Effects of Elevated Temperatures and Nutrient Enrichment on Microbial Communities Associated with Turf Algae Under Laboratory Culture
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental Design and Setting
2.3. DNA Extraction and 16S rRNA Sequencing
2.4. Bioinformatic and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruno, J.F.; Sweatman, H.; Precht, W.F.; Selig, E.R.; Schutte, V.G.W. Assessing Evidence of Phase Shifts from Coral to Macroalgal Dominance on Coral Reefs. Ecology 2009, 90, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.F.; Selig, E.R. Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons. PLoS ONE 2007, 2, e711. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmann, J.; D’Angelo, C.; Smith, E.G.; Hunt, A.N.; Legiret, F.-E.; Postle, A.D.; Achterberg, E.P. Nutrient Enrichment Can Increase the Susceptibility of Reef Corals to Bleaching. Nat. Clim. Change 2013, 3, 160–164. [Google Scholar] [CrossRef]
- Haugan, P.M.; Drange, H. Effects of CO2 on the Ocean Environment. Energy Convers. Manag. 1996, 37, 1019–1022. [Google Scholar] [CrossRef]
- Humlum, O.; Stordahl, K.; Solheim, J.-E. The Phase Relation between Atmospheric Carbon Dioxide and Global Temperature. Glob. Planet. Change 2013, 100, 51–69. [Google Scholar] [CrossRef]
- Collier, C.J.; Waycott, M. Temperature Extremes Reduce Seagrass Growth and Induce Mortality. Mar. Pollut. Bull. 2014, 83, 483–490. [Google Scholar] [CrossRef]
- Simonson, E.; Scheibling, R.; Metaxas, A. Kelp in Hot Water: I. Warming Seawater Temperature Induces Weakening and Loss of Kelp Tissue. Mar. Ecol. Prog. Ser. 2015, 537, 89–104. [Google Scholar] [CrossRef]
- Randall, C.J.; Szmant, A.M. Elevated Temperature Affects Development, Survivorship, and Settlement of the Elkhorn Coral, Acropora Palmata (Lamarck 1816). Biol. Bull. 2009, 217, 269–282. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915796-4. [Google Scholar]
- Takao, S.; Kumagai, N.H.; Yamano, H.; Fujii, M.; Yamanaka, Y. Projecting the Impacts of Rising Seawater Temperatures on the Distribution of Seaweeds around Japan under Multiple Climate Change Scenarios. Ecol. Evol. 2015, 5, 213–223. [Google Scholar] [CrossRef]
- Borlongan, I.A.; Nishihara, G.N.; Shimada, S.; Terada, R. Effects of Temperature and PAR on the Photosynthesis of Kappaphycus Sp. (Solieriaceae, Rhodophyta) from Okinawa, Japan, at the Northern Limit of Native Kappaphycus Distribution in the Western Pacific. Phycologia 2017, 56, 444–453. [Google Scholar] [CrossRef]
- Diaz-Pulido, G.; McCook, L. The Fate of Bleached Corals: Patterns and Dynamics of Algal Recruitment. Mar. Ecol. Prog. Ser. 2002, 232, 115–128. [Google Scholar] [CrossRef]
- Sutherland, K.; Porter, J.; Torres, C. Disease and Immunity in Caribbean and Indo-Pacific Zooxanthellate Corals. Mar. Ecol. Prog. Ser. 2004, 266, 273–302. [Google Scholar] [CrossRef]
- Pauly, D.; Watson, R.; Alder, J. Global Trends in World Fisheries: Impacts on Marine Ecosystems and Food Security. Phil. Trans. R. Soc. B 2005, 360, 5–12. [Google Scholar] [CrossRef]
