Impact of Indian Ocean Dipole Events on Phytoplankton Size Classes Distribution in the Arabian Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. In Situ Database
2.2. Model Reparameterization
2.3. Satellite and Reanalysis Data
3. Results
3.1. Re−Parameterized Three−Component PSC Model
3.2. Validation of Reconstructed Satellite Chl−a and PSC
3.3. PSC and Physical Drivers vs. IOD
3.4. PSC and Physical Drivers Response to Extreme Positive and Negative IOD Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legendre, L.; Le Fèvre, J. From Individual Plankton Cells To Pelagic Marine Ecosystems And To Global Biogeochemical Cycles. In Particle Analysis in Oceanography; Demers, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 261–300. ISBN 978-3-642-75121-9. [Google Scholar]
- Brody, S.R.; Lozier, M.S.; Dunne, J.P. A Comparison of Methods to Determine Phytoplankton Bloom Initiation. J. Geophys. Res. Ocean 2013, 118, 2345–2357. [Google Scholar] [CrossRef]
- Andreo, V.C.; Dogliotti, A.I.; Tauro, C.B. Remote Sensing of Phytoplankton Blooms in the Continental Shelf and Shelf−Break of Argentina: Spatio−Temporal Changes and Phenology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5315–5324. [Google Scholar] [CrossRef]
- Mangesh, G.; Siby, K.; Damodar, S.M.; Hema, N.; Naqvi, S.W.A. Cyclone Phyan−Induced Plankton Community Succession in the Coastal Waters off Goa, India. Curr. Sci. 2016, 111, 1091–1097. [Google Scholar] [CrossRef]
- Raghavan, B.R.; Raman, M.; Chauhan, P.; Sunil Kumar, B.; Shylini, S.K.; Mahendra, R.S.; Nayak, S.R. Summer Chlorophyll−a Distribution in Eastern Arabian Sea off Karnataka−Goa Coast from Satellite and in−Situ Observations. Remote Sens. Mar. Environ. 2006, 6406, 64060W. [Google Scholar] [CrossRef]
- Winder, M.; Cloern, J.E. The Annual Cycles of Phytoplankton Biomass. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3215–3226. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Cabré, A.; Vedantham, H.; Marinov, I.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Hirata, T.; Hirawake, T.; Hardman−Mountford, N.J.; et al. Inter−Comparison of Phytoplankton Functional Type Phenology Metrics Derived from Ocean Color Algorithms and Earth System Models. Remote Sens. Environ. 2017, 190, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the Chlorophyll−Specific Absorption Coefficients of Natural Phytoplankton: Analysis and Parameterization Phytoplankton a • h (A) Was Analyzed Using a Data Set Including 815 Spectra Determined Chlorophyll Concentration Range Ph Values Wer. J. Geophys. Res. 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Bricaud, A. Retrievals of a Size Parameter for Phytoplankton and Spectral Light Absorption by Colored Detrital Matter from Water−Leaving Radiances at SeaWiFS Channels in a Continental Shelf Region off Brazil. Limnol. Oceanogr. Methods 2006, 4, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Kheireddine, M.; Ouhssain, M.; Organelli, E.; Bricaud, A.; Jones, B.H. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition. J. Geophys. Res. Ocean. 2018, 123, 902–921. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Phytoplankton Functional Types from Space; Reports and Monographs of the International Ocean Colour Coordinating Group; International Ocean−Colour Coordinating Group: Dartmouth, NS, Canada, 2014; p. 156. [Google Scholar]
- Sieburth, J.M.N.; Smetacek, V.; Lenz, J. Pelagic Ecosystem Structure: Heterotrophic Compartments of the Plankton and Their Relationship to Plankton Size Fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman−Mountford, N.J. A Three−Component Model of Phytoplankton Size Class for the Atlantic Ocean. Ecol. Model. 2010, 221, 1472–1483. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Raitsos, D.E.; Dall’Olmo, G.; Zarokanellos, N.; Jackson, T.; Racault, M.F.; Boss, E.S.; Sathyendranath, S.; Jones, B.H.; Hoteit, I. Regional Ocean−Colour Chlorophyll Algorithms for the Red Sea. Remote Sens. Environ. 2015, 165, 64–85. [Google Scholar] [CrossRef] [Green Version]
