AI-Based Computer Vision Techniques and Expert Systems
Abstract
:1. Introduction
2. Expert Systems as AI Base
2.1. Problem Solving Via Expert Systems
2.2. History of Expert Systems
3. Past and Present of Computer Vision Techniques
4. Application of Knowledge-Based Computer Vision Techniques
- A model system with independent 3D and 2D models;
- Each model expresses one shape concept that is expressed using inheritance through the ISA relationship between models;
- Model representation, reasoning mechanism, and image processing are described in an object-oriented framework;
- A function for understanding incomplete line drawings is implemented.
- Only the essence of an object that is the subject of a single concept is used to suppress slight differences in individual objects as much as possible;
- Although shape representation is used to enable the representation of term (i), the process of matching with the actual image should not be ignored;
- The structure is expressed explicitly using the PART OF relation;
- It is structured to deepen the understanding sequentially by describing the relationships between concepts using is-a relationships.
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Al-Oraiqat, A.M.; Smirnova, T.; Drieiev, O.; Smirnov, O.; Polishchuk, L.; Khan, S.; Hasan, Y.M.Y.; Amro, A.M.; AlRawashdeh, H.S. Method for Determining Treated Metal Surface Quality Using Computer Vision Technology. Sensors 2022, 22, 6223. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Grasso, V.; Bourdel, N.; Croner, R.; Spolverato, G.; Frigerio, I.; Illanes, A.; Abu Hilal, M.; Park, A.; Elyan, E. The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature. Sensors 2022, 22, 4918. [Google Scholar] [CrossRef] [PubMed]
- Dudek, P.; Richardson, T.; Bose, L.; Carey, S.; Chen, J.; Greatwood, C.; Liu, Y.; Mayol-Cuevas, W. Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 2022, 7, eabl7755. [Google Scholar] [CrossRef] [PubMed]
- Abellanas, M.; Elena, M.J.; Keane, P.A.; Balaskas, K.; Grewal, D.S.; Carreño, E. Artificial Intelligence and Imaging Processing in Optical Coherence Tomography and Digital Images in Uveitis. Ocul. Immunol. Inflamm. 2022, 30, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Kitaguchi, D.; Takeshita, N.; Hasegawa, H.; Ito, M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann. Gastroenterol. Surg. 2021, 6, 29–36. [Google Scholar] [CrossRef]
- Hellsten, T.; Karlsson, J.; Shamsuzzaman, M.; Pulkkis, G. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation. Rehabil. Process Outcome 2021, 10, 11795727211022330. [Google Scholar] [CrossRef]
- Hassan, H.; Ren, Z.; Zhao, H.; Huang, S.; Li, D.; Xiang, S.; Kang, Y.; Chen, S.; Huang, B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput. Biol. Med. 2022, 141, 105123. [Google Scholar] [CrossRef] [PubMed]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Vollero, L.; Vadalà, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10909. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Liu, J.; Li, H.; Han, Y.; Zhou, R.; Zhang, Y. The application of computer vision to visual prosthesis. Artif. Organs 2021, 45, 1141–1154. [Google Scholar] [CrossRef]
- Victória Matias, A.; Atkinson Amorim, J.G.; Buschetto Macarini, L.A.; Cerentini, A.; Casimiro Onofre, A.S.; De Miranda Onofre, F.B.; Daltoé, F.P.; Stemmer, M.R.; von Wangenheim, A. What is the state of the art of computer vision-assisted cytology? A Systematic Literature Review. Comput. Med. Imaging Graph 2021, 91, 101934. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of Weed Detection Methods Based on Computer Vision. Sensors 2021, 21, 3647. [Google Scholar] [CrossRef]
- Louis, C.M.; Erwin, A.; Handayani, N.; Polim, A.A.; Boediono, A.; Sini, I. Review of computer vision application in in vitro fertilization: The application of deep learning-based computer vision technology in the world of IVF. J. Assist. Reprod. Genet. 2021, 38, 1627–1639. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. A Review: Development of Computer Vision-Based Lameness Detection for Dairy Cows and Discussion of the Practical Applications. Sensors 2021, 21, 753. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Dórea, J.R.R.; Rosa, G.J.M. Image Analysis and Computer Vision Applications in Animal Sciences: An Overview. Front. Vet. Sci. 2020, 7, 551269. [Google Scholar] [CrossRef]
- Patel, K.; Parmar, B. Assistive device using computer vision and image processing for visually impaired; review and current status. Disabil. Rehabil. Assist. Technol. 2022, 17, 290–297. [Google Scholar] [CrossRef]
- Minaee, S.; Liang, X.; Yan, S. Modern Augmented Reality: Applications, Trends, and Future Directions. arXiv 2022, arXiv:2202.09450. Available online: https://arxiv.org/abs/2202.09450 (accessed on 24 February 2022).
