A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding
Abstract
:1. Introduction
2. Methods
2.1. FEA Model
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulivi, M.; Orlandini, L.C.; Meroni, V.; Lombardo, M.D.; Peretti, G.M. Clinical Performance, Patient Reported Outcome, and Radiological Results of a Short, Tapered, Porous, Proximally Coated Cementless Femoral Stem: Results up to Seven Years of Follow-Up. J. Arthroplast. 2018, 33, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Hashimoto, S.; Kanzaki, N.; Kuroda, R.; Kurosaka, M. Daily Activity and Initial Bone Mineral Density are Associated with Periprosthetic Bone Mineral Density after Total HIP Arthroplasty. HIP Int. 2016, 26, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Albers, A.; Aoude, A.A.; Zukor, D.J.; Huk, O.L.; Antoniou, J.; Tanzer, M. Favorable Results of a Short, Tapered, Highly Porous, Proximally Coated Cementless Femoral Stem at a Minimum 4-Year Follow-Up. J. Arthroplast. 2015, 31, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Tatani, I.; Solou, K.; Megas, P. Short femoral stems with metaphyseal or meta-diaphyseal fitting in total hip arthroplasty: A systematic review. Acta Orthop. Traumatol. Hell. 2022, 73, 45–59. [Google Scholar]
- Lunn, D.E.; Lampropoulos, A.; Stewart, T.D. Basic biomechanics of the hip. Orthop. Trauma 2016, 30, 239–246. [Google Scholar] [CrossRef]
- Kolk, S.; Minten, M.J.; van Bon, G.E.; Rijnen, W.H.; Geurts, A.C.; Verdonschot, N.; Weerdesteyn, V. Gait and gait-related activities of daily living after total hip arthroplasty: A systematic review. Clin. Biomech. 2014, 29, 705–718. [Google Scholar] [CrossRef]
- Beaulieu, M.L.; Lamontagne, M.; Beaulé, P.E. Lower limb biomechanics during gait do not return to normal following total hip arthroplasty. Gait Posture 2010, 32, 269–273. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip Contact Forces and Gait Patterns from Routine Activities. J. Biomech. 2001, 34, 859–871. Available online: www.biomechanik.de (accessed on 4 October 2023). [CrossRef]
- Xu, C.; Jian, C.; Yan, W. Development of a tension-side hollow femoral stem prosthesis and an in vitro static test. Chin. J. Surg. 2006, 26, 332–335. [Google Scholar]
- Zhen, P.; Chang, Y.; Yue, H.; Chen, H.; Zhou, S.; Liu, J.; He, X. Primary total hip arthroplasty using a short bone-conserving stem in young adult osteoporotic patients with Dorr type C femoral bone. J. Orthop. Surg. Res. 2021, 16, 17. [Google Scholar] [CrossRef]
- Tatani, I.; Solou, K.; Panagopoulos, A.; Lakoumentas, J.; Kouzelis, A.; Megas, P. Short-term clinical and radiological results of two different design metaphyseal fitting femoral stems in total hip arthroplasty: A prospective, randomized trial. J. Orthop. Surg. Res. 2021, 16, 316. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kim, J.-S.; Cho, S.-H. Strain distribution in the proximal human femur. J. Bone Jt. Surg. 2001, 83, 295–301. [Google Scholar] [CrossRef]
- Tatani, I.; Megas, P.; Panagopoulos, A.; Diamantakos, I.; Nanopoulos, P.; Pantelakis, S. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation. Biomed. Eng. Online 2020, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, N.; Matsubara, M.; Shinoda, T.; Chen, D.; Kumar, M.; Walsh, W.R. Effect of Surgical Fit on Integration of Cancellous Bone and Implant Cortical Bone Shear Strength for a Porous Titanium. J. Arthroplast. 2011, 26, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Gallart, X.; Fernández-Valencia, J.A.; Riba, J.; Bori, G.; García, S.; Tornero, E.; Combalía, A. Trabecular TitaniumTM Cups and Augments in Revision Total Hip Arthroplasty: Clinical Results, Radiology and Survival Outcomes. HIP Int. 2016, 26, 486–491. [Google Scholar] [CrossRef]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef]
