Can Prosthetic Hands Mimic a Healthy Human Hand?
Abstract
:1. Introduction
2. Current Prosthetic Hands
3. Conventional Socketed Myoelectric Prosthetic Hand Action
4. Futuristic Prosthetic Hand
5. 3D Printed Prosthetic Hand
6. Artificial Muscles
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.; He, J. Lower-Limb Neuroprostheses: Restoring Walking after Spinal Cord Injury. In Emerging Theory and Practice in Neuroprosthetics; Ganesh, R.N., Yina, G., Eds.; IGI Global: Hershey, PA, USA, 2014; pp. 153–180. [Google Scholar]
- Das, N.; Nagpal, N.; Bankura, S.S. A review on the advancements in the field of upper limb prosthesis. J. Med. Eng. Technol. 2018, 42, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Thurston, A. Paré and prosthetics: The early history of artificial limbs. ANZ J. Surg. 2007, 77, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Desmond, D.; MacLachlan, M. Psychological issues in prosthetic and orthotic practice: A 25 year review of psychol-ogy in Prosthetics and Orthotics International. Prosthet. Orthot. Int. 2002, 26, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Alam, M.; Guo, S.; Ting, K.H.; He, J. Electronic bypass of spinal lesions: Activation of lower motor neurons directly driven by cortical neural sig-nals. J. Neuroeng. Rehabil. 2014, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.K.; Jelfs, B.; Sui, X.; Arjunan, S.P. Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomed. Signal Process. Control. 2019, 53, 101588. [Google Scholar] [CrossRef]
- Wijk, U.; Carlsson, I.K.; Antfolk, C.; Björkman, A.; Rosén, B. Sensory Feedback in Hand Prostheses: A Prospective Study of Everyday Use. Front. Neurosci. 2020, 14, 663. [Google Scholar] [CrossRef]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitor-ing, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Núñez, C.G.; Manjakkal, L.; Dahiya, R. Energy autonomous electronic skin. npj Flex. Electron. 2019, 3, 1–24. [Google Scholar] [CrossRef]
- Peh, W.Y.X.; Raczkowska, M.; Teh, Y.; Alam, M.; Thakor, N.V.; Yen, S.-C. Closed-loop stimulation of the pelvic nerve for optimal micturition. J. Neural Eng. 2018, 15, 066009. [Google Scholar] [CrossRef]
- Yildiz, K.A.; Shin, A.Y.; Kaufman, K.R. Interfaces with the peripheral nervous system for the control of a neuro-prosthetic limb: A review. J. Neuroeng. Rehabil. 2020, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Childress, D.S. Historical aspects of powered limb prostheses. Clin. Prosthet. Orthot. 1985, 9, 2–13. [Google Scholar]
- Zuo, K.J.; Olson, J.L. The evolution of functional hand replacement: From iron prostheses to hand transplantation. Plast. Surg. 2014, 22, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Arabian, A.; Varotsis, D.; McDonnell, C.; Meeks, E. Global social acceptance of prosthetic devices. In 2016 IEEE Global Humanitarian Technology Conference (GHTC); IEEE: Seattle, WA, USA, 2016; pp. 563–568. [Google Scholar]
- Ahmadizadeh, C.; Merhi, L.-K.; Pousett, B.; Sangha, S.; Menon, C. Toward Intuitive Prosthetic Control: Solving Common Issues Using Force Myography, Surface Electromyography, and Pattern Recognition in a Pilot Case Study. IEEE Robot. Autom. Mag. 2017, 24, 102–111. [Google Scholar] [CrossRef]
