Iodoform-Blended Portland Cement for Dentistry
Abstract
:1. Introduction
2. Results
2.1. Isothermal Conduction Calorimetry
2.2. Transmission Electron Microscopy
2.3. Powder X-ray Diffraction Analysis
2.4. 27Al and 29Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy
2.5. In Vitro Bioactivity
2.6. Antimicrobial Activity
2.7. Biocompatibility
3. Discussion
4. Materials and Methods
4.1. Materials and Sample Preparation
4.2. Isothermal Conduction Calorimetry
4.3. Transmission Electron Microscopy with Energy Dispersive X-Ray Analysis
4.4. Powder X-ray Diffraction Analysis
4.5. 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy
4.6. In Vitro Bioactivity
4.7. Antimicrobial Activity
4.8. Biocompatibility
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dawood, A.E.; Parashos, P.; Wong, R.H.K.; Reynolds, E.C.; Manton, D.J. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8, e12195. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Gandolfi, M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent. Mater. 2015, 31, 351–370. [Google Scholar] [CrossRef]
- Ha, W.N.; Nicholson, T.; Kahler, B.; Walsh, L.J. Mineral trioxide aggregate—A review of properties and testing methodologies. Materials 2017, 10, 1261. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 6876:2012 Dental Root Canal Sealing Materials, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Antonijevic, D.; Medigovic, I.; Zrilic, M.; Jokic, B.; Vukovic, Z.; Todorovic, L. The influence of different radiopacifying agents on the radiopacity, compressive strength, setting time, and porosity of Portland cement. Clin. Oral Investig. 2014, 18, 1597–1604. [Google Scholar] [CrossRef]
- Coleman, N.J.; Li, Q. The impact of iodoform on the hydration, bioactivity and antimicrobial properties of white Portland cement. MATEC Web Conf. 2017, 109, 04002. [Google Scholar] [CrossRef] [Green Version]
- Coleman, N.J.; Hanarasinghe, R.; Güçlü, Z.A.; Booth, S.E. In vitro bioactivity and setting times of white Portland cement combined with different radio pacifying agents. MATEC Web Conf. 2017, 109, 03003. [Google Scholar] [CrossRef] [Green Version]
- Cost, B.C.; Guerreiro-Tanomaru, J.M.; Bosso-Martelo, R.; Rodrigues, E.M.; Bonetti-Filho, I.; Tanomaru-Filho, M. Ytterbium oxide as radiopacifier of calcium silicate-based cements. Physicochemical and biological properties. Braz. Dent. J. 2018, 29, 452–458. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M.; Mandorah, A.; Elshazli, A.H. Effect of titanium tetrafluoride addition on the physicochemical and antibacterial properties of Biodentine as intraorfice barrier. Dent. Mater. 2019, 35, 185–193. [Google Scholar] [CrossRef]
- Ochoa-Rodríguez, V.M.; Tanomaru-Filho, M.; Rodrigues, E.M.; Guerreiro-Tanomaru, J.M.; Spin-Neto, R.; Faria, G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J. Appl. Oral Sci. 2019, 27, e20180429. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Shashibhusan, K.K.; Babaji, P.; Chandrappa, P.M.; Reddy, V.R.; Ambareen, Z. Clinical and radiographic evaluation of 3Mix and Vitapex as pulpectomy medicament in primary molars: An in vivo study. Int. J. Clin. Pediatr. Dent. 2019, 12, 532–537. [Google Scholar] [PubMed]
- Navit, S.; Jaiswal, N.; Khan, S.A.; Malhotra, S.; Sharma, A.; Mukesh; Jabeen, S.; Agarwal, G. Antimicrobial efficacy of contemporary obturating materials used in primary teeth- an in-vitro study. J. Clin. Diagn. Res. 2016, 10, 9–12. [Google Scholar]