- Harrison, N.; McHugh, P.E.; Curtin, W.; Mc Donnell, P. Micromotion and friction evaluation of a novel surface architecture for improved primary fixation of cementless orthopaedic implants. J. Mech. Behav. Biomed. Mater. 2013, 21, 37–46. [Google Scholar] [CrossRef]
- Mehboob, H.; Tarlochan, F.; Mehboob, A.; Chang, S.-H.; Ramesh, S.; Harun, W.S.W.; Kadirgama, K. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J. Mater. Sci. Mater. Med. 2020, 31, 78. [Google Scholar] [CrossRef]
- Tatani, I.; Panagopoulos, A.; Diamantakos, I.; Sakellaropoulos, G.; Pantelakis, S.; Megas, P. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: Study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Trials 2019, 20, 359. [Google Scholar] [CrossRef]
- Khanuja, H.; Vakil, J.; Goddard, M.; Mont, M. Cementless femoral fixation in total hip arthroplasty. J. Bone Jt. Surg. 2011, 93, 500–509. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Zhang, N.; Zhang, M.; Cheng, C.K. Femoral Stems with Porous Lattice Structures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 772539. [Google Scholar] [CrossRef]
- Chen, F.; Bi, D.; Cheng, C.; Ma, S.; Liu, Y.; Cheng, K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int. J. Mol. Med. 2018, 43, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, X.; Liu, L.; Shi, Z.; Hao, Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med. Eng. Phys. 2020, 81, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Limmahakhun, S.; Oloyede, A.; Sitthiseripratip, K.; Xiao, Y.; Yan, C. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Mater. Des. 2017, 114, 633–641. [Google Scholar] [CrossRef]
- Hazlehurst, K.B.; Wang, C.J.; Stanford, M. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty. Med. Eng. Phys. 2014, 36, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Solou, K.; Solou, A.V.; Tatani, I.; Lakoumentas, J.; Tserpes, K.; Megas, P. Increased stability of short femoral stem through customized distribution of coefficient of friction in porous coating. Sci. Rep. 2024, 14, 12243. [Google Scholar] [CrossRef]
- Tai, C.L.; Lee, M.S.; Chen, W.P.; Hsieh, P.H.; Lee, P.C.; Shih, C.H. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study. Bio-Med. Mater. Eng. 2005, 15, 239–249. [Google Scholar]
- Ganapathi, M.; Evans, S.; Roberts, P. Strain pattern following surface replacement of the hip. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 13–18. [Google Scholar] [CrossRef]
- Waide, V.; Cristofolini, L.; Stolk, J.; Verdonschot, N.; Toni, A. Experimental investigation of bone remodelling using composite femurs. Clin. Biomech. 2003, 18, 523–536. [Google Scholar] [CrossRef]
- Umeda, N.; Saito, M.; Sugano, N.; Ohzono, K.; Nishii, T.; Sakai, T.; Yoshikawa, H.; Ikeda, D.; Murakami, A. Correlation between femoral neck version and strain on the femurafter insertion of femoral prosthesis. J. Orthop. Sci. 2003, 8, 381–386. [Google Scholar] [CrossRef]
- Hnat, W.P.; Conway, J.S.; Malkani, A.L.; Yakkanti, M.R.; Voor, M.J. The Effect of Modular Tapered Fluted Stems on Proximal Stress Shielding in The Human Femur. J. Arthroplast. 2009, 24, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, Y.; Danninger, H. Influence of Porosity on Behavior of Sintered Fe-1.5Mo-0.7C the Sliding Wear Steels. J. Mater. Eng. Perform. 2003, 12, 339–344. [Google Scholar] [CrossRef]
- Yalçın, B.; Yalçin, B. Effect of Porosity on the Mechanical Properties and Wear Performance of 2% Copper Reinforced Sintered Steel Used in Shock Absorber Piston Production. J. Mater. Sci. Technol. 2009, 25, 577–582. Available online: https://www.researchgate.net/publication/267367112 (accessed on 28 October 2024).