- Cipriani, C.; Controzzi, M.; Carrozza, M.C. Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica 2009, 28, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, C.; Controzzi, M.; Carrozza, M.C. The SmartHand transradial prosthesis. J. Neuroeng. Rehabil. 2011, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridges, M.; Beaty, J.; Tenore, F.; Para, M.; Mashner, M.; Aggarwal, V.; Acharya, S.; Singhal, G.; Thakor, N. Revolutionizing Prosthetics 2009: Dexterous Control of an Upper-Limb Neuroprosthesis. Johns Hopkins APL Tech. Dig. 2010, 28, 210–211. [Google Scholar]
- Lake, C.; Miguelez, J.M. Evolution of microprocessor based control systems in upper extremity prosthetics. Technol. Disabil. 2003, 15, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.C.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Johannes, M.S.; Faulring, E.L.; Katyal, K.D.; Para, M.P.; Helder, J.B.; Makhlin, A.; Moyer, T.; Wahl, D.; Solberg, J.; Clark, S.; et al. Chapter 21—The Modular Prosthetic Limb. In Wearable Robotics; Rosen, J., Ferguson, P.W., Eds.; Academic Press: London, UK, 2020; pp. 393–444. [Google Scholar]
- Perry, B.N.; Moran, C.W.; Armiger, R.S.; Pasquina, P.F.; Vandersea, J.W.; Tsao, J.W. Initial Clinical Evaluation of the Modular Prosthetic Limb. Front. Neurol. 2018, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudarsan, S.; Sekaran, E.C. Design and Development of EMG Controlled Prosthetics Limb. Procedia Eng. 2012, 38, 3547–3551. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G. Electromyography Pattern-Recognition-Based Control of Powered Multifunctional Upper-Limb Prostheses. Adv. Appl. Electromyogr. 2011, 6, 99–116. [Google Scholar]
- Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 797–809. [Google Scholar] [CrossRef]
- Memberg, W.D.; Stage, T.G.; Kirsch, R.F. A fully implanted intramuscular bipolar myoelectric signal recording elec-trode. Neuromodulation 2014, 17, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.J.; Hao, M.; Urbin, M.A.; Schoenewald, C.; Lan, N. Sensory information feedback for neural prostheses. In Biomedical Information Technology; Academic Press: London, UK, 2020; pp. 687–715. [Google Scholar]
- Micera, S.; Rossini, P.M.; Rigosa, J.; Citi, L.; Carpaneto, J.; Raspopovic, S.; Tombini, M.; Cipriani, C.; Assenza, G.; Carrozza, M.C.; et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular inter-faces. J. Neuroeng. Rehabil. 2011, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Valle, G.; D’Anna, E.; Strauss, I.; Clemente, F.; Granata, G.; Di Iorio, R.; Controzzi, M.; Stieglitz, T.; Rossini, P.M.; Petrini, F.M.; et al. Hand Control With Invasive Feedback Is Not Impaired by Increased Cognitive Load. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Alam, M.; Rodrigues, W.; Pham, B.N.; Thakor, N.V. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Brain Res. 2016, 1646, 25–33. [Google Scholar] [CrossRef]
- Middleton, A.; Ortiz-Catalan, M. Neuromusculoskeletal Arm Prostheses: Personal and Social Implications of Living with an Intimately Integrated Bionic Arm. Front. Neurorobot. 2020, 14, 39. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Koprnicky, J.; Šafka, J.; Ackermann, M. Using of 3D Printing Technology in Low Cost Prosthetics. Mater. Sci. Forum 2018, 919, 199–206. [Google Scholar] [CrossRef]
