Sensitivity of the Wave Field to High Time-Space Resolution Winds during a Tropical Cyclone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Event: Tropical Cyclone Isaac (2012)
2.2. Model Configuration
2.2.1. Hurricane Dynamic Atmospheric Model
2.2.2. Waves Spectral Model
3. Results
3.1. Characteristic Parameters of the TC
3.1.1. Structure and Trajectory
3.1.2. Fixed Observations
- (a)
- The determination coefficient,
- (b)
- The root mean squared error (),
- (c)
- Bias,
3.2. Effects of the Time Resolution of the Wind Field on the Wave Field
3.2.1. Average Wind and Fields
3.2.2. Mean Fields of Filtered Winds and the Corresponding Wind Waves
3.2.3. Particular Case: Change from Tropical Storm to Hurricane
3.3. Temporal Variability of the Wind and Significant Wave Height Fields
4. Discussion
5. Conclusions
- The wave field generated by the WaveWatch III model does not respond instantly to the variations in the wind field structure. More studies and specialized measurements are required to determine if the described behavior is either physically realistic, or is a deficiency of the wave model.
- The results indicate that the structure of the wave field is strongly determined by the extended fetch process, which leads to the occurrence of high waves over quadrants I and II of the storm. The high wave values over the frontal quadrant IV are related to a translation speed of the TC smaller than the group velocity of the waves generated in quadrants I and II.
- The wind field generated by parametric hurricanes successfully reproduces the wave field structure because the mean wind field has a tendency to produce a typical asymmetric spatial structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wu, C.C. Current understanding of tropical cyclone structure and intensity changes—A review. Meteorol. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing Destructiveness of Tropical Cyclones Over the Past 30 Years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Wang, Y. Recent research progress on tropical cyclone structure and intensity. Trop. Cyclone Res. Rev. 2012, 1, 254–275. [Google Scholar] [CrossRef]
- Moon, I.J.; Ginis, I.; Hara, T.; Tolman, H.L.; Wright, C.W.; Walsh, E.J. Numerical Simulation of Sea Surface Directional Wave Spectra under Hurricane Wind Forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Curcic, M. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Model. 2016, 103, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.W.; Walsh, E.; Vandemark, D.; Krabill, W.; Garcia, A.; Houston, S.; Powell, M.; Black, P.; Marks, F. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 2001, 31, 2472–2488. [Google Scholar] [CrossRef]
- Kumar, B.P.; Stone, G.W. Numerical simulation of typhoon wind forcing in the Korean seas using a spectral wave model. J. Coast. Res. 2007, 23, 362–373. [Google Scholar] [CrossRef]
- Holthuijsen, L.; Powell, M.; Pietrzak, J. Wind and waves in extreme hurricanes. J. Geophys. Res. Ocean. 2012, 117, 9003. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Trava, B.; Ocampo Torres, F.; Osuna, P. Spatial structure of directional wave spectra in hurricanes. Ocean Dyn. 2015, 65, 65–76. [Google Scholar] [CrossRef]
- Tamizi, A.; Young, I. The Spatial Distribution of Ocean Waves in Tropical Cyclones. J. Phys. Oceanogr. 2020, 50, 2123–2139. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L.; Pietrafesa, L.; Bao, S. Sensitivity of wind waves to hurricane wind characteristics. Ocean Model. 2007, 18, 37–52. [Google Scholar] [CrossRef]
- Montoya, R.; Osorio Arias, A.; Ortiz Royero, J.; Ocampo-Torres, F. A wave parameters and directional spectrum analysis for extreme winds. Ocean Eng. 2013, 67, 100–118. [Google Scholar] [CrossRef]
- Ruiz Salcines, P.; Salles, P.; Robles-Diaz, L.; Díaz-Hernández, G.; Torres-Freyermuth, A.; Appendini, C. On the Use of Parametric Wind Models for Wind Wave Modeling under Tropical Cyclones. Water 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Young, I. Directional spectra of hurricane wind waves. J. Geophys. Res. Ocean. 2006, 111, 14. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J. Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. J. Phys. Oceanogr. 2009, 39, 2097–2116. [Google Scholar] [CrossRef]