- Sarmadi, H.; Kokabi, A.H.; Seyed Reihani, S.M. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear 2013, 304, 1–12. [Google Scholar] [CrossRef]
- Davy, D.T.; Kotzar, G.M.; Brown, R.H.; Heiple, K.G.; Goldberg, V.M.; Berilla, J.; Burstein, A.H. Telemetric force measurements across the hip after total arthroplasty. JBJS 1988, 70, 45–50. [Google Scholar] [CrossRef]
- Maharaj, P.S.; Maheswaran, R.; Vasanthanathan, A. Numerical analysis of fractured femur bone with prosthetic bone plates. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 64, pp. 1242–1251. [Google Scholar]
- Cristofilini, L.; Viceconti, M. Strain measurements in femurs implemented with hip prostheses. In XIV IMECO World Congress Book of Abstracts; Halttunen, J., Ed.; Finnish Society of Automation Publ.: Helsinski, Finland, 1997; Volume 7, pp. 249–254. [Google Scholar]
- Salaha, Z.F.M.; Ammarullah, M.I.; Abdullah, N.N.A.A.; Aziz, A.U.A.; Gan, H.-S.; Abdullah, A.H.; Kadir, M.R.A.; Ramlee, M.H. Biomechanical Effects of the Porous Structure of Gyroid and Voronoi Hip Implants: A Finite Element Analysis Using an Experimentally Validated Model. Materials 2023, 16, 3298. [Google Scholar] [CrossRef]
- Park, J.-M.; Kim, H.-J.; Park, E.-J.; Kim, M.-R.; Kim, S.-J. Three dimensional finite element analysis of the stress distribution around the mandibular posterior implant during non-working movement according to the amount of cantilever. J. Adv. Prosthodont. 2014, 6, 361. [Google Scholar] [CrossRef]
- Tatani, I. The use of short metaphyseal stems in primary hip osteoarthritis: Finite element analysis model, experimental biomechanical testing and prospective, randomized, comparative clinical study of two different metaphyseal stems in patients with primary hip osteoarthritis. Ph.D. Thesis, Univarsity of Patras, Patras, Greece, 2021. [Google Scholar]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. ‘Modes of Failure’ of Cemented Stem-type Femoral Components: A Radiographic Analysis of Loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Guo, J.; Tan, J.; Peng, L.; Song, Q.; Kong, H.; Wang, P.; Shen, H. Comparison of Tri-Lock Bone Preservation Stem and the Conventional Standard Corail Stem in Primary Total Hip Arthroplasty. Orthop. Surg. 2021, 13, 749–757. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker, R.B.; et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032. [Google Scholar] [CrossRef]
- Chen, W.; Dai, N.; Wang, Z.; Liu, H.; Yao, Q. Topology-Optimized Design of Microporous Filling Prosthesis. In Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics, Tianjin, China, 19–21 September 2018; ACM: New York, NY, USA, 2018; pp. 148–153. [Google Scholar] [CrossRef]
- Alkhatib, S.E.; Tarlochan, F.; Mehboob, H.; Singh, R.; Kadirgama, K.; Harun, W.S.B.W. Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure. Artif. Organs 2019, 43, E152–E164. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, L.; Pan, W.; Yang, F.; Jiang, W.; Wu, X.; Kong, X.; Dai, K.; Hao, Y. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci. Rep. 2016, 6, 34072. [Google Scholar] [CrossRef]