- Hirata, T.; Hardman−Mountford, N.J.; Brewin, R.J.W.; Aiken, J.; Barlow, R.; Suzuki, K.; Isada, T.; Howell, E.; Hashioka, T.; Noguchi−Aita, M.; et al. Synoptic Relationships between Surface Chlorophyll−a and Diagnostic Pigments Specific to Phytoplankton Functional Types. Biogeosciences 2011, 8, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical Distribution of Phytoplankton Communities in Open Ocean: An Assessment Based on Surface Chlorophyll. J. Geophys. Res. Ocean 2006, 111. [Google Scholar] [CrossRef]
- Vidussi, F.; Claustre, H.; Manca, B.B.; Luchetta, A.; Marty, J.C. Phytoplankton Pigment Distribution in Relation to Upper Thermocline Circulation in the Eastern Mediterranean Sea during Winter. J. Geophys. Res. Ocean 2001, 106, 19939–19956. [Google Scholar] [CrossRef]
- Miranda, J.; Lotliker, A.A.; Baliarsingh, S.K.; Jena, A.K.; Samanta, A.; Sahu, K.C.; Kumar, T.S. Satellite Estimates of the Long−Term Trend in Phytoplankton Size Classes in the Coastal Waters of North−Western Bay of Bengal. Oceanologia 2021, 63, 40–50. [Google Scholar] [CrossRef]
- Nair, A.; Sathyendranath, S.; Platt, T.; Morales, J.; Stuart, V.; Forget, M.H.; Devred, E.; Bouman, H. Remote Sensing of Phytoplankton Functional Types. Remote Sens. Environ. 2008, 112, 3366–3375. [Google Scholar] [CrossRef]
- Devred, E.; Sathyendranath, S.; Stuart, V.; Maass, H.; Ulloa, O.; Platt, T. A Two−Component Model of Phytoplankton Absorption in the Open Ocean: Theory and Applications. J. Geophys. Res. Ocean 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Corredor−Acosta, A.; Morales, C.E.; Brewin, R.J.W.; Auger, P.A.; Pizarro, O.; Hormazabal, S.; Anabalón, V. Phytoplankton Size Structure in Association with Mesoscale Eddies off Central−Southern Chile: The Satellite Application of a Phytoplankton Size−Class Model. Remote Sens. 2018, 10, 834. [Google Scholar] [CrossRef] [Green Version]
- Mouw, C.B.; Hardman−Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Ciotti, A.M.; Devred, E.; Fujiwara, A.; Hirata, T.; et al. A Consumer’s Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Front. Mar. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Blondeau−Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A Review of Ocean Color Remote Sensing Methods and Statistical Techniques for the Detection, Mapping and Analysis of Phytoplankton Blooms in Coastal and Open Oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Mouw, C.B.; Ciochetto, A.B.; Yoder, J.A. A Satellite Assessment of Environmental Controls of Phytoplankton Community Size Structure. Glob. Biogeochem. Cycles 2019, 33, 540–558. [Google Scholar] [CrossRef] [Green Version]
- Gittings, J.A.; Brewin, R.J.W.; Raitsos, D.E.; Kheireddine, M.; Ouhssain, M.; Jones, B.H.; Hoteit, I. Remotely Sensing Phytoplankton Size Structure in the Red Sea. Remote Sens. Environ. 2019, 234, 111387. [Google Scholar] [CrossRef]
- Shunmugapandi, R.; Inamdar, A.B.; Gedam, S.K. Long−Time−Scale Investigation of Phytoplankton Communities Based on Their Size in the Arabian Sea. Int. J. Remote Sens. 2020, 41, 5992–6009. [Google Scholar] [CrossRef]
- Sahay, A.; Ali, S.M.; Gupta, A.; Goes, J.I. Ocean Color Satellite Determinations of Phytoplankton Size Class in the Arabian Sea during the Winter Monsoon. Remote Sens. Environ. 2017, 198, 286–296. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Hirata, T.; Hardman−Mountford, N.J.; Lavender, S.J.; Sathyendranath, S.; Barlow, R. The Influence of the Indian Ocean Dipole on Interannual Variations in Phytoplankton Size Structure as Revealed by Earth Observation. Deep−Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 117–127. [Google Scholar] [CrossRef]