- Zuniga, J.M.; Katsavelis, D.; Peck, J.; Stollberg, J.; Petrykowski, M.; Carson, A.; Fernandez, C. Cyborg beast: A low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res. Notes 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Koprnický, J.; Najman, P.; Šafka, J. 3D printed bionic prosthetic hands. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM); IEEE: Donostia-San Sebastian, Spain, 2017; pp. 1–6. [Google Scholar]
- Oppus, C.M.; Prado, J.R.R.; Escobar, J.C.; Marinas, J.A.G.; Reyes, R.S. Brain-computer interface and voice-controlled 3D printed prosthetic hand. In 2016 IEEE Region 10 Conference (TENCON); IEEE: Singapore, 2017; pp. 2689–2693. [Google Scholar]
- Mohammadi, A.; Lavranos, J.; Zhou, H.; Mutlu, R.; Alici, G.; Tan, Y.; Choong, P.; Oetomo, D. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLoS ONE 2020, 15, e0232766. [Google Scholar] [CrossRef]
- Jones, G.; Stopforth, R. Mechanical Design and Development of the Touch Hand II Prosthetic Hand. R D J. S. Afr. Inst. Mech. Eng. 2016, 32, 23–24. [Google Scholar]
- Kanik, M.; Orguc, S.; Varnavides, G.; Kim, J.; Benavides, T.; Gonzalez, D.; Akintilo, T.; Tasan, C.C.; Chandrakasan, A.P.; Fink, Y.; et al. Strain-programmable fiber-based artificial muscle. Science 2019, 365, 145–150. [Google Scholar]
- Clement, R.G.; Bugler, K.E.; Oliver, C.W. Bionic prosthetic hands: A review of present technology and future aspira-tions. Surgeon 2011, 9, 336–340. [Google Scholar] [CrossRef]
- Nayak, S.; Das, R.K. Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation. In Service Robotics; IntechOpen: London, UK, 2020; pp. 1–23. [Google Scholar]
- Yang, D.; Liu, H. Human-machine shared control: New avenue to dexterous prosthetic hand manipulation. Sci. China Ser. E Technol. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Fang, Y.; Hettiarachchi, N.; Zhou, D.; Liu, H. Multi-Modal Sensing Techniques for Interfacing Hand Prostheses: A Review. IEEE Sens. J. 2015, 15, 6065–6076. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.U.; Alam, M.; Zheng, Y.-P. Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 2019, 5, e01324. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Zheng, Y.-P. Motor neuroprosthesis for injured spinal cord: Who is an ideal candidate? Neural Regen. Res. 2017, 12, 1809–1810. [Google Scholar] [CrossRef] [PubMed]
- Otte, A. Invasive Versus Non-Invasive Neuroprosthetics of the Upper Limb: Which Way to Go? Prosthesis 2020, 2, 237–239. [Google Scholar] [CrossRef]
- Baron, J.; Hazubski, S.; Otte, A. 3D Multi-Material Printing of an Anthropomorphic, Personalized Replacement Hand for Use in Neuroprosthetics Using 3D Scanning and Computer-Aided Design: First Proof-of-Technical-Concept Study. Prosthesis 2020, 2, 362–370. [Google Scholar] [CrossRef]
- Hazubski, S.; Hoppe, H.; Otte, A. Non-contact visual control of personalized hand prostheses/exoskeletons by tracking using augmented reality glasses. 3D Print. Med. 2020, 6, 1–3. [Google Scholar] [CrossRef]
- Johansen, D.; Cipriani, C.; Popovic, D.B.; Struijk, L.N.S.A. Control of a Robotic Hand Using a Tongue Control System—A Prosthesis Application. IEEE Trans. Biomed. Eng. 2016, 63, 1368–1376. [Google Scholar] [CrossRef]