- Hudák, R.; Schnitzer, M.; Králová, Z.O.; Gorejová, R.; Mitrík, L.; Rajťúková, V.; Tóth, T.; Kovačević, M.; Riznič, M.; Oriňaková, R.; et al. Additive Manufacturing of Porous Ti6Al4V Alloy: Geometry Analysis and Mechanical Properties Testing. Appl. Sci. 2021, 11, 2611. [Google Scholar] [CrossRef]
- Kuiper, J.H.; Huiskes, R. Friction and stem stiffness affect dynamic interface motion in total hip replacement. J. Orthop. Res. 1996, 14, 36–43. [Google Scholar] [CrossRef]
- Arabnejad Khanoki, S.; Pasini, D. Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants with Functionally Graded Cellular Material. J. Biomech. Eng. 2012, 134, 031004. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, J.H.; Huiskes HW, J. Numerical optimization of artificial hip joint designs. In IRecent Advances in Computer Methods in Biomechanics and Biomedical Engineering Ams; Middleton, J., Pande, G.N., Williams, K.R., Eds.; Books and Journals International: Lewes, DE, USA, 1993; pp. 76–84. [Google Scholar]
- Grzeskowiak, R.M.; Schumacher, J.; Dhar, M.S.; Harper, D.P.; Mulon, P.-Y.; Anderson, D.E. Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review. Front. Surg. 2020, 7, 601244. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Yoo, J.J. Implant Design in Cementless Hip Arthroplasty. Hip Pelvis 2016, 28, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Shafy, T.A.; Sayed, A.; Abdelazeem, A.H. Study of the bone behavior around a neck preserving short stem implant: Bone densitometric analysis over a span of two years. SICOT J. 2016, 2, 31. [Google Scholar] [CrossRef]
- Kutzner, K.P.; Donner, S.; Loweg, L.; Rehbein, P.; Dargel, J.; Drees, P.; Pfeil, J. Mid-term results of a new-generation calcar-guided short stem in THA: Clinical and radiological 5-year follow-up of 216 cases. J. Orthop. Traumatol. 2019, 20, 31. [Google Scholar] [CrossRef]
- Maeda, T.; Nakano, M.; Nakamura, Y.; Momose, T.; Sobajima, A.; Takahashi, J.; Nakata, K.; Nawata, M. Relationship between Stress Shielding and Optimal Femoral Canal Contact Regions for Short, Tapered-Wedge Stem Analyzed by 2D and 3D Systems in Total Hip Arthroplasty. J. Clin. Med. 2023, 12, 3138. [Google Scholar] [CrossRef]
Models | O1 | O2 | O3 | O4 | O5 | I1 | I2 | I3 | I4 | I5 |
---|---|---|---|---|---|---|---|---|---|---|
59 | 1.2 | 1.5 | 1.5 | 1.2 | 1.2 | 1.5 | 1.5 | 0.5 | 1.2 | 1.2 |
66 | 1.2 | 1.5 | 1.3 | 1.2 | 1.2 | 1.5 | 1.5 | 0.5 | 1.2 | 1.2 |
77 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.5 | 1.2 | 1.2 |
119 | 1.2 | 1.5 | 1.3 | 0.9 | 0.9 | 1.5 | 1.5 | 0.5 | 1.3 | 1.2 |
121 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.5 | 0.5 | 1.2 |
122 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.5 | 0.7 | 1.2 |
123 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.5 | 0.9 | 1.2 |