- DeGeorges, A.; Goreau, T.J.; Reilly, B. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs. Sustainability 2010, 2, 2919–2949. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Hughes, T.P.; Folke, C.; Nyström, M. Confronting the Coral Reef Crisis. Nature 2004, 429, 827–833. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.W.; Polsenberg, J.F. Coral–Algal Phase Shifts on Coral Reefs: Ecological and Environmental Aspects. Prog. Oceanogr. 2004, 60, 263–279. [Google Scholar] [CrossRef]
- Vermeij, M.J.; van Moorselaar, I.; Engelhard, S.; Hörnlein, C.; Vonk, S.M.; Visser, P.M. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 2010, 5, e14312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nugues, M.M.; Smith, G.W.; Van Hooidonk, R.J.; Seabra, M.I.; Bak, R.P.M. Algal Contact as a Trigger for Coral Disease. Ecol. Lett. 2004, 7, 919–923. [Google Scholar] [CrossRef]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwskyj, N.; Pratchett, M.S.; Steneck, R.S.; Willis, B. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Curr. Biol. 2007, 17, 360–365. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Q.; Huang, Q.; Wang, S.; Qin, X.; Ren, T.; Xie, R.; Su, H. Significant Shifts in Microbial Communities Associated with Scleractinian Corals in Response to Algae Overgrowth. Microorganisms 2022, 10, 2196. [Google Scholar] [CrossRef]
- Short, J.; Kendrick, G.A.; Falter, J.; McCulloch, M.T. Interactions between Filamentous Turf Algae and Coralline Algae Are Modified under Ocean Acidification. J. Exp. Mar. Biol. Ecol. 2014, 456, 70–77. [Google Scholar] [CrossRef]
- Harvey, B.P.; Kon, K.; Agostini, S.; Wada, S.; Hall-Spencer, J.M. Ocean Acidification Locks Algal Communities in a Species-poor Early Successional Stage. Glob. Change Biol. 2021, 27, 2174–2187. [Google Scholar] [CrossRef]
- Harvey, B.P.; Allen, R.; Agostini, S.; Hoffmann, L.J.; Kon, K.; Summerfield, T.C.; Wada, S.; Hall-Spencer, J.M. Feedback Mechanisms Stabilise Degraded Turf Algal Systems at a CO2 Seep Site. Commun. Biol. 2021, 4, 219. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Motone, K.; Takagi, T.; Aburaya, S.; Watanabe, S.; Aoki, W.; Ueda, M. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar. Biotechnol. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Bourne, D.G.; Webster, N.S. Coral Reef Bacterial Communities. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 163–187. ISBN 978-3-642-30122-3. [Google Scholar]
- Vega Thurber, R.; Burkepile, D.E.; Correa, A.M.S.; Thurber, A.R.; Shantz, A.A.; Welsh, R.; Pritchard, C.; Rosales, S. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites Astreoides. PLoS ONE 2012, 7, e44246. [Google Scholar] [CrossRef]
- Clements, C.S.; Burns, A.S.; Stewart, F.J.; Hay, M.E. Seaweed-Coral Competition in the Field: Effects on Coral Growth, Photosynthesis and Microbiomes Require Direct Contact. Proc. R. Soc. B 2020, 287, 20200366. [Google Scholar] [CrossRef]
- Yu, M.; Wang, X.; Yan, A. Microbial Profiles of Retail Pacific Oysters (Crassostrea gigas) from Guangdong Province, China. Front. Microbiol. 2021, 12, 689520. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Somboonna, N.; Wilantho, A.; Monanunsap, S.; Chavanich, S.; Tangphatsornruang, S.; Tongsima, S. Microbial Communities in the Reef Water at Kham Island, Lower Gulf of Thailand. PeerJ 2017, 5, e3625. [Google Scholar] [CrossRef]
