Wanted Dead or Alive: Skeletal Structure Alteration of Cold-Water Coral Desmophyllum pertusum (Lophelia pertusa) from Anthropogenic Stressors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levin, L.A.; Bett, B.J.; Gates, A.R.; Heimbach, P.; Howe, B.M.; Janssen, F.; McCurdy, A.; Ruhl, H.A.; Snelgrove, P.; Stocks, K.I.; et al. Global observing needs in the deep ocean. Front. Mar. Sci. 2019, 6, 241. [Google Scholar] [CrossRef]
- Freiwald, A.; Fosså, J.H.; Grehan, A.; Koslow, T.; Roberts, J.M. Cold Water Coral Reefs: Out of Sight, No Longer Out of Mind; Biodiversity Series 22; UNEP-WCMC: Cambridge, UK, 2004; p. 86. [Google Scholar]
- Gori, A.; Ferrier-Pagès, C.; Hennige, S.J.; Murray, F.; Rottier, C.; Wicks, L.C.; Roberts, J.M. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 2016, 4, e1606. [Google Scholar] [CrossRef] [PubMed]
- Addamo, A.M.; Vertino, A.; Stolarski, J.; García-Jiménez, R.; Taviani, M.; Machordom, A. Merging scleractinian genera: The overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. 2016, 16, 108. [Google Scholar] [CrossRef]
- Schleinkofer, N.; Raddatz, J.; Freiwald, A.; Evans, D.; Beuck, L.; Rüggeberg, A.; Liebetrau, V. Environmental and biological controls on Na/Ca ratios in scleractinian cold-water corals. Biogeosciences 2019, 16, 3565–3582. [Google Scholar] [CrossRef]
- Miller, K.J.; Rowden, A.A.; Williams, A.; Häussermann, V. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS ONE 2011, 6, e19004. [Google Scholar] [CrossRef]
- Titschack, J.; Fink, H.G.; Baum, D.; Weinberg, C.; Hebbeln, D.; Freiwald, A. Mediterranean cold-water corals—An important regional carbonate factory? Depos. Rec. 2016, 2, 74–96. [Google Scholar] [CrossRef]
- Fitzer, S.C.; Zhu, W.; Tanner, K.E.; Phoenix, V.R.; Kamenos, N.A.; Cusack, M. Ocean acidification alters the material properties of Mytilus edilus shells. J. R. Soc. Interface 2015, 12, 20141227. [Google Scholar] [CrossRef]
- Hennige, S.J.; Wolfram, U.; Wickes, L.; Murray, F.; Roberts, J.M.; Kamenos, N.A.; Schofield, S.; Groetsch, A.; Spiesz, E.M.; Aubin-Tam, M.-E.; et al. Crumbling reefs and cold-water coral habitat loss in a future ocean: Evidence of “coralporosis” as an indicator of habitat integrity. Front. Mar. Sci. 2020, 7, 668. [Google Scholar] [CrossRef]
- Reitner, J. Calcifying extracellular mucus substances (EMS) of Madrepora oculata—A first geobiological approach. In Cold Water Corals and Ecosystems; Freiwald, A., Roberts, J.M., Eds.; Springer-Verlag: Berlin, Germany, 2005; pp. 731–744. [Google Scholar] [CrossRef]
- Cao, L.; Caldeira, K.; Jain, A.K. Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophys. Res. Lett. 2007, 34, L05607. [Google Scholar] [CrossRef]
- Jurikova, H.; Liebetrau, V.; Raddatz, J.; Fietzke, J.; Trotter, J.; Rocholl, A.; Krause, S.; McCulloch, M.; Rüggeberg, A.; Eisenhauer, A. Boron isotope composition on the cold-water coral Lophelia pertusa along the Norwegian margin: Zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 2019, 513, 143–152. [Google Scholar] [CrossRef]
- Wolfram, U.; Peña Fernández, M.; McPhee, S.; Smith, E.; Beck, R.J.; Shephard, J.D.; Ozel, A.; Erskine, C.; Büscher, J.; Titschack, J.; et al. Multiscale mechanical consequences of ocean acidification for cold-water corals. Sci. Rep. 2022, 12, 8052. [Google Scholar] [CrossRef] [PubMed]
- Hennige, S.J.; Wicks, L.C.; Kamenos, N.A.; Perna, G.; Findlay, H.S.; Roberts, J.M. Hidden impacts of ocean acidification to live an dead coral framework. Proc. Royal Soc. B 2015, 282, 20150990. [Google Scholar] [CrossRef]
- Büscher, J.V.; Wisshak, M.; Form, A.U.; Titschack, J.; Nachtigall, K.; Riebesell, U. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ 2019, 7, e7586. [Google Scholar] [CrossRef] [PubMed]