124 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.5 | 1.1 | 1.2 |
127 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.2 |
128 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.7 | 1.2 |
129 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.9 | 1.2 |
130 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 1.1 | 1.2 |
151 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.7 | 0.5 | 1.2 |
152 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.7 | 0.7 | 1.2 |
153 | 1.2 | 1.5 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | 0.7 | 0.9 | 1.2 |
157 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.7 | 0.5 | 1.2 |
158 | 1.2 | 1.5 | 1.3 | 1.5 | 1.5 | 1.5 | 1.5 | 0.7 | 0.7 | 1.2 |
M1 | M2 | M3 | M4 | M5 | M6 | M7 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | p Value | Beta | p Value | Beta | p Value | Beta | p Value | Beta | p Value | Beta | p Value | Beta | p Value | |
O2 | −0.47 | <0.001 | −0.02 | 0.439 | −0.14 | 0.002 | −0.06 | 0.001 | 0.02 | <0.001 | 0.04 | <0.001 | −0.01 | 0.242 |
O3 | −0.39 | <0.001 | 0.06 | 0.058 | −0.62 | <0.001 | −0.17 | <0.001 | 0.03 | <0.001 | 0.05 | <0.001 | −0.01 | 0.211 |
O4 | −0.48 | <0.001 | 0.21 | <0.001 | −3.77 | <0.001 | −1.06 | <0.001 | 0.11 | <0.001 | 0.07 | <0.001 | 0.01 | 0.053 |
O5 | −0.27 | <0.001 | 0.05 | 0.074 | −1.85 | <0.001 | −0.50 | <0.001 | 0.07 | <0.001 | 0.04 | <0.001 | 0.003 | 0.684 |
I1 | −0.34 | <0.001 | −0.04 | 0.118 | 0.13 | 0.006 | 0.04 | 0.018 | 0.004 | 0.291 | 0.06 | <0.001 | −0.02 | <0.001 |
I2 | 0.06 | 0.137 | 0.38 | <0.001 | 0.19 | <0.001 | 0.06 | <0.001 | 0.01 | 0.034 | 0.05 | <0.001 | −0.02 | 0.002 |
I3 | 0.96 | <0.001 | 1.42 | <0.001 | 0.48 | <0.001 | 0.13 | <0.001 | 0.01 | 0.069 | −0.01 | 0.090 | 0.01 | 0.018 |
I4 | 1.22 | <0.001 | 0.59 | <0.001 | 0.61 | <0.001 | 0.15 | <0.001 | 0.00 | 0.259 | −0.01 | 0.192 | 0.02 | <0.001 |
I5 | −0.22 | <0.001 | −1 | <0.001 | 0.87 | <0.001 | 0.26 | <0.001 | 0.01 | 0.004 | 0.03 | 0.002 | −0.003 | 0.713 |
L1 | L2 | L3 | L4 | L5 | L6 | L7 | ||||||||
Beta | p value | Beta | p value | Beta | p value | Beta | p value | Beta | p value | Beta | p value | Beta | p value | |
O2 | −0.48 | <0.001 | 2.49 | <0.001 | 0.99 | <0.001 | −0.03 | 0.247 | 0.00 | 0.853 | 0.01 | <0.001 | −0.02 | <0.001 |
O3 | 0.16 | <0.001 | 1.95 | <0.001 | 1.87 | <0.001 | −0.04 | 0.164 | −0.04 | 0.001 | 0.01 | <0.001 | −0.02 | <0.001 |
O4 | −1.43 | <0.001 | 4.77 | <0.001 | 7.53 | <0.001 | 0.00 | 0.934 | −0.43 | <0.001 | 0.08 | <0.001 | −0.01 | <0.001 |
O5 | −0.69 | <0.001 | −0.76 | <0.001 | 1.82 | <0.001 | −0.17 | <0.001 | −0.16 | <0.001 | 0.06 | <0.001 | 0.00 | 0.145 |
I1 | 0.17 | <0.001 | −0.11 | 0.037 | −0.11 | 0.149 | −0.07 | 0.008 | 0.01 | 0.473 | 0.01 | 0.008 | −0.02 | <0.001 |
I2 | 0.18 | <0.001 | 0.21 | <0.001 | 0.04 | 0.608 | −0.27 | <0.001 | 0.04 | 0.003 | −0.01 | 0.002 | −0.02 | <0.001 |