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.J.W.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D.J. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Lungu, A.J.; Swinkels, W.; Claesen, L.; Tu, P.; Egger, J.; Chen, X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery. Expert. Rev. Med. Devices 2021, 18, 47–62. [Google Scholar] [CrossRef]
- Lex, J.R.; Koucheki, R.; Toor, J.; Backstein, D.J. Clinical applications of augmented reality in orthopaedic surgery: A comprehensive narrative review. Int. Orthop. 2022, in press. [CrossRef]
- Tanzer, M.; Laverdière, C.; Barimani, B.; Hart, A. Augmented Reality in Arthroplasty: An Overview of Clinical Applications, Benefits, and Limitations. J. Am. Acad. Orthop. Surg. 2022, 30, e760–e768. [Google Scholar] [CrossRef]
- Maier, M.; Blume, F.; Bideau, P.; Hellwich, O.; Abdel Rahman, R. Knowledge-augmented face perception: Prospects for the Bayesian brain-framework to align AI and human vision. Conscious Cogn. 2022, 101, 103301. [Google Scholar] [CrossRef] [PubMed]
- Fooken, J.; Kreyenmeier, P.; Spering, M. The role of eye movements in manual interception: A mini-review. Vision Res. 2021, 183, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, Y.; Habuza, T.; Talako, T.; Pazniak, M.; Likhorad, E.; Pazniak, A.; Beliakouski, P.; Gelovani, J.G.; Gorkom, K.N.; Almansoori, T.M.; et al. Deep Learning-Based Automatic Assessment of Lung Impairment in COVID-19 Pneumonia: Predicting Markers of Hypoxia With Computer Vision. Front. Med. 2022, 9, 882190. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.B.; Jagadeesh, K.R.; Prabu, P.; Venkatachalam, K.; Trojovský, P. Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection. PeerJ Comput. Sci. 2022, 8, e1040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Li, Y.; Zhang, Y. Single- and Cross-Modality Near Duplicate Image Pairs Detection via Spatial Transformer Comparing CNN. Sensors 2021, 21, 255. [Google Scholar] [CrossRef]
- Xia, C.; Pan, Z.; Li, Y.; Chen, J.; Li, H. Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. Int. J. Adv. Manuf. Technol. 2022, 120, 551–562. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A new lightweight deep neural network for surface scratch detection. Int. J. Adv. Manuf. Technol. 2022, 123, 1999–2015. [Google Scholar] [CrossRef]
- Ritter, N.; Straub, J. Implementation of Hardware-Based Expert Systems and Comparison of Their Performance to Software-Based Expert Systems. Machines 2021, 9, 361. [Google Scholar] [CrossRef]
- Shah, A.; Zhan, E.; Sun, J.J.; Verma, A.; Yue, Y.; Chaudhuri, S. Learning Differentiable Programs with Admissible Neural Heuristics. arXiv 2020, arXiv:2007.12101v5. Available online: https://arxiv.org/abs/2007.12101 (accessed on 28 March 2021).