- Titioatchasai, J.; Surachat, K.; Kim, J.H.; Mayakun, J. Diversity of Microbial Communities Associated with Epilithic Macroalgae in Different Coral Reef Conditions and Damselfish Territories of the Gulf of Thailand. J. Mar. Sci. Eng. 2023, 11, 514. [Google Scholar] [CrossRef]
- Titioatchasai, J.; Surachat, K.; Rattanachot, E.; Tuntiprapas, P.; Mayakun, J. Assessment of Diversity of Marine Organisms among Natural and Transplanted Seagrass Meadows. J. Mar. Sci. Eng. 2023, 11, 1928. [Google Scholar] [CrossRef]
- Ghose, M.; Parab, A.S.; Manohar, C.S.; Mohanan, D.; Toraskar, A. Unraveling the Role of Bacterial Communities in Mangrove Habitats under the Urban Influence, Using a next-Generation Sequencing Approach. J. Sea Res. 2024, 198, 102469. [Google Scholar] [CrossRef]
- Barott, K.L.; Rodriguez-Brito, B.; Janouškovec, J.; Marhaver, K.L.; Smith, J.E.; Keeling, P.; Rohwer, F.L. Microbial Diversity Associated with Four Functional Groups of Benthic Reef Algae and the Reef-building Coral Montastraea annularis. Environ. Microbiol. 2011, 13, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Pattarach, K.; Surachat, K.; Liu, S.-L.; Mayakun, J. Water Depth Outweighs Reef Condition in Shaping Non-Geniculate Coralline Algae-Associated Microbial Communities in Coral Reefs: A Case Study from Thailand. Heliyon 2024, 10, e25486. [Google Scholar] [CrossRef]
- Kuba, G.M.; Spalding, H.L.; Hill-Spanik, K.M.; Fullerton, H. Microbiota-Macroalgal Relationships at a Hawaiian Intertidal Bench Are Influenced by Macroalgal Phyla and Associated Thallus Complexity. mSphere 2021, 6, e00665-21. [Google Scholar] [CrossRef]
- Lu, D.-C.; Wang, F.-Q.; Amann, R.I.; Teeling, H.; Du, Z.-J. Epiphytic Common Core Bacteria in the Microbiomes of Co-Located Green (Ulva), Brown (Saccharina) and Red (Grateloupia, Gelidium) Macroalgae. Microbiome 2023, 11, 126. [Google Scholar] [CrossRef]
- Wilson, K.L.; Kay, L.M.; Schmidt, A.L.; Lotze, H.K. Effects of Increasing Water Temperatures on Survival and Growth of Ecologically and Economically Important Seaweeds in Atlantic Canada: Implications for Climate Change. Mar. Biol. 2015, 162, 2431–2444. [Google Scholar] [CrossRef]
- Kumar, Y.N.; Poong, S.-W.; Gachon, C.; Brodie, J.; Sade, A.; Lim, P.-E. Impact of Elevated Temperature on the Physiological and Biochemical Responses of Kappaphycus alvarezii (Rhodophyta). PLoS ONE 2020, 15, e0239097. [Google Scholar] [CrossRef]
- Russell, A.D. Lethal Effects of Heat on Bacterial Physiology and Structure. Sci. Prog. 2003, 86, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K. Regulation of Microbial Populations by Coral Surface Mucus and Mucus-Associated Bacteria. Mar. Ecol. Prog. Ser. 2006, 322, 1–14. [Google Scholar] [CrossRef]
- Düsedau, L.; Ren, Y.; Hou, M.; Wahl, M.; Hu, Z.-M.; Wang, G.; Weinberger, F. Elevated Temperature-Induced Epimicrobiome Shifts in an Invasive Seaweed Gracilaria vermiculophylla. Microorganisms 2023, 11, 599. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Li, J.; Gao, H.; Li, P.; Zhou, H. The Impact of Temperature on Microbial Diversity and AOA Activity in the Tengchong Geothermal Field, China. Sci. Rep. 2015, 5, 17056. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; St. John, E.; Anantharaman, K.; Reysenbach, A.-L. Global Patterns of Diversity and Metabolism of Microbial Communities in Deep-Sea Hydrothermal Vent Deposits. Microbiome 2022, 10, 241. [Google Scholar] [CrossRef]