- Wang, D.; Kukulka, T.; Reichl, B.G.; Hara, T.; Ginis, I. Wind–Wave Misalignment Effects on Langmuir Turbulence in Tropical Cyclone Conditions. J. Phys. Oceanogr. 2019, 49, 3109–3126. [Google Scholar] [CrossRef]
- Chao, Y.; Alves, J.; Tolman, H. An Operational System for Predicting Hurricane-Generated Wind Waves in the North Atlantic Ocean. Weather. Forecast. 2005, 20, 652–671. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.D.; Houston, S.H.; Amat, L.R.; Morisseau-Leroy, N. The HRD real-time hurricane wind analysis system. J. Wind. Eng. Ind. Aerodyn. 1998, 77, 53–64. [Google Scholar] [CrossRef]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Natl. Emerg. Train. Center. 1980, 108, 7. [Google Scholar] [CrossRef]
- Dodla, V.B.; Desamsetti, S.; Yerramilli, A. A comparison of HWRF, ARW and NMM models in Hurricane Katrina (2005) simulation. Int. J. Environ. Res. Public Health 2011, 8, 2447–2469. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Note; University Corporation for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar]
- Dudhia, J. A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 1993, 121, 1493–1513. [Google Scholar] [CrossRef]
- Tenerelli, J.; Chen, S. High-resolution simulations of Hurricane Floyd using MM5 with vortex-following mesh refinement. In Proceedings of the Conference on Weather Analysis and Forecasting, Santiago de Compostela, Spain, 15–18 July 2001; Volume 18, pp. J52–J54. [Google Scholar]
- Pérez-Alarcón, A.; Díaz-Rodríguez, O.; Fernández-Alvarez, J.C.; Pérez-Suárez, R.; Coll-Hidalgo, P. A Comparison between the Atmospheric Component of HWRF System and WRF-HWRF Model Using Different Horizontal Resolutions in Hurricane Irma (2017) Simulation. Part I. Rev. Bras. Meteorol. 2021, 36, 183–196. [Google Scholar] [CrossRef]
- Tolman, H.L.; Alves, J.H.G. Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Model. 2005, 9, 305–323. [Google Scholar] [CrossRef]
- Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E. A new coupl;ed ocean-waves-atmosphere model designed for tropical storm studies: Example of tropical cyclone Bejisa (2013–2014) in the Southe-West Indian Ocean. J. Adv. Model. Earth Syst. 2018, 10, 801–825. [Google Scholar] [CrossRef]
- Biswas, M.K.; Bernardet, L.; Ginis, I.; Kwon, Y.; Liu, B.; Liu, Q.; Marchok, T.; Mehra, A.; Newman, K.; Sheinin, D.; et al. Hurricane Weather Research and Forecasting (HWRF) Model: 2016 Scientific Documentation; University Corporation for Atmospheric Research: Boulder, CO, USA, 2016. [Google Scholar]
- Gopalakrishnan, S.; Liu, Q.; Marchok, T.; Sheinin, D.; Surgi, N.; Tuleya, R.; Yablonsky, R.; Zhang, X. Hurricane Weather Research and Forecasting (HWRF) model scientific documentation. Dev. Testbed Cent. 2010, 75, 7655. [Google Scholar]
- Powell, M.; Vickery, P.; Reinhold, T. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather. Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Ferrier, B. An efficient mixed-phase cloud and precipitation scheme for use in operational NWP models. AGU Spring Meet. Abstr. 2005, 2005, A42A-02. [Google Scholar]
- WW3DG. User Manual and System Documentation of WAVEWATCH III® Version 6.07; Tech. Note 333; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2019; 465p. [Google Scholar]
- Donelan, M.A.; Babanin, A.V.; Young, I.R.; Banner, M.L. Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part II: Parameterization of the Wind Input. J. Phys. Oceanogr. 2006, 36, 1672–1689. [Google Scholar] [CrossRef]
- Rogers, W.E.; Babanin, A.V.; Wang, D.W. Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Ocean. Technol. 2012, 29, 1329–1346. [Google Scholar] [CrossRef]
- Zieger, S.; Babanin, A.V.; Rogers, W.E.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 2015, 96, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Curcic, M.; Chen, S.S.; Özgökmen, T. Hurricane–induced ocean waves and stokes drift and their impact on surface transport and dispersion in the Gulf of Mexico. Geophys. Res. Lett. 2016, 43, 2773–2781. [Google Scholar] [CrossRef]
- Inagaki, N.; Shibayama, T.; Esteban, M.; Takabatake, T. Effect of translate speed of typhoon on wind waves. Nat. Hazards 2021, 105, 841–858. [Google Scholar] [CrossRef]