- Liu, B.; Mei, C. Lifelong Knowledge Learning in Rule-based Dialogue Systems. arXiv 2020, arXiv:2011.09811v1. Available online: https://arxiv.org/abs/2011.09811 (accessed on 19 November 2020).
- Hossein, S.; Zander, P.-O.; Kamal, M.; Chowdhury, L. Belief-Rule-Based Expert Systems for Evaluation of E- Government: A Case Study. arXiv 2014, arXiv:1403.5618. Available online: https://arxiv.org/abs/1403.5618 (accessed on 9 March 2015). [CrossRef]
- Price, C.I.; White, P.; Balami, J.; Bhattarai, N.; Coughlan, D.; Exley, C.; Flynn, D.; Halvorsrud, K.; Lally, J.; McMeekin, P.; et al. Improving emergency treatment for patients with acute stroke: The PEARS research programme, including the PASTA cluster RCT. Southampt. Natl. Inst. Health Care Res. 2022, in press. [CrossRef] [PubMed]
- Le Breton, S.; Sylvia, S.; Saini, S.; Mousad, A.; Chilton, M.; Lee, S.; Li, L.; MacAskill, M.; Ross, G.; Gentile, J.; et al. A validated algorithm using current literature to judge the appropriateness of anatomic total shoulder arthroplasty utilizing the RAND/UCLA appropriateness method. J. Shoulder Elbow Surg. 2022, 31, e332–e345. [Google Scholar] [CrossRef]
- Wang, P.; Shi, T.; Agarwal, K.; Choudhury, S.; Reddy, C.K. Attention-based Aspect Reasoning for Knowledge Base Question Answering on Clinical Notes. arXiv 2021, arXiv:2108.00513. Available online: https://arxiv.org/abs/2108.00513 (accessed on 22 July 2022).
- Rajabi, M.; Hossani, S.; Dehghani, F. A literature review on current approaches and applications of fuzzy expert systems. arXiv 2019, arXiv:1909.08794. Available online: https://arxiv.org/abs/1909.08794 (accessed on 19 September 2019).
- Yu, Z.; Carver, J.C.; Rothermel, G.; Menzies, T. Assessing Expert System-Assisted Literature Reviews With a Case Study. arXiv 2019, arXiv:1909.07249. Available online: https://arxiv.org/abs/1909.07249 (accessed on 8 April 2022). [CrossRef]
- Huang, X.; Tang, X.; Zhang, W.; Pei, S.; Zhang, J.; Zhang, M.; Liu, Z.; Chen, R.; Huang, Y. A Generic Knowledge Based Medical Diagnosis Expert System. arXiv 2021, arXiv:2110.04439. Available online: https://arxiv.org/abs/2110.04439 (accessed on 26 October 2021).
- Akanbi, A.K.; Masinde, M. Towards the Development of a Rule-based Drought Early Warning Expert Systems using Indigenous Knowledge. arXiv 2018, arXiv:1809.08101. Available online: https://arxiv.org/abs/1809.08101 (accessed on 19 September 2018).
- Duan, X.; Wang, X.; Zhao, P.; Shen, G.; Zhu, W. DeepLogic: Joint Learning of Neural Perception and Logical Reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, in press. [CrossRef]
- Kramer, P. Iconic Mathematics: Math Designed to Suit the Mind. Front. Psychol. 2022, 13, 890362. [Google Scholar] [CrossRef]
- Matsuda, N.; Takagi, K. Effect of the Choice of Connectives on the Relation between the Logic of Constant Domains and Classical Predicate Logic. arXiv 2021, arXiv:2107.03972. Available online: https://arxiv.org/abs/2107.03972 (accessed on 8 July 2021).
- Díaz-Caro, A.; Dowek, G. Extensional proofs in a propositional logic modulo isomorphisms. arXiv 2020, arXiv:2002.03762. Available online: https://arxiv.org/abs/2002.03762 (accessed on 11 February 2022).
