Genomic Characteristics of Two Common Pest Starfish in Northern China Seas: A Whole-Genome Survey Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Collection and Genome Survey Sequencing
2.3. Genome Survey, Assembly, and Simple Sequence Repeat (SSR) Identification
2.4. Genome Functional Annotation
2.5. Mitochondrial Genome Assembly and Phylogenetic Analysis
2.6. Effective Population Size Inference
3. Results
3.1. Whole-Genome Sequencing, k-Mer Analysis, and Genome Assembly
3.2. Identification and Characterization of SSRs
3.3. Screening and Functional Annotation of Single-Copy Homologous Genes
3.4. Mitochondrial Genome Assembly and Phylogenetic Analysis
3.5. Population Size Dynamics of A. amurensis and P. pectinifera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
PSMC | Pairwise Sequentially Markovian Coalescent |
References
- Lubchenco, J.; Menge, B.A. Community Development and Persistence in a Low Rocky Intertidal Zone. Ecol. Monogr. 1978, 48, 67–94. [Google Scholar] [CrossRef]
- Mackenzie, C.; Pikanowski, R.A. A Decline in Starfish, Asterias forbesi, Abundance and a Concurrent Increase in Northern Quahog, Mercenaria mercenaria, Abundance and Landings in the Northeastern United States. Mar. Fish. Rev. 1999, 61, 66–71. [Google Scholar]
- Paine, R.T. Food Web Complexity and Species Diversity. Am. Nat. 1966, 100, 65–75. [Google Scholar] [CrossRef]
- Brodie, J.; Fabricius, K.; De’ath, G.; Okaji, K. Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar. Pollut. Bull. 2005, 51, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Yu, Y.; Wu, W.H.; Wang, P.P. Extraction, Characterization and Osteogenic Activity of a Type I Collagen from Starfish (Asterias amurensis). Mar. Drugs 2023, 21, 274. [Google Scholar] [CrossRef]
- Ross, D.J.; Johnson, C.R.; Hewitt, C.L. Assessing the ecological impacts of an introduced seastar: The importance of multiple methods. Biol. Invasions 2003, 5, 3–21. [Google Scholar] [CrossRef]
- Babcock, R.C.; Plaganyi, É.; Condie, S.A.; Westcott, D.A.; Fletcher, C.S.; Bonin, M.C.; Cameron, D. Suppressing the next crown-of-thorns outbreak on the Great Barrier Reef. Coral Reefs 2020, 39, 1233–1244. [Google Scholar] [CrossRef]
- Li, L.Y.; Liu, T.; Huang, H.; Song, H.; He, S.Y.; Li, P.L.; Gu, Y.Z.; Chen, J.W. An early warning model for starfish disaster based on multi-sensor fusion. Front. Mar. Sci. 2023, 10, 12. [Google Scholar] [CrossRef]
- Shah, A.; Kinoshita, M.; Kurihara, H.; Ohnishi, M.; Takahashi, K. Glycosylceramides Obtain from the Starfish Asterias amurensis Lutken. J. Oleo Sci. 2008, 57, 477–484. [Google Scholar] [CrossRef]
- Byrne, M.; Morrice, M.G.; Wolf, B. Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: Reproduction and current distribution. Mar. Biol. 1997, 127, 673–685. [Google Scholar] [CrossRef]
- Kashenko, S.D. The Reaction of the Starfish Asterias amurensis and Patiria pectinifera (Asteroidea) from Vostok Bay (Sea of Japan) to a Salinity Decrease. Russ. J. Mar. Biol. 2003, 29, 110–114. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.B.; Guo, H.; Cao, L.Q.; Jin, Y. Advances and perspectives on the research of starfish outbreaks in northern China. Chin. J. Appl. Ecol. 2023, 34, 1146–1152. [Google Scholar]
- Du, M.R.; Zhang, J.H.; Mao, Y.Z.; Jiang, Z.J.; Gao, Y.P.; Fang, J.G. Development of embryo and early stage larvae of Asterias amurensis. Prog. Fish. Sci. 2014, 35, 133–138. [Google Scholar]
- Chen, B.J.; Sun, Z.C.; Lou, F.R.; Gao, T.X.; Song, N. Genomic characteristics and profile of microsatellite primers for Acanthogobius ommaturus by genome survey sequencing. Biosci. Rep. 2020, 40, 8. [Google Scholar] [CrossRef]
- Wenne, R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes 2023, 14, 808. [Google Scholar] [CrossRef]
- Jia, C.H.; Yang, T.Y.; Yanagimoto, T.; Gao, T.X. Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing. Curr. Issues Mol. Biol. 2021, 43, 2048–2058. [Google Scholar] [CrossRef]
- Surachat, K.; Deachamag, P.; Wonglapsuwan, M. The first de novo genome assembly and sex marker identification of Pluang Chomphu fish (Tor tambra) from Southern Thailand. Comput. Struct. Biotechnol. J. 2022, 20, 1470–1480. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2001. [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Marcais, G.; Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 2020, 11, 10. [Google Scholar] [CrossRef]
- Kajitani, R.; Toshimoto, K.; Noguchi, H.; Toyoda, A.; Ogura, Y.; Okuno, M.; Yabana, M.; Harada, M.; Nagayasu, E.; Maruyama, H.; et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014, 24, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Q.; Zhu, H.M.; Ruan, J.; Qian, W.B.; Fang, X.D.; Shi, Z.B.; Li, Y.R.; Li, S.T.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.B.; Liu, B.H.; Xie, Y.L.; Li, Z.Y.; Huang, W.H.; Yuan, J.Y.; He, G.Z.; Chen, Y.X.; Pan, Q.; Liu, Y.J.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; dePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 31. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 2011, 475, 493–496. [Google Scholar] [CrossRef]