- Soy, S.; Lakra, U.; Prakash, P.; Suravajhala, P.; Nigam, V.K.; Sharma, S.R.; Bayal, N. Exploring Microbial Diversity in Hot Springs of Surajkund, India through 16S rRNA Analysis and Thermozyme Characterization from Endogenous Isolates. Sci. Rep. 2023, 13, 14221. [Google Scholar] [CrossRef]
- Li, J.; Cheng, H.; Yin, F.; Liu, J.; Zhang, X.-H.; Yu, M. Deciphering Microbial Communities and Distinct Metabolic Pathways in the Tangyin Hydrothermal Fields of Okinawa Trough through Metagenomic and Genomic Analyses. Microorganisms 2024, 12, 517. [Google Scholar] [CrossRef]
- Sekiguchi, Y. Anaerolinea Thermophila Gen. Nov., Sp. Nov. and Caldilinea Aerophila Gen. Nov., Sp. Nov., Novel Filamentous Thermophiles That Represent a Previously Uncultured Lineage of the Domain Bacteria at the Subphylum Level. Int. J. Syst. Evol. Microbiol. 2003, 53, 1843–1851. [Google Scholar] [CrossRef]
- Dodsworth, J.A.; Gevorkian, J.; Despujos, F.; Cole, J.K.; Murugapiran, S.K.; Ming, H.; Li, W.-J.; Zhang, G.; Dohnalkova, A.; Hedlund, B.P. Thermoflexus hugenholtzii Gen. Nov., Sp. Nov., a Thermophilic, Microaerophilic, Filamentous Bacterium Representing a Novel Class in the Chloroflexi, Thermoflexia Classis Nov., and Description of Thermoflexaceae Fam. nov. and Thermoflexales Thermoflexales ord. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 2119–2127. [Google Scholar] [CrossRef]
- Nunoura, T.; Hirai, M.; Miyazaki, M.; Kazama, H.; Makita, H.; Hirayama, H.; Furushima, Y.; Yamamoto, H.; Imachi, H.; Takai, K. Isolation and Characterization of a Thermophilic, Obligately Anaerobic and Heterotrophic Marine Chloroflexi bacterium from a Chloroflexi-Dominated Microbial Community Associated with a Japanese Shallow Hydrothermal System, and Proposal for Thermomarinilinea lacunofontalis Gen. Nov., Sp. Nov. Microb. Environ. 2013, 28, 228–235. [Google Scholar] [CrossRef]
- Remple, K.L.; Silbiger, N.J.; Quinlan, Z.A.; Fox, M.D.; Kelly, L.W.; Donahue, M.J.; Nelson, C.E. Coral Reef Biofilm Bacterial Diversity and Successional Trajectories Are Structured by Reef Benthic Organisms and Shift under Chronic Nutrient Enrichment. Npj Biofilms Microbiomes 2021, 7, 84. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Dong, X.-M.; Luo, C.; Ma, S.-N.; Xu, J.-L.; Cui, Y.-D. Nitrogen Enrichment Reduces the Diversity of Bacteria and Alters Their Nutrient Strategies in Intertidal Zones. Front. Mar. Sci. 2022, 9, 942074. [Google Scholar] [CrossRef]
- Bai, C.; Wang, Q.; Xu, J.; Zhang, H.; Huang, Y.; Cai, L.; Zheng, X.; Yang, M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024, 12, 1540. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, Q.; Li, Z.; Cheng, W.; Sun, J.; Guo, Z.; Li, Y.; Zhou, J.; Meng, D.; Li, H.; et al. Environmental Factors Shaping the Diversity of Bacterial Communities That Promote Rice Production. BMC Microbiol. 2018, 18, 51. [Google Scholar] [CrossRef]
- Lürling, M.; Mello, M.M.E.; Van Oosterhout, F.; De Senerpont Domis, L.; Marinho, M.M. Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Front. Microbiol. 2018, 9, 1851. [Google Scholar] [CrossRef]