- Bergstra, J.A.; Ponse, A.; Staudt, D.J.C. Propositional logic with short-circuit evaluation: A non-commutative and a commutative variant. arXiv 2018, arXiv:1810.02142. Available online: https://arxiv.org/abs/1810.02142 (accessed on 4 October 2018).
- Fronda, N.; Abbas, H. Differentiable Inference of Temporal Logic Formulas. arXiv 2022, arXiv:2208.05440. Available online: https://arxiv.org/abs/2208.05440 (accessed on 10 August 2022). [CrossRef]
- Xu, Z.; Chen, Y.; Topcu, U. Adaptive Teaching of Temporal Logic Formulas to Learners with Preferences. arXiv 2020, arXiv:2001.09956. Available online: https://arxiv.org/abs/2001.09956 (accessed on 27 January 2020). [CrossRef]
- Straub, J. Expert System Gradient Descent Style Training: Development of a Defensible Artificial Intelligence Technique. arXiv 2021, arXiv:2103.04314. Available online: https://arxiv.org/abs/2103.04314 (accessed on 7 March 2021). [CrossRef]
- Coley, C.W.; Eyke, N.S.; Jensen, K.F. Autonomous discovery in the chemical sciences part I: Progress. arXiv 2020, arXiv:2003.13754. Available online: https://arxiv.org/abs/2003.13754 (accessed on 30 March 2020). [CrossRef] [Green Version]
- Young, A.; Wang, B.; Röst, H. MassFormer: Tandem Mass Spectrum Prediction with Graph Transformers. arXiv 2021, arXiv:2111.04824. Available online: https://arxiv.org/abs/2111.04824 (accessed on 15 November 2021).
- Cheung, W.W.W.L.; Pitcher, T.J.; Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserve. 2005, 124, 97–111. [Google Scholar] [CrossRef]
- Soltani, A.; Battikh, T.; Jabri, I.; Lakhoua, N. A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomed. Signal Process. Control 2018, 40, 366–377. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Chen, X.; Wu, C.; Cui, Z.; Niu, C. Fuzzy modelling of surface scratching in contact sliding. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 012022. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Chen, X.; Wu, C.; Cui, Z.; Niu, C. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence. Int. J. Adv. Manuf. Technol. 2021, 112, 853–865. [Google Scholar] [CrossRef]
- Karimian, S. Choose qualified instructor for university based on rule-based weighted expert system. arXiv 2022, arXiv:2208.04657. Available online: https://arxiv.org/abs/2208.04657 (accessed on 9 August 2022).
- Chary, M.; Boyer, E.W.; Burns, M.W. Diagnosis of Acute Poisoning Using Explainable Artificial Intelligence. arXiv 2021, arXiv:2102.01116. Available online: https://arxiv.org/abs/2102.01116 (accessed on 1 February 2021). [CrossRef] [PubMed]
- Shanbhogue, M.H.; Thirumaleshwar, S.; Tegginamath, P.K.; Somareddy, H.K. Artificial Intelligence in Pharmaceutical Field—A Critical Review. Curr. Drug Deliv. 2021, 18, 1456–1466. [Google Scholar] [CrossRef]
- Fitzpatrick, B.; Liang, X.S.; Straub, J. Fake News and Phishing Detection Using a Machine Learning Trained Expert System. arXiv 2021, arXiv:2108.08264. Available online: https://arxiv.org/abs/2108.08264 (accessed on 4 August 2021).
