Factor Correction Analysis of Nodal Tides in Taiwan Waters
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Location of Tide Gauges
2.1.2. Tidal Data
2.2. Methods
2.2.1. Harmonic Analysis and Nodal Factors
2.2.2. Fitting of the Amplification and Phase Modulation
2.2.3. Performance Index
3. Results
3.1. Example Description of Modulated and Calculated Nodal Factors
3.2. Performance Statistics of the Six Stations
3.2.1. AF Performance
3.2.2. PF Performance
3.2.3. Amplitude Ratio of Perigean Tide to Nodal Tide
3.2.4. Time Increase Rate of AF
3.2.5. Nodal Correction of S2
4. Discussion
4.1. Fitting of Second-Order Nodal Correction
4.2. Effect of Time Change Rate of AF on Fitting Analysis
4.3. Comparison with Godin’s Results
4.4. Land Effect on AF and PF of Four Main Constituents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Amplitude factor |
LAT | Lowest astronomical tide |
PH | Phase factor |
HA | Harmonic analysis |
HAS | Harmonic analysis supplements |
NPT | Fitting for AF considering time change rate, nodal and perigean modes |
N2T | Fitting for AF considering time change rate, the first and second nodal modes |
N2C | Fitting for AF considering constant mean, the first and second nodal modes |
Appendix A
Appendix A.1. Harmonic Constant
Appendix A.2. Tide Reduction and Correction Formulas for AF and PF
Constituent | AF(f) | PF(u°) |
---|---|---|
Mm | 1.000 − 0.130cosN + 0.0013cos2N | 0 |
Mf | 1.0429 + 0.4135cosN − 0.0040cos2N | −23.74sinN + 2.68sin2N − 0.38sin3N |
O1, Q1, σ1, Q1, ρ1 | 1.0089 + 0.1871cosN − 0.0147cos2N + 0.0014cos3N | 10.80sinN − 1.34sin2N + 0.19sin3N |
K1 | 1.0060 + 0.1150cosN − 0.0088cos2N + 0.0006cos3N | −8.86sinN + 0.68sin2N − 0.07sin3N |
J1, χ1, θ1 | 1.0129 + 0.1676cosN − 0.017cos2N + 0.0016cos3N | −12.94sinN-1.34sin2N − 0.19sin3N |
OO1 | 1.1027 + 0.6504cosN + 0.0317cos2N −0.0014cos3N | −36.68sinN + 4.02sin2N − 0.57sin3N |
M2, 2N2, μ2, N2, ν2 | 1.0004 + 0.0373cosN + 0.0002cos2N | −2.14sinN |
K2 | 1.0241 + 0.2863cosN + 0.0083cos2N −0.0015cos3N | −17.74sinN + 0.68sin2N − 0.04sin3N |
L2 | f cosu = 1.00 − 0.2505cos2p − 0.1102cos(2p-N) − 0.0156cos(2p-2N) − 0.037cosN; f sinu = −0.2505sin2p − 0.1102sin(2p-N) − 0.0156sin(2p-2N) − 0.037sinN | |
M1 | f cosu = 2cosp + 0.4cos(p-N); f sinu = sinp + 0.2sin(p-N) |
References
- Darwin, G.H.; Adams, J.C. The harmonic analysis of tidal observations, Report of a Committee, consisting of Professors G. H. Darwin and J. C. Adams, for the Harmonic Analysis of Tidal Observations. Br. Assoc. Rep. 1883, 1, 49–118. [Google Scholar] [CrossRef]
- Doodson, A.T. The harmonic development of the tide-generating potential. Proc. R. Soc. Lond. A 1921, 100, 305–329. [Google Scholar] [CrossRef]
- Doodson, A.T. The analysis of tidal observations. Philos. Trans. R. Soc. A 1928, 227, 223–279. [Google Scholar]
- Doodson, A.T.; Warburg, H.D. Admiralty Manual of Tides; Hydrographic Department, Admiralty, London, Her Majesty’s Stationery Office: London, UK, 1941; Available online: https://archive.org/details/admiraltymanualoftidesimages/page/n47/mode/2up (accessed on 31 December 2019).