- Bonilla, S.; Aguilera, A.; Aubriot, L.; Huszar, V.; Almanza, V.; Haakonsson, S.; Izaguirre, I.; O’Farrell, I.; Salazar, A.; Becker, V.; et al. Nutrients and Not Temperature Are the Key Drivers for Cyanobacterial Biomass in the Americas. Harmful Algae 2023, 121, 102367. [Google Scholar] [CrossRef] [PubMed]
- Vigil, B.E.; Ascue, F.; Ayala, R.Y.; Murúa, P.; Calderon, M.S.; Bustamante, D.E. Functional Prediction Based on 16S rRNA Metagenome Data from Bacterial Microbiota Associated with Macroalgae from the Peruvian Coast. Sci. Rep. 2024, 14, 18577. [Google Scholar] [CrossRef]
- Koch, A.L. Oligotrophs versus Copiotrophs. BioEssays 2001, 23, 657–661. [Google Scholar] [CrossRef]
- Sinkko, H.; Lukkari, K.; Sihvonen, L.M.; Sivonen, K.; Leivuori, M.; Rantanen, M.; Paulin, L.; Lyra, C. Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea. PLoS ONE 2013, 8, e67061. [Google Scholar] [CrossRef]
- Han, S.-B.; Su, Y.; Hu, J.; Wang, R.-J.; Sun, C.; Wu, D.; Zhu, X.-F.; Wu, M. Terasakiella brassicae Sp. Nov., Isolated from the Wastewater of a Pickle-Processing Factory, and Emended Descriptions of Terasakiella pusilla and the Genus Terasakiella. Int. J. Syst. Evol. Microbiol. 2016, 66, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Shieh, W.Y.; Lin, Y.-T.; Jean, W.D. Pseudovibrio denitrificans Gen. Nov., Sp. Nov., a Marine, Facultatively Anaerobic, Fermentative Bacterium Capable of Denitrification. Int. J. Syst. Evol. Microbiol. 2004, 54, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Wang, Y.; Lu, J.; Lin, W.; Chen, F.; Jiao, N. Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio 2020, 11, e03261-19. [Google Scholar] [CrossRef]
- Trinh, H.P.; Lee, S.-H.; Kim, N.-K.; Nguyen, T.V.; Park, H.-D. Fimbriimonadales Performed Dissimilatory Nitrate Reduction to Ammonium (DNRA) in an Anammox Reactor. Water Res. 2025, 268, 122575. [Google Scholar] [CrossRef] [PubMed]
- Zäncker, B.; Cunliffe, M.; Engel, A. Bacterial Community Composition in the Sea Surface Microlayer Off the Peruvian Coast. Front. Microbiol. 2018, 9, 2699. [Google Scholar] [CrossRef]
- Lawes, J.C.; Neilan, B.A.; Brown, M.V.; Clark, G.F.; Johnston, E.L. Elevated Nutrients Change Bacterial Community Composition and Connectivity: High Throughput Sequencing of Young Marine Biofilms. Biofouling 2016, 32, 57–69. [Google Scholar] [CrossRef]
- Rubio-Portillo, E.; Villamor, A.; Fernandez-Gonzalez, V.; Antón, J.; Sanchez-Jerez, P. Exploring Changes in Bacterial Communities to Assess the Influence of Fish Farming on Marine Sediments. Aquaculture 2019, 506, 459–464. [Google Scholar] [CrossRef]
- Kinnula, H.; Mappes, J.; Valkonen, J.K.; Pulkkinen, K.; Sundberg, L. Higher Resource Level Promotes Virulence in an Environmentally Transmitted Bacterial Fish Pathogen. Evol. Appl. 2017, 10, 462–470. [Google Scholar] [CrossRef]
- Cervino, J.; Hauff, B.; Haslun, J.; Winiarski-Cervino, K.; Cavazos, M.; Lawther, P.; Wier, A.; Hughen, K.; Strychar, K. Ulcerated Yellow Spot Syndrome: Implications of Aquaculture-Related Pathogens Associated with Soft Coral Sarcophyton ehrenbergi Tissue Lesions. Dis. Aquat. Org. 2012, 102, 137–148. [Google Scholar] [CrossRef]
- Ushijima, B.; Smith, A.; Aeby, G.S.; Callahan, S.M. Vibrio owensii Induces the Tissue Loss Disease Montipora White Syndrome in the Hawaiian Reef Coral Montipora capitata. PLoS ONE 2012, 7, e46717. [Google Scholar] [CrossRef]