- Nguyen, A.; O’Dwyer, J.; Vu, T.; Webb, P.M.; Johnatty, S.E.; Spurdle, A.B. Generating high-quality data abstractions from scanned clinical records: Text-mining-assisted extraction of endometrial carcinoma pathology features as proof of principle. BMJ Open 2020, 10, e037740. [Google Scholar] [CrossRef]
- Straub, L.; Gagne, J.J.; Maro, J.C.; Nguyen, M.D.; Beaulieu, N.; Brown, J.S.; Kennedy, A.; Johnson, M.; Wright, A.; Zhou, L.; et al. Evaluation of Use of Technologies to Facilitate Medical Chart Review. Drug Saf. 2019, 42, 1071–1080. [Google Scholar] [CrossRef]
- Kumari, L.; Singh, S.; Rathore, V.V.S.; Sharma, A. Lexicon and Attention based Handwritten Text Recognition System. arXiv 2022, arXiv:2209.04817. Available online: https://arxiv.org/abs/2209.04817 (accessed on 11 September 2022). [CrossRef]
- Such, F.P.; Peri, D.; Brockler, F.; Hutkowski, P.; Ptucha, R. Fully Convolutional Networks for Handwriting Recognition. arXiv 2019, arXiv:1907.04888. Available online: https://arxiv.org/abs/1907.04888 (accessed on 10 July 2019).
- Sa-Couto, L.; Wichert, A. Simple Convolutional-Based Models: Are They Learning the Task or the Data? Neural Comput. 2021, 33, 3334–3350. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K. Margined winner-take-all: New learning rule for pattern recognition. Neural Netw. 2018, 97, 152–161. [Google Scholar] [CrossRef]
- Pan, X.; Xu, J.; Pan, Y.; Wen, L.; Lin, W.; Bai, K.; Fu, H.; Xu, Z. AFINet: Attentive Feature Integration Networks for image classification. Neural Netw. 2022, 155, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Herzog, N.J.; Magoulas, G.D. Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry. Int. J. Neural Syst. 2022, 32, 2250053. [Google Scholar] [CrossRef]
- Sourav, M.S.U.; Wang, H. Intelligent Identification of Jute Pests Based on Transfer Learning and Deep Convolutional Neural Networks. Neural Process Lett. 2022, in press. [CrossRef]
- Usman, M.; Zia, T.; Tariq, A. Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography. J. Digit. Imaging 2022, 11, 1–18. [Google Scholar] [CrossRef]
- Taye, M.; Morrow, D.; Cull, J.; Smith, D.H.; Hagan, M. Deep Learning for FAST Quality Assessment. J. Ultrasound Med. 2022, 42, 71–79. [Google Scholar] [CrossRef]
- Arcot Desai, S.; Tcheng, T.; Morrell, M. Non-linear Embedding Methods for Identifying Similar Brain Activity in 1 Million iEEG Records Captured From 256 RNS System Patients. Front. Big Data 2022, 5, 840508. [Google Scholar] [CrossRef]
- Stančić, A.; Vyroubal, V.; Slijepčević, V. Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images. J. Imaging 2022, 8, 20. [Google Scholar] [CrossRef]
- Albahli, S.; Ahmad Hassan Yar, G.N. AI-driven deep convolutional neural networks for chest X-ray pathology identification. J. Xray Sci. Technol. 2022, 30, 365–376. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, M.; Zhang, J.; Ng, W.W.Y.; Chen, C.L.P. BASS: Broad Network Based on Localized Stochastic Sensitivity. IEEE Trans. Neural Netw. Learn Syst. 2022, in press. [CrossRef] [PubMed]