- Thomson, W. Report to committee for the purpose of promoting the extension, improvement and harmonic analysis of tidal observations. Rep. Br. Ass. Advmt Sei. 1868, 489–505. [Google Scholar]
- Ferrel, W. Note on the influence of the tides in causing an apparent secular acceleration of the Moon’s mean motion. Proc. Am. Acad. Arts Sci. 1862, 6, 379–383. [Google Scholar]
- Cartwright, D.E. Tides, A Scientific History; Cambridge University Press: Cambridge, UK, 1999; 304npp. [Google Scholar]
- Schureman, P.; U.S. Coast and Geodetic Survey. Manual of Harmonic Analysis and Prediction of Tides; U.S. Government Publishing Office: Washington, DC, USA, 1971. [Google Scholar]
- Foreman, M.G.G.; Henry, R.F. Tidal Analysis Based on High and Low Water Observations; Pacific Marine Science Report 79-15; Institute of Ocean Sciences: Victoria, BC, Canada, 2004. [Google Scholar]
- Parker, B.B. Tidal Analysis and Prediction; NOAA Special Publication NOS CO-OPS 3; US Department of Commerce: Silver Spring, MD, USA, 2007; 378p. [Google Scholar]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis with error analysis in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Codiga, D.L. Unified Tidal Analysis and Prediction Using the Utide Matlab Functions; Graduate School of Oceanography, University of Rhode Island: Kingston, RI, USA, 2011. [Google Scholar] [CrossRef]
- Foreman, M.G.G.; Cherniawsky, J.Y.; Ballantyne, V.A. Versatile harmonic tidal analysis. J. Atmos. Ocean Tech. 2009, 26, 806–817. [Google Scholar] [CrossRef]
- Leffler, K.E.; Jay, D.A. Enhancing tidal harmonic analysis: Robust (hybrid L1/L2) solutions. Cont. Shelf Res. 2009, 29, 78–88. [Google Scholar] [CrossRef]
- Mousavian, R.; Hossainali, M.M. Detection of main tidal frequencies using least squares harmonic estimation method. J. Geod. Sci. 2012, 2, 224–233. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.R.; Zaminpardaz, S.; Sharifi, M.A. Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series. J. Geodesy 2014, 88, 975–988. [Google Scholar] [CrossRef]
- Forrester, W.D. Canadian Tidal Manual; Department of Fisheries and Oceans, Canadian Hydrographic Service: Ottawa, ON, USA, 1983; 138p. [Google Scholar]
- Bell, C.; Vassie, J.M.; Woodworth, P.L. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000) Permanent Service for Mean Sea Level; CCMS Proudman Oceanographic Laboratory, Bidston Observatory: Birkenhead, UK, 2000. [Google Scholar]
- Houston, J.R.; Dean, R.G. Accounting for the nodal tide to improve estimates of sea level acceleration. J. Coast. Res. 2011, 27, 801–807. [Google Scholar] [CrossRef]
- Woodworth, P.L. A note on the nodal tide in sea level records. J. Coast. Res. 2012, 28, 316–323. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Blackman, D.L. Evidence for systematic changes in extreme high waters since the Mid-1970s. J. Clim. 2004, 17, 1190–1197. [Google Scholar] [CrossRef]
- Menéndez, M.; Woodworth, P.L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 2010, 115, C10011. [Google Scholar] [CrossRef]