- Janssen, P. Nonlinear Wave–Wave Interactions and Wave Dissipation; Cambridge University Press: Cambridge, UK, 2004; pp. 129–208. [Google Scholar] [CrossRef]
- Zhao, W.; Guan, S.; Hong, X.; Li, P.; Tian, J. Examination of wind-wave interaction source term in WAVEWATCH III with tropical cyclone wind forcing. Acta Oceanol. Sin. 2011, 30, 1–13. [Google Scholar] [CrossRef]
- Tolman, H.L.; Alves, J.H.G.; Chao, Y.Y. Operational forecasting of wind-generated waves by Hurricane Isabel at NCEP. Weather. Forecast. 2005, 20, 544–557. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Wang, A.; Guo, P. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing Export. J. Hydrodyn. Ser. B 2008, 20, 776–783. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Q. Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef]
- Mora Escalante, R.E. Estudio Numérico Sobre la Estructura del Campo de olas en Condiciones de Huracán. Master’s Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Mexico, 2015. [Google Scholar]
- Hwang, P.A.; Fan, Y.; Ocampo-Torres, F.J.; García-Nava, H. Ocean surface wave spectra inside tropical cyclones. J. Phys. Oceanogr. 2017, 47, 2393–2417. [Google Scholar] [CrossRef]
- Ponce, S.; Ocampo-Torres, F.J. Sensitivity of a wave model to wind variability. J. Geophys. Res. Ocean. 1998, 103, 3179–3201. [Google Scholar] [CrossRef] [Green Version]
- Glover, D.M.; Jenkins, W.J.; Doney, S.C. Modeling Methods for Marine Science; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Weatherford, C.L.; Gray, W.M. Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Weather Rev. 1988, 116, 1032–1043. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.; Hesser, T.; Rogowski, P.; Merrifield, S. Altimeter Observations of Tropical Cyclone-generated Sea States: Spatial Analysis and Operational Hindcast Evaluation. J. Mar. Sci. Eng. 2021, 9, 216. [Google Scholar] [CrossRef]
Domain | Resolution | Grid |
---|---|---|
D01 | 80 × 80 (18 km) | Fixed |
D02 | 25 × 25 (6 km) | Mobile |
D03 | 8.3 × 8.3 (2 km) | Mobile |
Physical | Parameterization |
---|---|
Governing Equations | Primitive equations with non-hydrostatic option (NMM) |
Surface boundary layer | Geophysical Fluid Dynamics Laboratory (GFDL) [29] |
Cumulus parameterization | Simplified Arakawa–Schubert (SAS) [30,31] |
Microphysics | Ferrier–Aligo [32] |
Vortex tracking | Geophysical Fluid Dynamics Laboratory vortex tracker |
Vertical resolution | 61 vertical levels |
Physical | Parameterization |
---|---|
Wind input | Donelan et al. [34] |
Non-linear interactions | Discrete Interaction Approximation (DIA) |
Whitecapping | Rogers et al. [35], Zieger et al. [36] |
Microphysics | Ferrier–Aligo Ferrier [32] |
Resolution | |
Temporal resolution | 15 min |
Spatial resolution | 0.02 |
Number of frequencies | 32 (0.0373–0.7159 Hz; ) |
Number of directions | 30 ( = 12) |
Maximum global time step | 180 s |
Maximum CFL time step for x-y | 60 s |
Maximum CFL time step for k-theta | 60 s |
Minimum source term time step | 15 s |
Buoy | Variable | S | ||
---|---|---|---|---|
42001 | [ms] | 0.75 | 0.98 | −0.22 |
[m] | 0.85 | 0.5 | 0.32 | |
42003 | [ms] | 0.2 | 5.4 | 3.2 |
[m] | 0.47 | 1.7 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Sampablo, L.; Osuna, P.; Esquivel-Trava, B.; Rascle, N.; Ocampo-Torres, F.J. Sensitivity of the Wave Field to High Time-Space Resolution Winds during a Tropical Cyclone. Oceans 2023, 4, 92-113. https://doi.org/10.3390/oceans4010008
Pérez-Sampablo L, Osuna P, Esquivel-Trava B, Rascle N, Ocampo-Torres FJ. Sensitivity of the Wave Field to High Time-Space Resolution Winds during a Tropical Cyclone. Oceans. 2023; 4(1):92-113. https://doi.org/10.3390/oceans4010008
Chicago/Turabian StylePérez-Sampablo, Laura, Pedro Osuna, Bernardo Esquivel-Trava, Nicolas Rascle, and Francisco J. Ocampo-Torres. 2023. "Sensitivity of the Wave Field to High Time-Space Resolution Winds during a Tropical Cyclone" Oceans 4, no. 1: 92-113. https://doi.org/10.3390/oceans4010008
APA StylePérez-Sampablo, L., Osuna, P., Esquivel-Trava, B., Rascle, N., & Ocampo-Torres, F. J. (2023). Sensitivity of the Wave Field to High Time-Space Resolution Winds during a Tropical Cyclone. Oceans, 4(1), 92-113. https://doi.org/10.3390/oceans4010008