/abs/2207.11033 (accessed on 22 July 2022).
- Wang, Y.; Albrecht, C.M.; Braham, N.A.A.; Mou, L.; Zhu, X.X. Self-supervised Learning in Remote Sensing: A Review. arXiv 2022, arXiv:2206.13188. Available online: https://arxiv.org/abs/2206.13188 (accessed on 27 June 2022). [CrossRef]
- Unni, D.R.; Moxon, S.A.T.; Bada, M.; Brush, M.; Bruskiewich, R.; Caufield, J.H.; Clemons, P.A.; Dancik, V.; Dumontier, M.; Fecho, K.; et al. Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and translational science. Clin. Transl. Sci. 2022, 15, 1848–1855. [Google Scholar] [CrossRef]
- Ullah, U.; Faiz, R.B.; Haleem, M. Modeling and verification of authentication threats mitigation in aspect-oriented mal sequence woven model. PLoS ONE 2022, 17, e0270702. [Google Scholar] [CrossRef]
- Vu, T.M.; Probst, C.; Nielsen, A.; Bai, H.; Buckley, C.; Meier, P.S.; Strong, M.; Brennan, A.; Purshouse, R.C. A software architecture for mechanism-based social systems modelling in agent-based simulation models. J. Artif. Soc. Soc. Simul. 2020, 23, 1. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Yassine, A. Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model. Materials 2020, 13, 4685. [Google Scholar] [CrossRef]
- Rykaczewski, K.; Nikadon, J.; Duch, W.; Piotrowski, T. SUPFUNSIM: Spatial Filtering Toolbox for EEG. Neuroinformatics 2021, 19, 107–125. [Google Scholar] [CrossRef]
- Alfadel, M.; Aljasser, K.; Alshayeb, M. Empirical study of the relationship between design patterns and code smells. PLoS ONE 2020, 15, e0231731. [Google Scholar] [CrossRef]
- Jorayeva, M.; Akbulut, A.; Catal, C.; Mishra, A. Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review. Sensors 2022, 22, 2551. [Google Scholar] [CrossRef]
- Feng, C.; Fu, B.; Luo, Y.; Li, H. The Design and Development of a Ship Trajectory Data Management and Analysis System Based on AIS. Sensors 2021, 22, 310. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J. Effect of ageing on biochar properties and pollutant management. Chemosphere 2022, 292, 133427. [Google Scholar] [CrossRef]
- Huang, R.J.; Wang, J.H.; Tseng, C.S.; Tu, Z.W.; Chiang, K.C. Bayesian Edge Detector Using Deformable Directivity-Aware Sampling Window. Entropy 2020, 22, 1080. [Google Scholar] [CrossRef]
- Wali, A.; Das, S. Hardware and Information Security Primitives Based on Two-Dimensional Materials and Devices. Adv. Mater. 2022, 23, e2205365. [Google Scholar] [CrossRef]
- Putra, K.T.; Chen, H.C.; Prayitno; Ogiela, M.R.; Chou, C.L.; Weng, C.E.; Shae, Z.Y. Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors 2021, 21, 4586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ru, Z.Y.; Wang, K.; Huang, P.Q. Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing. IEEE Trans. Cybern. 2020, 50, 3984–3997. [Google Scholar] [CrossRef] [PubMed]
P | Q | ¬P | P∧Q | P∨Q | P⇒Q | P⇔Q |
---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
Title 1 | Title 2 |
---|---|
Double negation | P 𠪪P |
Associative law | (P∧Q)∧R ≡ P∧(Q∧R) (P∨Q)∨R ≡ P∨(Q∨R) |
Distributive law | P∧(Q∧R) ≡ (P∧Q)∨(P∧R) P∨(Q∨R) ≡ (P∨Q)∧(P∨R) |
Law of exchange | P∧Q ≡ Q∧P P∨Q ≡ Q∨P |
De Morgan’s law | ¬(P∧Q) ≡ ¬P∨¬Q ¬(P∨Q) ≡ ¬P∧¬Q |
De Morgan’s law on quantifiers | ¬(∀ xp(x)) ≡ ∃x(¬p(x)) ¬(∃ xp(x)) ≡ ∀x(¬p(x)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Yashiro, R. AI-Based Computer Vision Techniques and Expert Systems. AI 2023, 4, 289-302. https://doi.org/10.3390/ai4010013
Matsuzaka Y, Yashiro R. AI-Based Computer Vision Techniques and Expert Systems. AI. 2023; 4(1):289-302. https://doi.org/10.3390/ai4010013
Chicago/Turabian StyleMatsuzaka, Yasunari, and Ryu Yashiro. 2023. "AI-Based Computer Vision Techniques and Expert Systems" AI 4, no. 1: 289-302. https://doi.org/10.3390/ai4010013
APA StyleMatsuzaka, Y., & Yashiro, R. (2023). AI-Based Computer Vision Techniques and Expert Systems. AI, 4(1), 289-302. https://doi.org/10.3390/ai4010013