- Haigh, I.; Eliot, M.; Pattiaratchi, C. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J. Geophys. Res. 2011, 116, C06025. [Google Scholar] [CrossRef]
- Marcos, M.; Calafat, F.M.; Berihuete, Á.; Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 2015, 120, 8115–8134. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.; Nicholls, R.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Comm. 2017, 8, 16075. [Google Scholar] [CrossRef]
- Peng, D.; Hill, E.M.; Meltzner, A.J.; Switzer, A.D. Tide Gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30 cm. J. Geophys. Res. Oceans 2019, 124, 736–749. [Google Scholar] [CrossRef]
- Kowalik, Z.; Luick, J.L. Modern Theory and Practice of Tide Analysis and Tidal Power; Austides Consulting: Eden Hills, SA, Australia, 2019; 220p. [Google Scholar]
- Amin, M. On perturbations of harmonic constants in the thames estuary. Geophys. J. Int. 1983, 73, 587–603. [Google Scholar] [CrossRef]
- Amin, M. Temporal Variations of tides on the west coast of Great Britain. Geophys. J. Int. 1985, 82, 279–299. [Google Scholar] [CrossRef]
- Ray, R.D. Secular changes of the M2 tide in the gulf of maine. Cont. Shelf Res. 2006, 26, 422–427. [Google Scholar] [CrossRef]
- Woodworth, P.L. A survey of recent changes in the main components of the ocean tide. Cont. Shelf Res. 2010, 30, 1680–1691. [Google Scholar] [CrossRef]
- Shaw, A.; Tsimplis, M.N. The 18.6-yr nodal modulation in the tides of southern European coasts. Cont. Shelf Res. 2010, 30, 138–151. [Google Scholar] [CrossRef]
- Cherniawsky, J.Y.; Foreman, M.G.; Kang, K.S.; Scharroo, R.; Eert, A.J. 18.6-year lunar nodal tides from altimeter data. Cont. Shelf Res. 2010, 30, 575–587. [Google Scholar] [CrossRef]
- Müller, M.; Cherniawsky, J.Y.; Foreman, M.G.G.; von Storch, J.-S. Seasonal variation of the M2 tide. Ocean Dyn. 2014, 64, 159–177. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P.L. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Feng, X.; Tsimplis, M.; Woodworth, P. Nodal variations and long-term changes in the main tides on the coasts of China. J. Geophys. Res. Oceans. 2015, 120, 1215–1232. [Google Scholar] [CrossRef]
- Godin, G. The use of nodal corrections in the calculation of harmonic constants. Int. Hydrogr. Rev. 2015, 63. Available online: https://journals.lib.unb.ca/index.php/ihr/article/view/23428 (accessed on 31 July 2015).
- Hein, S.S.V.; Sohrt, V.; Nehlsen, E.; Strotmann, T.; Fröhle, P. Tidal oscillation and resonance in semi-closed estuaries—Empirical analyses from the Elbe estuary, North Sea. Water 2021, 13, 848. [Google Scholar] [CrossRef]
- Hagen, R.; Plüß, A.; Jänicke, L.; Freund, J.; Jensen, J.; Kösters, F. A combined modeling and measurement approach to assess the nodal tide modulation in the North Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC016364. [Google Scholar] [CrossRef]
- Pan, H.; Devlin, A.T.; Xu, T.; Lv, X.; Wei, Z. Anomalous 18.61-year nodal cycles in the gulf of Tonkin revealed by tide gauges and satellite altimeter records. Remote Sens. 2022, 14, 3672. [Google Scholar] [CrossRef]