- Iriarte, J.L.; González, H.E. Phytoplankton Size Structure during and after the 1997/98 El Niño in a Coastal up Welling Area of the Northern Humboldt Current System. Mar. Ecol. Prog. Ser. 2004, 269, 83–90. [Google Scholar] [CrossRef]
- Racault, M.F.; Sathyendranath, S.; Brewin, R.J.W.; Raitsos, D.E.; Jackson, T.; Platt, T. Impact of El Niño Variability on Oceanic Phytoplankton. Front. Mar. Sci. 2017, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, M. A Biological Indian Ocean Dipole Event in 2019. Sci. Rep. 2021, 11, 2452. [Google Scholar] [CrossRef]
- Thushara, V.; Vinayachandran, P.N. Unprecedented Surface Chlorophyll Blooms in the Southeastern Arabian Sea During an Extreme Negative Indian Ocean Dipole. Geophys. Res. Lett. 2020, 47, e2019GL085026. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.; Francis, P.A.; Rao, S.A. Indian Ocean Dipole: Processes and Impacts. Curr. Trends Sci. 2009, 46, 569–589. [Google Scholar]
- Barimalala, R.; Bracco, A.; Kucharski, F.; McCreary, J.P.; Crise, A. Arabian Sea Ecosystem Responses to the South Tropical Atlantic Teleconnection. J. Mar. Syst. 2013, 117–118, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.M.; Cheung, K.K.W. Comparison between the Active Tropical Cyclone Seasons over the Arabian Sea and Bay of Bengal. Int. J. Climatol. 2019, 39, 5486–5502. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Sayantani, O.; Gnanaseelan, C.; Chowdary, J.S. The Role of Arabian Sea in the Evolution of Indian Ocean Dipole. Int. J. Climatol. 2014, 34, 1845–1859. [Google Scholar] [CrossRef]
- Sharma, P. Spatio−Temporal Dynamics of Phytoplankton Biomass from Ocean Color Remote Sensing and Ensemble Climate Model Simulations. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2016. [Google Scholar]
- Banse, K. Seasonality of Phytoplankton Chlorophyll in the Central and Northern Arabian Sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 1987, 34, 713–723. [Google Scholar] [CrossRef]
- Madhupratap, M.; Prasanna Kumar, S.; Bhattathiri, P.M.A.; Dileep Kumar, M.; Raghukumar, S.; Nair, K.K.C.; Ramaiah, N. Mechanism of the Biological Response to Winter Cooling in the Northeastern Arabian Sea. Nature 1996, 384, 549–552. [Google Scholar] [CrossRef]
- Kurian, S.; Chndrasekhararao, A.V.; Vidya, P.J.; Shenoy, D.M.; Gauns, M.; Uskaikar, H.; Aparna, S.G. Role of Oceanic Fronts in Enhancing Phytoplankton Biomass in the Eastern Arabian Sea during an Oligotrophic Period. Mar. Environ. Res. 2020, 160, 105023. [Google Scholar] [CrossRef]
- Prasanna Kumar, S.; Nuncio, M.; Narvekar, J.; Ramaiah, N.; Sardesai, S.; Gauns, M.; Fernandes, V.; Paul, J.T.; Jyothibabu, R.; Jayaraj, K.A. Seasonal Cycle of Physical Forcing and Biological Response in the Bay of Bengal. Indian J. Mar. Sci. 2010, 39, 388–405. [Google Scholar]
- Prasanna Kumar, S.; Roshin, R.P.; Narvekar, J.; Dinesh Kumar, P.K.; Vivekanandan, E. What Drives the Increased Phytoplankton Biomass in the Arabian Sea? Curr. Sci. 2010, 99, 101–106. [Google Scholar]
- Shi, W.; Wang, M. Phytoplankton Biomass Dynamics in the Arabian Sea from VIIRS Observations. J. Mar. Syst. 2022, 227, 103670. [Google Scholar] [CrossRef]
- Currie, J.C.; Lengaigne, M.; Vialard, J.; Kaplan, D.M.; Aumont, O.; Naqvi, S.W.A.; Maury, O. Indian Ocean Dipole and El Niño/Southern Oscillation Impacts on Regional Chlorophyll Anomalies in the Indian Ocean. Biogeosciences 2013, 10, 6677–6698. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Jayaram, C.; Priyadarshi, N.; Pavan Kumar, J.; Udaya Bhaskar, T.V.S.; Raju, D.; Kochuparampil, A.J. Analysis of Gap−Free Chlorophyll−a Data from MODIS in Arabian Sea, Reconstructed Using DINEOF. Int. J. Remote Sens. 2018, 39, 7506–7522. [Google Scholar] [CrossRef]
- Brewin, R.J.W. Detecting Phytoplankton Size Class Using Satellite Earth Observation September 2010. 2011, p. 276. Available online: https://pearl.plymouth.ac.uk/handle/10026.1/317 (accessed on 10 June 2022).