- Wei, W.; Tao, H.; Chen, W.; Wu, X. Automatic recognition of micronucleus by combining attention mechanism and AlexNet. BMC Med. Inform. Decis. Mak. 2022, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.S.; Zhang, Y.R.; Ren, J.Y.; Li, Q.L.; Chen, M.; Sang, T.; Li, W.X.; Li, J.; Cui, X.W. Ultrasound-based deep learning using the VGGNet model for the differentiation of benign and malignant thyroid nodules: A meta-analysis. Front. Oncol. 2022, 12, 944859. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant. Sci. 2022, 13, 1031748. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.D.; Bui, N.D.; Do, H.K. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. Sensors 2022, 22, 7530. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.; Nayak, A.; Sree, R.P.; Srinivas, M. INASNET: Automatic identification of coronavirus disease (COVID-19) based on chest X-ray using deep neural network. ISA Trans. 2022, 124, 82–89. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, Y.; Shi, S.; Zhang, Y.; Yin, S.; Liu, X.; Peng, Q.; Huang, S.; Jiang, Y.; Cui, C.; et al. How much can AI see in early pregnancy: A multi-center study of fetus head characterization in week 10-14 in ultrasound using deep learning. Comput. Methods Programs Biomed. 2022, 226, 107170. [Google Scholar] [CrossRef]
- Tao, Y.; Hu, H.; Li, J.; Li, M.; Zheng, Q.; Zhang, G.; Ni, M. A preliminary study on the application of deep learning methods based on convolutional network to the pathological diagnosis of PJI. Arthroplasty 2022, 4, 49. [Google Scholar] [CrossRef]
- Gholamiankhah, F.; Mostafapour, S.; Abdi Goushbolagh, N.; Shojaerazavi, S.; Layegh, P.; Tabatabaei, S.M.; Arabi, H. Automated Lung Segmentation from Computed Tomography Images of Normal and COVID-19 Pneumonia Patients. Iran. J. Med. Sci. 2022, 47, 440–449. [Google Scholar] [CrossRef]
- Wang, W.; Tian, Y.; Xu, Y.; Zhang, X.X.; Li, Y.S.; Zhao, S.F.; Bai, Y.H. 3cDe-Net: A cervical cancer cell detection network based on an improved backbone network and multiscale feature fusion. BMC Med. Imaging 2022, 22, 130. [Google Scholar] [CrossRef]
- Ksibi, A.; Zakariah, M.; Ayadi, M.; Elmannai, H.; Shukla, P.K.; Awal, H.; Hamdi, M. Improved Analysis of COVID-19 Influenced Pneumonia from the Chest X-Rays Using Fine-Tuned Residual Networks. Comput. Intell. Neurosci. 2022, 2022, 9414567. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Xu, C. A New Generation of ResNet Model Based on Artificial Intelligence and Few Data Driven and Its Construction in Image Recognition Model. Comput. Intell. Neurosci. 2022, 2022, 5976155. [Google Scholar] [CrossRef]
- Yu, H.; Miao, X.; Wang, H. Bearing Fault Reconstruction Diagnosis Method Based on ResNet-152 with Multi-Scale Stacked Receptive Field. Sensors 2022, 22, 1705. [Google Scholar] [CrossRef]
- Yao, J.; Chepelev, L.; Nisha, Y.; Sathiadoss, P.; Rybicki, F.J.; Sheikh, A.M. Evaluation of a deep learning method for the automated detection of supraspinatus tears on MRI. Skeletal Radiol. 2022, 51, 1765–1775. [Google Scholar] [CrossRef]
- Fang, G.; Huang, Z.; Wang, Z. Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 2022, 12, 827522. [Google Scholar] [CrossRef]
- Fan, X.; Feng, X.; Dong, Y.; Hou, H. COVID-19 CT image recognition algorithm based on transformer and CNN. Displays 2022, 72, 102150. [Google Scholar] [CrossRef]
