Structural Model Based on Genetic Algorithm for Inhibiting Fatty Acid Amide Hydrolase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets Preparation
2.2. Genetic Algorithm and Classification Algorithm
2.3. Performance Metrics
3. Results
3.1. FAAH Inhibitor and Decoy Datasets
3.2. Genetic Algorithm and Classification Algorithm Performance Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linton, S.J.; Flink, I.K.; Vlaeyen, J.W.S. Understanding the Etiology of Chronic Pain From a Psychological Perspective. Phys. Ther. 2018, 98, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.W. History of The Joint Commission’s Pain Standards. JAMA 2017, 317, 1117. [Google Scholar] [CrossRef] [PubMed]
- Evoy, K.E.; Covvey, J.R.; Peckham, A.M.; Ochs, L.; Hultgren, K.E. Reports of gabapentin and pregabalin abuse, misuse, dependence, or overdose: An analysis of the Food And Drug Administration Adverse Events Reporting System (FAERS). Res. Soc. Adm. Pharm. 2019, 15, 953–958. [Google Scholar] [CrossRef]
- Mercadante, S. Opioid Analgesics Adverse Effects: The Other Side of the Coin. Curr. Pharm. Des. 2019, 25, 3197–3202. [Google Scholar] [CrossRef] [PubMed]
- Chanda, D.; Neumann, D.; Glatz, J.F.C. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot. Essent. Fat. Acids 2019, 140, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zanfirescu, A.; Nitulescu, G.; Mihai, D.P.; Nitulescu, G.M. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals 2021, 15, 38. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ. 2003, 22, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 2019, 20, 521. [Google Scholar] [CrossRef] [Green Version]
- Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. 2013, 26, 215–239. [Google Scholar] [CrossRef]
- Ghosh, P.; Bagchi, M. QSAR Modeling for Quinoxaline Derivatives using Genetic Algorithm and Simulated Annealing Based Feature Selection. Curr. Med. Chem. 2009, 16, 4032–4048. [Google Scholar] [CrossRef]
- Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 2015, 20, 318–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahikkala, T.; Airola, A.; Pietilä, S.; Shakyawar, S.; Szwajda, A.; Tang, J.; Aittokallio, T. Toward more realistic drug-target interaction predictions. Brief. Bioinform. 2015, 16, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Terfloth, L.; Gasteiger, J. Neural networks and genetic algorithms in drug design. Drug Discov. Today 2001, 6, 102–108. [Google Scholar] [CrossRef]
- Mauri, A.; Consonni, V.; Todeschini, R. Molecular descriptors. In Handbook of Computational Chemistry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 2065–2093. ISBN 9783319272825. [Google Scholar]
- Kausar, S.; Falcao, A.O. Analysis and comparison of vector space and metric space representations in QSAR modeling. Molecules 2019, 24, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willighagen, E.L.; Mayfield, J.W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal, T.; Rojas-Chertó, M.; Spjuth, O.; et al. The Chemistry Development Kit (CDK) v2.0: Atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform. 2017, 9, 1–19. [Google Scholar]
- Urso, A.; Fiannaca, A.; La Rosa, M.; Ravì, V.; Rizzo, R. Data mining: Prediction methods. Encycl. Bioinform. Comput. Biol. ABC Bioinform. 2018, 1–3, 413–430. [Google Scholar]
- Magliani, F.; Cagnoni, S.; Sani, L.; Prati, A. Genetic algorithms for the optimization of diffusion parameters in content-based image retrieval. In Proceedings of the 13th International Conference on Distributed Smart Cameras, Trento, Italy, 9–11 September 2019; pp. 1–6. [Google Scholar]
- Labjar, H.; Labjar, N.; Kissi, M. QSAR Anti-HIV Feature Selection and Prediction for Drug Discovery Using Genetic Algorithm and Machine Learning Algorithms. In EAI/Springer Innovations in Communication and Computing; Ouaissa, M., Boulouard, Z., Ouaissa, M., Guermah, B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 191–204. ISBN 978-3-030-77185-0. [Google Scholar]
- Labjar, H.; Al-Sarem, M.; Kissi, M. Feature Selection Using a Genetic Algorithms and Fuzzy logic in Anti-Human Immunodeficiency Virus Prediction for Drug Discovery. J. Inf. Technol. Manag. 2022, 14, 23–36. [Google Scholar]