- Colin, C.; Frank, N.; Copard, K.; Douville, E. Neodymium isotopic composition of deep-sea corals from the NE Atlantic: Implications for past hydrological changes during the Holocene. Quat. Sci. Rev. 2010, 29, 2509–2517. [Google Scholar] [CrossRef]
- Copard, K.; Colin, C.; Douville, E.; Freiwald, A.; Gudmundsson, G.; De Mol, B.; Frank, N. Nd isotopes in deep-sea corals in the North-eastern Atlantic. Quat. Sci. Rev. 2010, 29, 2499–2508. [Google Scholar] [CrossRef]
- Falini, G.; Reggi, M.; Fermani, S.; Sparla, F.; Goffredo, S.; Dubinsky, Z.; Levi, O.; Dauphin, Y.; Cuif, J.-P. Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J. Struct. Biol. 2013, 183, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Mouchi, V.; Crowley, Q.G.; Jackson, A.L.; McDermott, F.; Monteys, X.; de Rafélis, M.; Rueda, J.L.; Lartaud, F. Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the cold-water coral Lophelia pertusa. J. Quat. Sci. 2014, 29, 803–814. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Van den Beld, I.M.J.; Becheler, R.; Orejas, C.; Menot, L.; Frank, N.; Grehan, A.; Bourillet, J.F. Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 145, 110–119. [Google Scholar] [CrossRef]
- Fanelli, E.; Delbono, I.; Ivaldi, R.; Pratellesi, M.; Cocito, S.; Peirano, A. Cold-water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): Historical and recent findings. Aquat. Conserv. 2017, 27, 965–975. [Google Scholar] [CrossRef]
- Mouchi, V.; Vonlanthen, P.; Verrecchia, E.P.; Crowley, Q.C. Multi-scale crystallographic ordering in the cold-water coral Lophelia pertusa. Sci. Rep. 2017, 7, 8987. [Google Scholar] [CrossRef]
- Henry, L.-A.; Roberts, J.M. Global biodiversity in cold-water coral reef ecosystems. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Bramanti, L., Gori, A., del Valle, C., Eds.; Springer International Publishing: Berlin, Germany, 2015; pp. 1–21. [Google Scholar] [CrossRef]
- Mortensen, P.B.; Fosså, J.H. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 28 June–2 July 2004; ICRS: Okinawa, Japan, 2006; Volume 1849, p. 1868. [Google Scholar]
- Vad, J.; Orejas, C.; Moreno-Navas, J.; Findlay, H.S.; Roberts, J.M. Assessing the living and dead proportions of cold-water coral colonies: Implications for deep-water Marine Protected Area monitoring in a changing ocean. PeerJ 2017, 5, e3705. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.-A.; Roberts, J.M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 654–672. [Google Scholar] [CrossRef]
- Henry, L.; Navas, J.M.; Hennige, S.; Wicks, L.C.; Roberts, J.M. Shark spawning grounds on cold-water coral reefs: A compelling case for protection of vulnerable marine ecosystems. Biol. Conserv. 2013, 161, 67–70. [Google Scholar] [CrossRef]
- Hennige, S.J.; Morrison, C.L.; Form, A.U.; Büscher, J.; Kamenos, N.A.; Roberts, J.M. Self-recognition in corals facilitates deep-sea habitat engineering. Sci. Rep. 2014, 4, 6782. [Google Scholar] [CrossRef]
- Wisshak, M.; Schoenberg, C.H.L.; Form, A.; Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS ONE 2012, 7, e45124. [Google Scholar] [CrossRef]
- Davidson, T.M.; Altieri, A.H.; Ruiz, G.M.; Torchin, M.E. Bioerosion in a changing world: A conceptual framework. Ecol. Lett. 2018, 21, 422–438. [Google Scholar] [CrossRef]
- Büscher, J.V.; Form, A.U.; Wisshak, M.; Kiko, R.; Riebesell, U. Cold-water coral ecosystems under future ocean change: Live coral performance vs. framework dissolution and bioerosion. Limnol. Oceanogr. 2022, 9999, 1–19. [Google Scholar] [CrossRef]
- Andersen, S.; Grefsrud, E.S.; Harboe, T. Effect of increased pCO2 level on early shell development in great scallop (Pecten maximus Lamarck) larvae. Biogeosciences 2013, 10, 6161–6184. [Google Scholar] [CrossRef]
- JMP® Version 16. SAS Institute Inc., Cary, NC, USA. 2021. Available online: https://www.jmp.com (accessed on 23 June 2021).