- Turki, H.; Shafee, T.; Hadj Taieb, M.A.; Ben Aouicha, M.; Vrandečić, D.; Das, D.; Hamdi, H. Wikidata: A large-scale collaborative ontological medical database. J. Biomed. Inform. 2019, 99, 103292. [Google Scholar] [CrossRef] [Green Version]
- Mazandu, G.K.; Hotchkiss, J.; Nembaware, V.; Wonkam, A.; Mulder, N. The Sickle Cell Disease Ontology: Recent development and expansion of the universal sickle cell knowledge representation. Database 2022, 2022, baac014. [Google Scholar] [CrossRef]
- Pedro, A.; Pham-Hang, A.T.; Nguyen, P.T.; Pham, H.C. Data-Driven Construction Safety Information Sharing System Based on Linked Data, Ontologies, and Knowledge Graph Technologies. Int. J. Environ. Res. Public Health 2022, 19, 794. [Google Scholar] [CrossRef]
- Singh, V.; Kalliolias, G.D.; Ostaszewski, M.; Veyssiere, M.; Pilalis, E.; Gawron, P.; Mazein, A.; Bonnet, E.; Petit-Teixeira, E.; Niarakis, A. RA-map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database 2020, 2020, baaa017. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Xi, J.; Han, W. A Learning-Based Approach for Lane Departure Warning Systems with a Personalized Driver Model. arXiv 2021, arXiv:1702.01228. Available online: https://arxiv.org/abs/1702.01228 (accessed on 4 February 2017). [CrossRef] [Green Version]
- Dong, Y.; Patil, S.; van Arem, B.; Farah, H. A Hybrid Spatial-temporal Deep Learning Architecture for Lane Detection. arXiv 2021, arXiv:2110.04079. Available online: https://arxiv.org/abs/2110.04079 (accessed on 20 July 2022). [CrossRef]
- Guo, T.; Wang, Y.; Solorio, L.; Allebach, J.P. Training a universal instance segmentation network for live cell images of various cell types and imaging modalities. arXiv 2022, arXiv:2207.14347. Available online: https://arxiv.org/abs/2207.14347 (accessed on 28 July 2022).
- Ben-Haim, T.; Raviv, T.R. Graph Neural Network for Cell Tracking in Microscopy Videos. arXiv 2022, arXiv:2202.04731. Available online: https://arxiv.org/abs/2202.04731 (accessed on 17 July 2022).
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, and Productivity. Adv. Intel. syst. 2021, 4, 2100099. [Google Scholar] [CrossRef]
- Bao, M.; Wu, J.; Yao, X.; Fedkiw, R. Deep Energies for Estimating Three-Dimensional Facial Pose and Expression. arXiv 2018, arXiv:1812.02899. Available online: https://arxiv.org/abs/1812.02899 (accessed on 7 December 2018).
- Kimura, S.; Iwai, D.; Punpongsanon, P.; Sato, K. Multifocal Stereoscopic Projection Mapping. arXiv 2021, arXiv:2110.07726. Available online: https://arxiv.org/abs/2110.07726 (accessed on 8 October 2021). [CrossRef]
- Sung, G.; Sokal, K.; Uboweja, E.; Bazarevsky, V.; Baccash, J.; Bazavan, E.G.; Chang, C.-L.; Grundmann, M. On-device Real-time Hand Gesture Recognition. arXiv 2021, arXiv:2111.00038. Available online: https://arxiv.org/abs/2111.00038 (accessed on 29 October 2021).
- Jha, A.; Ishita; Shenwai, P.G.; Batra, A.; Kotian, S.; Modi, P. GesSure- A Robust Face-Authentication enabled Dynamic Gesture Recognition GUI Application. arXiv 2022, arXiv:2207.11033. Available online: https://arxiv.org/abs/2207.11033 (accessed on 22 July 2022).