I3 | 0.06 | 0.010 | 1.13 | <0.001 | 0.54 | <0.001 | −1.29 | <0.001 | 0.24 | <0.001 | −0.08 | <0.001 | −0.02 | <0.001 |
I4 | −0.02 | 0.372 | 0.97 | <0.001 | 0.81 | <0.001 | −1.38 | <0.001 | 0.26 | <0.001 | −0.09 | <0.001 | −0.02 | <0.001 |
I5 | 0.10 | <0.001 | 0.52 | <0.001 | 1.16 | <0.001 | −1.72 | <0.001 | 0.34 | <0.001 | −0.11 | <0.001 | −0.04 | <0.001 |
O2 | O3 | O4 | O5 | I1 | I2 | I3 | I4 | I5 | |
---|---|---|---|---|---|---|---|---|---|
M1 | −39.51% | −25.77% | −26.79% | −18.24% | −33.81% | −13.15% | 57.54% | 52.62% | −18.35% |
M2 | −12.95% | −3.57% | 4.69% | 6.71% | −6.31% | 9.99% | 77.31% | 34.71% | −43.57% |
M3 | 1.14% | −5.72% | −86.5% | −63.05% | −3.81% | 3.49% | 15.63% | 10.34% | 10.05% |
M4 | 0.11% | −5.94% | −85.55% | −61.23% | −3.57% | 3.69% | 15.29% | 8.86% | 10.68% |
M5 | 15.59% | 16.28% | 73.19% | 56.87% | 20.65% | 19.27% | −5.39% | 8.16% | 15.23% |
M6 | 40.45% | 33.32% | 37.35% | 23.36% | 54.27% | 50.4% | −18.2% | 4.56% | 27.05% |
M7 | −19.65% | −14.65% | 7.45% | 3.94% | −27.98% | −23.9% | 15.18% | 11.67% | −9.35% |
L1 | −15.34% | 11.99% | −85.24% | −60.95% | −0.07% | 6.97% | 9.24% | −1.13% | 1.16% |
L2 | 47.61% | 39.43% | 71.89% | 7.12% | 26.29% | 29.95% | 4.34% | 22.41% | 23.48% |
L3 | 12.41% | 20.19% | 91.66% | 45.31% | 16.34% | 15.98% | −3.41% | 14.57% | 21.88% |
L4 | −3.45% | −6.25% | −8.43% | −2.04% | −17.84% | −32.95% | −47.31% | −59.96% | −59.44% |
L5 | 3.29% | 0.3% | −60.8% | −44.19% | 3.62% | 15.88% | 35.07% | 36.57% | 36.11% |
L6 | 5.36% | 1.31% | 42.83% | 44.3% | 1.71% | −14.67% | −43.89% | −48.01% | −44.61% |
L7 | −41.05% | −36.75% | −17.08% | 2.11% | −56.12% | −64.59% | −9.84% | −37.86% | −54.81% |
Predictor | Successful Conditions (Increased Strains in M1, M2, L1, and L2 and Decreased Strains in M4, M5, M6, M7, L4, L5, L6, and L7) | |
---|---|---|
Beta | p Value | |
O2 | 0.16 | 0.013 |
O3 | −0.02 | 0.729 |
O4 | −0.16 | 0.018 |
O5 | 0.19 | 0.004 |
I1 | 0.03 | 0.679 |
I2 | 0.02 | 0.791 |
I3 | −0.54 | 0.000 |
I4 | −0.26 | 0.000 |
I5 | 0.03 | 0.690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solou, K.; Solou, A.V.; Tatani, I.; Lakoumentas, J.; Tserpes, K.; Megas, P. A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding. Prosthesis 2024, 6, 1310-1324. https://doi.org/10.3390/prosthesis6060094
Solou K, Solou AV, Tatani I, Lakoumentas J, Tserpes K, Megas P. A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding. Prosthesis. 2024; 6(6):1310-1324. https://doi.org/10.3390/prosthesis6060094
Chicago/Turabian StyleSolou, Konstantina, Anna Vasiliki Solou, Irini Tatani, John Lakoumentas, Konstantinos Tserpes, and Panagiotis Megas. 2024. "A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding" Prosthesis 6, no. 6: 1310-1324. https://doi.org/10.3390/prosthesis6060094
APA StyleSolou, K., Solou, A. V., Tatani, I., Lakoumentas, J., Tserpes, K., & Megas, P. (2024). A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding. Prosthesis, 6(6), 1310-1324. https://doi.org/10.3390/prosthesis6060094