- Zong, X.; Zhou, J.; Yang, M.; Zhang, S.; Deng, F.; Lian, Q.; Zhou, W.; Chen, Z. An analysis of the 8.85- and 4.42-year cycles in the Gulf of Maine. J. Mar. Sci. Eng. 2021, 9, 1362. [Google Scholar] [CrossRef]
- Lin, M.C.; Juang, W.J.; Tsay, T.K. Anomalous amplification of semidiurnal tides along the western coast of Taiwan. Ocean Eng. 2001, 28, 1171–1198. [Google Scholar] [CrossRef]
- Jan, S.; Chern, C.S.; Wang, J. Transition of tidal waves from the east to south China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. J. Oceanogr. 2002, 58, 837–850. [Google Scholar] [CrossRef]
- Jan, S.; Wang, Y.-H.; Wang, D.P.; Chao, S.Y. Incremental inference of boundary forcing for a three-dimensional tidal model: Tides in the Taiwan Strait. Cont. Shelf Res. 2004, 24, 337–351. [Google Scholar] [CrossRef]
- Chang, H.K.; Chen, W.W.; Cheng, C.C.; Liou, J.C.; Lin, S.F. Assessment of tide model prediction and discrepancy in shallow waters of Taiwan to improve data fusion methods. J. Coast. Res. 2024, 40, 129–137. [Google Scholar] [CrossRef]
- Lan, W.H.; Kuo, C.Y.; Kao, H.C.; Lin, L.C.; Shum, C.K.; Tseng, K.H.; Chang, J.C. Impacts of geophysical and datum corrections on absolute sea-level trend from tide gauges around Taiwan, 1993–2015. Water 2017, 9, 480. [Google Scholar] [CrossRef]
- Byun, D.S.; Hart, D.E. A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents. Ocean Sci. 2020, 16, 965–977. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 2002; pp. 577–608. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996; 624p. [Google Scholar]
- Papageorgiou, S.N. On correlation coefficients and their interpretation. J. Orthod. 2022, 49, 359–361. [Google Scholar] [CrossRef]
- Sherman, C.; Butler, J. Transducers and Arrays for Underwater Sound; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; 276p. [Google Scholar]
- Piccioni, G.; Dettmering, D.; Bosch, W.; Seitz, F. TICON: TIdal CONstants Based on GESLA sea-level records from globally located tide gauges. Geosci. Data J. 2019, 6, 97–104. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 2013, 288, 493–504, ISSN 0749-0208. [Google Scholar] [CrossRef]
- Chang, H.-K.; Shih, P.T.-Y. On the standard operation procedures of lat computations. Taiwan J. Geoinform. 2022, 10, 1–20. (In Chinese) [Google Scholar]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd ed.; Elsevier: Waltham, MA, USA, 2014; 638p. [Google Scholar] [CrossRef]
- Chang, H.K.; Cheng, C.C.; Shih, P.T.Y. On the variation of Lat resulting from predictions computed using different tidal constituent sets. J. Chin. Inst. Eng. 2022, 46, 31–38. [Google Scholar] [CrossRef]
Full Name | Abb. | Start Time of Data | End Time of Data | Data Length (Year) | Mean Tidal Range (cm) | Mean Spring Tide Range (cm) | Type of Tidal Regimes |
---|---|---|---|---|---|---|---|
Jhuwei | JW | 1 January 1993 | 31 December 2018 | 26.01 | 287.8 | 439.4 | Semidiurnal |
Penghu | PH | 1 January 1993 | 28 May 2019 | 26.42 | 226.0 | 347.4 | Semidiurnal |
Kaohsiung | KH | 1 January 1993 | 31 December 2018 | 26.01 | 70.6 | 155.8 | Mixed diurnal dominant |
Suao | SA | 21 March 1997 | 31 December 2018 | 21.79 | 121.6 | 237.2 | Mixed semidiurnal dominant |