- Pourbasheer, E.; Riahi, S.; Ganjali, M.R.; Norouzi, P. Quantitative structureactivity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method. J. Enzyme Inhib. Med. Chem. 2010, 25, 844–853. [Google Scholar] [CrossRef]
- Kerstjens, A.; De Winter, H. LEADD: Lamarckian evolutionary algorithm for de novo drug design. J. Cheminform. 2022, 14, 1–20. [Google Scholar] [CrossRef]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pang, X.; Li, Y.; Zhang, Z.; Tan, W. RADER: A RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening. Bioinformatics 2017, 33, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Phung, D. Journal of Machine Learning Research: Preface. J. Mach. Learn. Res. 2014, 39, i–ii. [Google Scholar]
- Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagńe, C. DEAP: Evolutionary algorithms made easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vié, A. Qualities, Challenges and Future of Genetic Algorithms. SSRN Electron. J. 2021, 1–48. [Google Scholar] [CrossRef]
Model | Pop | Gen | Tournsize | IndPb | Cxpb | MutPb | Baseline Score | Max | N.D. |
---|---|---|---|---|---|---|---|---|---|
1 | 90 | 7 | 10 | 0.04 | 0.4 | 0.4 | 0.810 | 0.875 | 141 |
2 | 50 | 10 | 5 | 0.01 | 0.3 | 0.2 | 0.8437 | 0.8986 | 135 |
3 | 50 | 11 | 7 | 0.01 | 0.2 | 0.4 | 0.9124 | 0.9348 | 137 |
Pop | Avg | Std | Min | Max |
---|---|---|---|---|
20 | 0.9249 | 0.0019 | 0.9236 | 0.9281 |
30 | 0.9239 | 0.0025 | 0.9170 | 0.9261 |
40 | 0.9207 | 0.0032 | 0.9056 | 0.9236 |
50 | 0.9267 | 0.0030 | 0.9102 | 0.9281 |
60 | 0.9241 | 0.0032 | 0.9123 | 0.9281 |
70 | 0.9257 | 0.0023 | 0.9170 | 0.9281 |
80 | 0.9258 | 0.0022 | 0.91918 | 0.9282 |
90 | 0.9255 | 0.0018 | 0.91482 | 0.9283 |
Gen | Avg | Std | Min | Max |
---|---|---|---|---|
0 | 0.8818 | 0.0167 | 0.8460 | 0.9104 |
1 | 0.8953 | 0.0096 | 0.8672 | 0.9125 |
2 | 0.9007 | 0.0075 | 0.8764 | 0.9125 |
3 | 0.9065 | 0.0050 | 0.8852 | 0.9125 |
4 | 0.9091 | 0.0034 | 0.8967 | 0.9169 |
5 | 0.9096 | 0.0064 | 0.8736 | 0.9169 |
6 | 0.9119 | 0.0057 | 0.8948 | 0.9214 |
7 | 0.9152 | 0.0035 | 0.9078 | 0.9259 |
8 | 0.9159 | 0.0071 | 0.8760 | 0.9259 |
9 | 0.9189 | 0.0043 | 0.9080 | 0.9259 |
10 | 0.9215 | 0.0037 | 0.9124 | 0.9259 |
11 | 0.9240 | 0.0030 | 0.9105 | 0.9281 |
12 | 0.9254 | 0.0019 | 0.9170 | 0.9281 |
13 | 0.9265 | 0.0015 | 0.9214 | 0.9281 |
14 | 0.9267 | 0.0030 | 0.9102 | 0.9281 |
Tournsize | Avg | Std | Min | Max |
---|---|---|---|---|
4 | 0.9183 | 0.0018 | 0.9123 | 0.9191 |
5 | 0.9254 | 0.0019 | 0.9170 | 0.9281 |
6 | 0.9269 | 0.0025 | 0.9147 | 0.9304 |
7 | 0.9263 | 0.0016 | 0.9214 | 0.9326 |
8 | 0.9278 | 0.0013 | 0.9236 | 0.9304 |
Indpb | Avg | Std | Min | Max |
---|---|---|---|---|
0.01 | 0.9285 | 0.0022 | 0.9192 | 0.9304 |
0.02 | 0.9269 | 0.0025 | 0.9192 | 0.9282 |
0.03 | 0.9215 | 0.0043 | 0.8989 | 0.9258 |
CxPb | Avg | Std | Min | Max |
---|---|---|---|---|
0.1 | 0.9197 | 0.0033 | 0.9101 | 0.9236 |
0.2 | 0.9254 | 0.0023 | 0.9147 | 0.9304 |
0.3 | 0.9229 | 0.0016 | 0.9169 | 0.9236 |
0.4 | 0.9263 | 0.0027 | 0.9147 | 0.9281 |
0.5 | 0.9276 | 0.9276 | 0.9276 | 0.9276 |
MutPb | Avg | Std | Min | Max |
---|---|---|---|---|
0.1 | 0.9277 | 0.0014 | 0.9216 | 0.9282 |
0.2 | 0.9278 | 0.0025 | 0.9169 | 0.9303 |
0.3 | 0.9292 | 0.0020 | 0.9213 | 0.9303 |
0.4 | 0.9307 | 0.0037 | 0.9193 | 0.9348 |
0.5 | 0.9287 | 0.0041 | 0.9125 | 0.9327 |
Experiment | Max | AvgMax | std |
---|---|---|---|
1 | 0.9348 | 0.9345 | 0.0004 |
2 | 0.9343 | ||
3 | 0.9338 | ||
4 | 0.9348 | ||
5 | 0.9347 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trif, C.; Mihai, D.P.; Zanfirescu, A.; Nitulescu, G.M. Structural Model Based on Genetic Algorithm for Inhibiting Fatty Acid Amide Hydrolase. AI 2022, 3, 863-870. https://doi.org/10.3390/ai3040052
Trif C, Mihai DP, Zanfirescu A, Nitulescu GM. Structural Model Based on Genetic Algorithm for Inhibiting Fatty Acid Amide Hydrolase. AI. 2022; 3(4):863-870. https://doi.org/10.3390/ai3040052
Chicago/Turabian StyleTrif, Cosmin, Dragos Paul Mihai, Anca Zanfirescu, and George Mihai Nitulescu. 2022. "Structural Model Based on Genetic Algorithm for Inhibiting Fatty Acid Amide Hydrolase" AI 3, no. 4: 863-870. https://doi.org/10.3390/ai3040052
APA StyleTrif, C., Mihai, D. P., Zanfirescu, A., & Nitulescu, G. M. (2022). Structural Model Based on Genetic Algorithm for Inhibiting Fatty Acid Amide Hydrolase. AI, 3(4), 863-870. https://doi.org/10.3390/ai3040052