- Fonseca, L.; Tigra, W.; Navarro, B.; Guiraud, D.; Fattal, C.; Bó, A.; Fachin-Martins, E.; Leynaert, V.; Gélis, A.; Azevedo-Coste, C. Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Con-traction and Movement. Sensors 2019, 19, 4532. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, B.T.; Sando, I.C.; Gillespie, R.B.; McLaughlin, B.L.; Gerling, G.J.; Langhals, N.B.; Urbanchek, M.G.; Cederna, P.S. Providing a Sense of Touch to Prosthetic Hands. Plast. Reconstr. Surg. 2015, 135, 1652–1663. [Google Scholar] [CrossRef]
- Seminara, L.; Franceschi, M.; Pinna, L.; Ibrahim, A.; Valle, M.; Dosen, S.; Farina, D. Electronic skin and electrocutaneous stimulation to restore the sense of touch in hand prosthetics. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS); IEEE: Baltimore, MD, USA, 2017; pp. 1–4. [Google Scholar]
Name | Type of Prosthesis | DOF | Type of Control | Controller | Number of Actuators | Weight (g) | Cost (US $) |
---|---|---|---|---|---|---|---|
Bebionic 3 | Forearm | 6 | FMG/EMG | N/A | 5 | 433–616 | 35,000 |
Revolutionizing Prosthetics V 1.0 | Upper arm | 17 | N/A | N/A | 17 | N/A | N/A |
Revolutionizing Prosthetics V 2.0 | Upper arm | 22 | N/A | N/A | 22 | N/A | N/A |
SmartHand | Forearm | 16 | N/A | High-level hand controller (HLHC, based on Microchip microcontroller) | 4 | 570 | N/A |
LUKE | Forearm | 6 | EMG | N/A | 6 | 1270 | 100,000 |
ADA Hand | Forearm | 5 | NM | Arduino | 5 | 380 | N/A |
Andrianesis’ hand | Forearm | 15 | EMG | Microcontroller | 9 | 350 | N/A |
Gretsch’ HAND | Forearm | 10 | EMG | Arduino Micro | 5 | 240 | 300 M |
O’Neill’s HAND | Forearm | 15 | EMG | N/A | 5 | 960 | 500 M |
Brunel hand 1.0 | Forearm | 9 | N/A | Arduino | 4 | 371 | N/A |
Brunel hand 2.0 | Forearm | 9 | N/A | Arduino | 4 | 332 | 1634 |
MERO Hand | Forearm | 2 | N/A | Arduino UNO | 2 | 336 | N/A |
Touch Hand II | Forearm | N/A | EMG | Microcontroller (MCU (MK20DX256 32bit ATM Cortex-M4)) | 6 | 451 | 1052 |
Dextrus | Forearm | 6 | EMG | N/A | 6 | 450 | 1000 M |
Ariyanto’s Hand | Forearm | 5 | NM (N/A) | Arduino Nano | 5 | 261 | N/A |
Hackberry Bionic Hand | Forearm | N/A | EMG/EEG | Arduino Micro | 3 | N/A | 372 |
i-Limb | Forearm | 6 | EMG | N/A | 5 | 460–615 | 60,000 |
Hanson Arm | Upper arm | 7 | EEG and EOG | N/A | 7 | N/A | 7150 |
Canizares’ Hand | Forearm | 5 | EMG | Arduino Nano | 5 | 682 | N/A |
Bebionic Hand | Forearm | 6 | EMG | N/A | 5 | 495–539 | 11,000 |
Michelangelo | Forearm | 2 | EMG | Host PC | 2 | 600 | 75,000 |
MANUS-HAND | Forearm | N/A | EMG | Microcontroller (PIC17C756) | 9 | 400 | N/A |
Rehand | Forearm | N/A | distance sensor | Arduino pro mini | 1 | 467 | 1250 |
KIT prosthetic hand | Forearm | 10 | embedded vision system | ARM Cortex M7 processor (STM32F7 series, STMicroelectronics) | 2 | N/A | 1214 |
X-Limb | Forearm | 13 | EMG | Microcontroller (Atmel 8-bit ATmega2560, Chandler, AZ, USA ) | 5 | 253 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, K.H.; Nazari, V.; Alam, M. Can Prosthetic Hands Mimic a Healthy Human Hand? Prosthesis 2021, 3, 11-23. https://doi.org/10.3390/prosthesis3010003
Ng KH, Nazari V, Alam M. Can Prosthetic Hands Mimic a Healthy Human Hand? Prosthesis. 2021; 3(1):11-23. https://doi.org/10.3390/prosthesis3010003
Chicago/Turabian StyleNg, Ka Ho, Vaheh Nazari, and Monzurul Alam. 2021. "Can Prosthetic Hands Mimic a Healthy Human Hand?" Prosthesis 3, no. 1: 11-23. https://doi.org/10.3390/prosthesis3010003
APA StyleNg, K. H., Nazari, V., & Alam, M. (2021). Can Prosthetic Hands Mimic a Healthy Human Hand? Prosthesis, 3(1), 11-23. https://doi.org/10.3390/prosthesis3010003