- Wang, Y.; Albrecht, C.M.; Braham, N.A.A.; Mou, L.; Zhu, X.X. Self-supervised Learning in Remote Sensing: A Review. arXiv 2022, arXiv:2206.13188. Available online: https://arxiv.org/abs/2206.13188 (accessed on 27 June 2022). [CrossRef]
- Unni, D.R.; Moxon, S.A.T.; Bada, M.; Brush, M.; Bruskiewich, R.; Caufield, J.H.; Clemons, P.A.; Dancik, V.; Dumontier, M.; Fecho, K.; et al. Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and translational science. Clin. Transl. Sci. 2022, 15, 1848–1855. [Google Scholar] [CrossRef]
- Ullah, U.; Faiz, R.B.; Haleem, M. Modeling and verification of authentication threats mitigation in aspect-oriented mal sequence woven model. PLoS ONE 2022, 17, e0270702. [Google Scholar] [CrossRef]
- Vu, T.M.; Probst, C.; Nielsen, A.; Bai, H.; Buckley, C.; Meier, P.S.; Strong, M.; Brennan, A.; Purshouse, R.C. A software architecture for mechanism-based social systems modelling in agent-based simulation models. J. Artif. Soc. Soc. Simul. 2020, 23, 1. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Yassine, A. Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model. Materials 2020, 13, 4685. [Google Scholar] [CrossRef]
- Rykaczewski, K.; Nikadon, J.; Duch, W.; Piotrowski, T. SUPFUNSIM: Spatial Filtering Toolbox for EEG. Neuroinformatics 2021, 19, 107–125. [Google Scholar] [CrossRef]
- Alfadel, M.; Aljasser, K.; Alshayeb, M. Empirical study of the relationship between design patterns and code smells. PLoS ONE 2020, 15, e0231731. [Google Scholar] [CrossRef] [Green Version]
- Jorayeva, M.; Akbulut, A.; Catal, C.; Mishra, A. Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review. Sensors 2022, 22, 2551. [Google Scholar] [CrossRef]
- Feng, C.; Fu, B.; Luo, Y.; Li, H. The Design and Development of a Ship Trajectory Data Management and Analysis System Based on AIS. Sensors 2021, 22, 310. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J. Effect of ageing on biochar properties and pollutant management. Chemosphere 2022, 292, 133427. [Google Scholar] [CrossRef]
- Huang, R.J.; Wang, J.H.; Tseng, C.S.; Tu, Z.W.; Chiang, K.C. Bayesian Edge Detector Using Deformable Directivity-Aware Sampling Window. Entropy 2020, 22, 1080. [Google Scholar] [CrossRef]
- Wali, A.; Das, S. Hardware and Information Security Primitives Based on Two-Dimensional Materials and Devices. Adv. Mater. 2022, 23, e2205365. [Google Scholar] [CrossRef]
- Putra, K.T.; Chen, H.C.; Prayitno; Ogiela, M.R.; Chou, C.L.; Weng, C.E.; Shae, Z.Y. Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications. Sensors 2021, 21, 4586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ru, Z.Y.; Wang, K.; Huang, P.Q. Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing. IEEE Trans. Cybern. 2020, 50, 3984–3997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
P | Q | ¬P | P∧Q | P∨Q | P⇒Q | P⇔Q |
---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
Title 1 | Title 2 |
---|---|
Double negation | P 𠪪P |
Associative law | (P∧Q)∧R ≡ P∧(Q∧R) (P∨Q)∨R ≡ P∨(Q∨R) |
Distributive law | P∧(Q∧R) ≡ (P∧Q)∨(P∧R) P∨(Q∨R) ≡ (P∨Q)∧(P∨R) |
Law of exchange | P∧Q ≡ Q∧P P∨Q ≡ Q∨P |
De Morgan’s law | ¬(P∧Q) ≡ ¬P∨¬Q ¬(P∨Q) ≡ ¬P∧¬Q |
De Morgan’s law on quantifiers | ¬(∀ xp(x)) ≡ ∃x(¬p(x)) ¬(∃ xp(x)) ≡ ∀x(¬p(x)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Yashiro, R. AI-Based Computer Vision Techniques and Expert Systems. AI 2023, 4, 289-302. https://doi.org/10.3390/ai4010013
Matsuzaka Y, Yashiro R. AI-Based Computer Vision Techniques and Expert Systems. AI. 2023; 4(1):289-302. https://doi.org/10.3390/ai4010013
Chicago/Turabian StyleMatsuzaka, Yasunari, and Ryu Yashiro. 2023. "AI-Based Computer Vision Techniques and Expert Systems" AI 4, no. 1: 289-302. https://doi.org/10.3390/ai4010013
APA StyleMatsuzaka, Y., & Yashiro, R. (2023). AI-Based Computer Vision Techniques and Expert Systems. AI, 4(1), 289-302. https://doi.org/10.3390/ai4010013