- Munn, C.B. The Role of Vibrios in Diseases of Corals. Microbiol. Spectr. 2015, 3, 3.4.25. [Google Scholar] [CrossRef]
- McDevitt-Irwin, J.M.; Baum, J.K.; Garren, M.; Vega Thurber, R.L. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors. Front. Mar. Sci. 2017, 4, 262. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ben-Haim, Y. Microbial Diseases of Corals and Global Warming. Environ. Microbiol. 2002, 4, 318–326. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X.; Feng, X.; Tian, M.; Wang, S.; Tang, S.-L.; Ang, P.; Yan, A.; Luo, H. Population Differentiation of Rhodobacteraceae along with Coral Compartments. ISME J. 2021, 15, 3286–3302. [Google Scholar] [CrossRef]
- Shnit-Orland, M.; Sivan, A.; Kushmaro, A. Antibacterial Activity of Pseudoalteromonas in the Coral Holobiont. Microb. Ecol. 2012, 64, 851–859. [Google Scholar] [CrossRef]
- Sneed, J.M.; Ritson-Williams, R.; Paul, V.J. Crustose coralline Algal Species Host Distinct Bacterial Assemblages on Their Surfaces. ISME J. 2015, 9, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Messyasz, A.; Maher, R.L.; Meiling, S.S.; Thurber, R.V. Nutrient Enrichment Predominantly Affects Low Diversity Microbiomes in a Marine Trophic Symbiosis between Algal Farming Fish and Corals. Microorganisms 2021, 9, 1873. [Google Scholar] [CrossRef] [PubMed]
- Beurmann, S.; Ushijima, B.; Videau, P.; Svoboda, C.M.; Smith, A.M.; Rivers, O.S.; Aeby, G.S.; Callahan, S.M. Pseudoalteromonas piratica Strain OCN003 Is a Coral Pathogen That Causes a Switch from Chronic to Acute Montipora White Syndrome in Montipora capitata. PLoS ONE 2017, 12, e0188319. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Saha, M.; Zhuang, Y.; Chang, L.; Xiao, L.; Wang, G. Pseudoalteromonas piscicida X-8 Causes Bleaching Disease in Farmed Saccharina japonica. Aquaculture 2022, 546, 737354. [Google Scholar] [CrossRef]
- Gestal, M.C.; Whitesides, L.T.; Harvill, E.T. Integrated Signaling Pathways Mediate Bordetella Immunomodulation, Persistence, and Transmission. Trends Microbiol. 2019, 27, 118–130. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titioatchasai, J.; Darakrai, A.; Phetcharat, S.; Mayakun, J. Effects of Elevated Temperatures and Nutrient Enrichment on Microbial Communities Associated with Turf Algae Under Laboratory Culture. Oceans 2025, 6, 68. https://doi.org/10.3390/oceans6040068
Titioatchasai J, Darakrai A, Phetcharat S, Mayakun J. Effects of Elevated Temperatures and Nutrient Enrichment on Microbial Communities Associated with Turf Algae Under Laboratory Culture. Oceans. 2025; 6(4):68. https://doi.org/10.3390/oceans6040068
Chicago/Turabian StyleTitioatchasai, Jatdilok, Anuchit Darakrai, Sinjai Phetcharat, and Jaruwan Mayakun. 2025. "Effects of Elevated Temperatures and Nutrient Enrichment on Microbial Communities Associated with Turf Algae Under Laboratory Culture" Oceans 6, no. 4: 68. https://doi.org/10.3390/oceans6040068
APA StyleTitioatchasai, J., Darakrai, A., Phetcharat, S., & Mayakun, J. (2025). Effects of Elevated Temperatures and Nutrient Enrichment on Microbial Communities Associated with Turf Algae Under Laboratory Culture. Oceans, 6(4), 68. https://doi.org/10.3390/oceans6040068