SI NO | Cruise Information | Abbreviation | Location | Period | No of Samples |
---|---|---|---|---|---|
1 | Sagar Nidhi−128 | SN−128 | Central Arabian Sea | January to February−2018 | 16 |
2 | Sagar Nidhi−137 | SN−137 | Central Arabian Sea | January−2019 | 16 |
3 | Sagar Kanya−358 | SK−358 | Central Arabian Sea | May−2019 | 16 |
4 | Sagar Sampada 2009 | SS−2009 | Northern Arabian Sea | March−2009 | 8 |
5 | Sagar Sampada 2010 | SS−2010 | Northern Arabian Sea | March−2010 | 3 |
6 | Sagar Sampada 2011 | SS−2011 | Northern Arabian Sea | March−2011 | 17 |
7 | SATCORE−INCOIS | SATCORE | Southern Arabian Sea | December−2013 | 95 |
8 | TARA Ocean Expedition | TOE | Arabian Sea | March to April−2010 | 17 |
Pico | Nano | Micro | Region | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | BIAS | RMSE | MAE | BIAS | RMSE | MAE | BIAS | RMSE | ||
This study | 0.21 | −0.11 | 0.21 | 0.12 | 0.07 | 0.16 | 0.12 | 0.04 | 0.12 | Arabian Sea |
Sahay et al. [27] | 0.30 | −0.28 | 0.35 | 0.18 | 0.08 | 0.20 | 0.17 | 0.10 | 0.19 | Northern Arabian Sea |
Brewin et al. [28] | 0.31 | −0.15 | 0.31 | 0.21 | 0.09 | 0.22 | 0.17 | 0.06 | 0.19 | Indian Ocean |
Hirata et al. [15] | 0.27 | −0.16 | 0.29 | 0.19 | 0.11 | 0.22 | 0.16 | 0.08 | 0.19 | Global Ocean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shunmugapandi, R.; Gedam, S.; Inamdar, A.B. Impact of Indian Ocean Dipole Events on Phytoplankton Size Classes Distribution in the Arabian Sea. Oceans 2022, 3, 480-493. https://doi.org/10.3390/oceans3040032
Shunmugapandi R, Gedam S, Inamdar AB. Impact of Indian Ocean Dipole Events on Phytoplankton Size Classes Distribution in the Arabian Sea. Oceans. 2022; 3(4):480-493. https://doi.org/10.3390/oceans3040032
Chicago/Turabian StyleShunmugapandi, Rebekah, Shirishkumar Gedam, and Arun B. Inamdar. 2022. "Impact of Indian Ocean Dipole Events on Phytoplankton Size Classes Distribution in the Arabian Sea" Oceans 3, no. 4: 480-493. https://doi.org/10.3390/oceans3040032
APA StyleShunmugapandi, R., Gedam, S., & Inamdar, A. B. (2022). Impact of Indian Ocean Dipole Events on Phytoplankton Size Classes Distribution in the Arabian Sea. Oceans, 3(4), 480-493. https://doi.org/10.3390/oceans3040032