Hualien | HL | 1 November 1997 | 25 August 2019 | 21.83 | 120.2 | 223.1 | Semidiurnal |
Chenggong | CG | 1 March 1993 | 2 September 2019 | 26.52 | 131.4 | 261.6 | Semidiurnal |
Station | AF | PF | ||||||
---|---|---|---|---|---|---|---|---|
Fitted | Calculated | Fitted | Calculated | |||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
JW | 0.9938 | 0.0101 | 0.9708 | 0.0232 | 0.9959 | 0.4752 | 0.9165 | 2.1480 |
PH | 0.9908 | 0.0115 | 0.9817 | 0.0220 | 0.9924 | 0.6654 | 0.9378 | 1.9258 |
KH | 0.9849 | 0.0159 | 0.9725 | 0.0222 | 0.9777 | 1.1978 | 0.9296 | 2.2063 |
SA | 0.9898 | 0.0137 | 0.9827 | 0.0183 | 0.9934 | 0.6136 | 0.9269 | 2.0518 |
HL | 0.9814 | 0.0181 | 0.9723 | 0.0227 | 0.9877 | 0.8662 | 0.9268 | 2.1200 |
CG | 0.9901 | 0.0128 | 0.9773 | 0.0201 | 0.9919 | 0.6857 | 0.9198 | 2.1571 |
Mean | 0.9885 | 0.0137 | 0.9762 | 0.0214 | 0.9898 | 0.7506 | 0.9262 | 2.1015 |
Std | 0.0045 | 0.0029 | 0.0051 | 0.0018 | 0.0065 | 0.2528 | 0.0075 | 0.0999 |
Tide | AF | Tide | PF | ||||||
---|---|---|---|---|---|---|---|---|---|
Fitted | Calculated | Fitted | Calculated | ||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
O1 | 0.9885 | 0.0045 | 0.9762 | 0.0051 | O1 | 0.990 | 0.006 | 0.942 | 0.002 |
K1 | 0.9772 | 0.0177 | 0.9602 | 0.0222 | K1 | 0.978 | 0.013 | 0.926 | 0.007 |
K2 | 0.9575 | 0.0315 | 0.9323 | 0.0382 | K2 | 0.917 | 0.101 | 0.895 | 0.795 |
Q1 | 0.9459 | 0.0119 | 0.9087 | 0.0137 | Q1 | 0.881 | 0.091 | 0.795 | 0.134 |
M2 | 0.8391 | 0.1132 | 0.6450 | 0.1233 | J1 | 0.722 | 0.076 | 0.551 | 0.246 |
OO1 | 0.8166 | 0.1276 | 0.7744 | 0.1184 | - | - | - | - | - |
N2 | 0.7111 | 0.1126 | - | - | - | - | - | - | - |
J1 | 0.6542 | 0.1359 | - | - | - | - | - | - | - |
Tide | R2 | RMSE | ||||
---|---|---|---|---|---|---|
NPT | N2T | N2C | NPT | N2T | N2C | |
O1 | 0.9885 | 0.9886 | 0.9880 | 0.0137 | 0.0136 | 0.0139 |
K1 | 0.9772 | 0.9767 | 0.9733 | 0.0114 | 0.0116 | 0.0127 |
K2 | 0.9575 | 0.9572 | 0.9549 | 0.0408 | 0.0409 | 0.0420 |
Q1 | 0.9459 | 0.9440 | 0.9415 | 0.0305 | 0.0309 | 0.0316 |
M2 | 0.8391 | 0.8387 | 0.8157 | 0.0125 | 0.0126 | 0.1929 |
OO1 | 0.8166 | 0.8167 | 0.7400 | 0.1917 | 0.1921 | 0.0161 |
N2 | 0.7111 | 0.7246 | 0.6730 | 0.0219 | 0.0213 | 0.0232 |
J1 | 0.6542 | 0.6496 | 0.6311 | 0.0979 | 0.0982 | 0.1006 |
Mean | 0.8613 | 0.8620 | 0.8397 | 0.0526 | 0.0527 | 0.0541 |
Std | 0.1276 | 0.1262 | 0.1441 | 0.0630 | 0.0632 | 0.0630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-K.; Shih, P.T.-Y.; Chen, W.-W. Factor Correction Analysis of Nodal Tides in Taiwan Waters. Oceans 2025, 6, 41. https://doi.org/10.3390/oceans6030041
Chang H-K, Shih PT-Y, Chen W-W. Factor Correction Analysis of Nodal Tides in Taiwan Waters. Oceans. 2025; 6(3):41. https://doi.org/10.3390/oceans6030041
Chicago/Turabian StyleChang, Hsien-Kuo, Peter Tian-Yuan Shih, and Wei-Wei Chen. 2025. "Factor Correction Analysis of Nodal Tides in Taiwan Waters" Oceans 6, no. 3: 41. https://doi.org/10.3390/oceans6030041
APA StyleChang, H.-K., Shih, P. T.-Y., & Chen, W.-W. (2025). Factor Correction Analysis of Nodal Tides in Taiwan Waters. Oceans, 6(3), 41. https://doi.org/10.3390/oceans6030041