- Rasband, W.S.; ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. 2018. Available online: https://imagej.nih.gov/ij/ (accessed on 26 September 2022).
- Sang, P.; Chen, L.-Y.; Zhao, C.; Wang, Z.-X.; Wang, H.; Lu, S.; Song, D.; Xu, J.-H.; Zhang, L.-C. Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings. Metals 2019, 9, 1342. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- Burton, E.A.; Walter, L.M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology 1987, 15, 111–114. [Google Scholar] [CrossRef]
- Fitzer, S.C.; Phoenix, V.R.; Cusack, M.; Kamenos, N.A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 2014, 4, 6218. [Google Scholar] [CrossRef] [PubMed]
- Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 1983, 283, 780–799. [Google Scholar] [CrossRef]
- van Oevelen, D.; Duineveld, G.; Lavaleye, M.; Mienis, F.; Soetaert, K.; Heip, C.H.R. The cold-water coral community as a hot spot for carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 2009, 54, 1829–1844. [Google Scholar] [CrossRef]
- Maier, S.R.; Mienis, F.; de Froe, E.; Soetaert, K.; Lavaleye, M.; Duineveld, G.; Beauchard, O.; van der Kaaden, A.; Koch, B.P.; van Oevelen, D. Reef communities associated with ‘dead’ cold-water coral framework drive resource retention and recycling in the deep sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2021, 175, 103574. [Google Scholar] [CrossRef]
Condition | Indentation (n) | E Mean (GPa) | E Std. Dev. | H Mean (GPa) | H Std. Dev. |
---|---|---|---|---|---|
Ambient | 45 | 71.7 | 2.7 | 4.4 | 0.5 |
High CO2 | 54 | 66.1 | 5.9 | 4.4 | 0.5 |
High CO2+T | 43 | 71.9 | 6.1 | 4.8 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krueger, E.T.; Büscher, J.V.; Hoey, D.A.; Taylor, D.; O’Reilly, P.J.; Crowley, Q.G. Wanted Dead or Alive: Skeletal Structure Alteration of Cold-Water Coral Desmophyllum pertusum (Lophelia pertusa) from Anthropogenic Stressors. Oceans 2023, 4, 68-79. https://doi.org/10.3390/oceans4010006
Krueger ET, Büscher JV, Hoey DA, Taylor D, O’Reilly PJ, Crowley QG. Wanted Dead or Alive: Skeletal Structure Alteration of Cold-Water Coral Desmophyllum pertusum (Lophelia pertusa) from Anthropogenic Stressors. Oceans. 2023; 4(1):68-79. https://doi.org/10.3390/oceans4010006
Chicago/Turabian StyleKrueger, Erica Terese, Janina V. Büscher, David A. Hoey, David Taylor, Peter J. O’Reilly, and Quentin G. Crowley. 2023. "Wanted Dead or Alive: Skeletal Structure Alteration of Cold-Water Coral Desmophyllum pertusum (Lophelia pertusa) from Anthropogenic Stressors" Oceans 4, no. 1: 68-79. https://doi.org/10.3390/oceans4010006
APA StyleKrueger, E. T., Büscher, J. V., Hoey, D. A., Taylor, D., O’Reilly, P. J., & Crowley, Q. G. (2023). Wanted Dead or Alive: Skeletal Structure Alteration of Cold-Water Coral Desmophyllum pertusum (Lophelia pertusa) from Anthropogenic Stressors. Oceans, 4(1), 68-79. https://doi.org/10.3390/oceans4010006