- Jung, Y.; Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 2022, 38, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. Genomes Project Anal. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Narasimhan, V.; Danecek, P.; Scally, A.; Xue, Y.L.; Tyler-Smith, C.; Durbin, R. BCFtools/RoH: A hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 2016, 32, 1749–1751. [Google Scholar] [CrossRef]
- Shao, F.; Han, M.J.; Peng, Z.G. Evolution and diversity of transposable elements in fish genomes. Sci. Rep. 2019, 9, 8. [Google Scholar] [CrossRef]
- Cho, Y.G.; Ishii, T.; Temnykh, S.; Chen, X.; Lipovich, L.; McCouch, S.R.; Park, W.D.; Ayres, N.; Cartinhour, S.; Ayres, S. Cartinhour. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa). Theor. Appl. Genet. 2000, 100, 713–722. [Google Scholar] [CrossRef]
- Desai, H.; Hamid, R.; Ghorbanzadeh, Z.; Bhut, N.; Padhiyar, S.M.; Kheni, J.; Tomar, R.S. Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci. Rep. 2021, 11, 14. [Google Scholar] [CrossRef]
- Labbé, J.; Murat, C.; Morin, E.; Le Tacon, F.; Martin, F. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Curr. Genet. 2011, 57, 75–88. [Google Scholar] [CrossRef]
- Fitch, W.M. Distinguishing homologous from analogous proteins. Syst. Zool. 1970, 19, 99–113. [Google Scholar] [CrossRef]
- Huang, Y.; Feulner, P.G.D.; Eizaguirre, C.; Lenz, T.L.; Bornberg-Bauer, E.; Milinski, M.; Reusch, T.B.H.; Chain, F.J.J. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes. Genome Biol. Evol. 2019, 11, 2344–2359. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005, 39, 309–338. [Google Scholar] [CrossRef] [PubMed]
- Demuth, J.P.; Hahn, M.W. The life and death of gene families. Bioessays 2009, 31, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, M.; Komatsu, M.; Araki, T.; Asakawa, S.; Yokobori, S.-I.; Watanabe, K.; Wada, H. The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences. Mol. Phylogenetics Evol. 2005, 36, 598–605. [Google Scholar] [CrossRef]
- Mah, C.; Foltz, D. Molecular phylogeny of the Forcipulatacea (Asteroidea: Echinodermata): Systematics and biogeography. Zool. J. Linn. Soc. 2011, 162, 646–660. [Google Scholar] [CrossRef]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef]
- Marko, P.B.; Hoffman, J.M.; Emme, S.A.; McGovern, T.M.; Keever, C.C.; Cox, L.N. The “Expansion-Contraction” Model of Pleistocene Biogeography: Rocky Shores Suffer a Sea Change? Integr. Comp. Biol. 2010, 50, E108. [Google Scholar] [CrossRef]
Species | Base Count (Gb) | Read Number | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|
A. amurensis | 77.41 | 521,604,384 | 97.63 | 93.57 | 39.94 |
P. pectinifera | 90.30 | 608,928,044 | 97.02 | 92.03 | 40.63 |
A. amurensis | P. pectinifera | |
---|---|---|
Total Sequences Examined | 903,887 | 1,457,538 |
Total Sequence Size (bp) | 507,490,131 | 744,513,467 |
Total SSRs Identified | 161,786 | 316,245 |
SSR-Containing Sequences | 109,842 | 208,485 |
Sequences with >1 SSR | 30,348 | 60,954 |
SSRs in Compound Formation | 15,447 | 34,552 |
Species | Kmer Depth | Revised Genome Size (Mb) | Heterozygous Ratio (%) | Repeat Sequence Ratio (%) |
---|---|---|---|---|
A. amurensis | 71 | 477 | 1.52 | 53.60 |
P. pectinifera | 74 | 529 | 2.90 | 56.02 |
Species | Read Number | Total Length (bp) | Total Number | Max Length (bp) | N50 Length (bp) | N90 Length (bp) |
---|---|---|---|---|---|---|
A. amurensis | Contig | 1,194,879,833 | 15,710,541 | 3850 | 79 | 42 |
Scaffold | 507,490,131 | 903,887 | 32,916 | 1823 | 153 | |
P. pectinifera | Contig | 1,559,559,649 | 19,741,871 | 12,551 | 86 | 43 |
Scaffold | 744,513,467 | 1,457,548 | 55,492 | 1328 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, G.; Huang, Z.; Li, Z. Genomic Characteristics of Two Common Pest Starfish in Northern China Seas: A Whole-Genome Survey Approach. Oceans 2025, 6, 35. https://doi.org/10.3390/oceans6020035
Ni G, Huang Z, Li Z. Genomic Characteristics of Two Common Pest Starfish in Northern China Seas: A Whole-Genome Survey Approach. Oceans. 2025; 6(2):35. https://doi.org/10.3390/oceans6020035
Chicago/Turabian StyleNi, Gang, Zhichao Huang, and Zhe Li. 2025. "Genomic Characteristics of Two Common Pest Starfish in Northern China Seas: A Whole-Genome Survey Approach" Oceans 6, no. 2: 35. https://doi.org/10.3390/oceans6020035
APA StyleNi, G., Huang, Z., & Li, Z. (2025). Genomic Characteristics of Two Common Pest Starfish in Northern China Seas: A Whole-Genome Survey Approach. Oceans, 6(2), 35. https://doi.org/10.3390/oceans6020035