- Brezhnev, A.; Neelakantan, P.; Tanaka, R.; Brezhnev, S.; Fokas, G.; Matinlinna, J.P. Antibacterial additives in epoxy resin-based root canal sealers: A focused review. Dent. J. 2019, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- American National Standards Institute/American Dental Association. ANSI/ADA Specification 57: Endodontic Sealing Material; American National Standards Institute/American Dental Association: Chicago, IL, USA, 2000. [Google Scholar]
- De Morais, C.A.H.; Bernardineli, N.; Garcia, R.B.; Duarte, M.A.H.; Guerisoli, D.M.Z. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, 417–421. [Google Scholar] [CrossRef]
- Bortoluzzi, E.A.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Duarte, M.A.H. Radiographic effect of different radiopacifiers on a potential retrograde filling material. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 628–632. [Google Scholar] [CrossRef]
- Duarte, M.A.H.; El Kadre, G.D.D.; Vivan, R.R.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; de Moraes, I.G. Radiopacity of Portland cement associated with different radiopacifying agents. J. Endod. 2009, 35, 737–740. [Google Scholar] [CrossRef]
- Lourenço Neto, N.; Marques, N.C.T.; Fernandes, A.P.; Rodini, C.O.; Duarte, M.A.H.; Lima, M.C.; Machado, M.A.A.M.; Abdo, R.C.C.; Oliviera, T.M. Biocompatibility of Portland cement combined with different radiopacifying agents. J. Oral. Sci. 2014, 56, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Marques, N.; Lourenço Neto, N.; Fernandes, A.P.; Rodini, C.; Hungaro Duarte, M.; Rios, D.; Machado, M.A.; Oliviera, T. Pulp tissue response to Portland cement associated with different radio pacifying agents on pulpotomy of human primary molars. J. Microscopy 2015, 260, 281–286. [Google Scholar] [CrossRef]
- Lourenço Neto, N.; Marques, N.C.T.; Fernandes, A.P.; Hungaro Duarte, M.A.; Abdo, R.C.C.; Machado, M.A.A.M.; Oliveira, T.M. Clinical and radiographic evaluation of Portland cement added to radiopacifying agents in primary molar pulpotomies. Eur. Arch. Paediatr. Dent. 2015, 16, 377–382. [Google Scholar] [CrossRef]
- Sabari, M.H.; Kavitha, M.; Shobana, S. Comparative evaluation of tissue response of MTA and Portland cement with three radiopacifying agents: An animal study. J. Contemp. Dent. Pract. 2019, 20, 20–25. [Google Scholar] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.J.; Awosanya, K.; Nicholson, J.W. Aspects of the in vitro bioactivity of hydraulic calcium (alumino)silicate cement. J. Biomed. Mater. Res. 2009, 90, 166–174. [Google Scholar] [CrossRef]
- Li, Q.; Coleman, N.J. The hydration chemistry of ProRoot MTA. Dent. Mater. J. 2015, 34, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hurt, A.P.; Coleman, N.J. The application of 29Si NMR spectroscopy to the analysis of calcium silicate-based cement using Biodentine™ as an example. J. Funct. Biomater. 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gartner, E.M.; Young, J.F.; Damidot, D.A.; Jawed, I. Hydration of Portland cement. In Structure and Performance of Cements, 2nd ed.; Bensted, J., Barnes, P., Eds.; Spon Press: London, UK, 2002; pp. 57–113. [Google Scholar]
- Li, Q.; Coleman, N.J. Impact of Bi2O3 and ZrO2 radiopacifiers on the early hydration and C-S-H gel structure of white Portland cement. J. Funct. Biomater. 2019, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Coleman, N.J. Hydration kinetics, ion-release and antimicrobial properties of white Portland cement blended with zirconium oxide nanoparticles. Dent. Mater. J. 2014, 33, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Love, C.A.; Richardson, I.G.; Brough, A.R. Composition and structure of C-S-H in white Portland cement−20% metakaolin pastes hydrated at 25 °C. Cem. Concr. Res. 2007, 37, 109–117. [Google Scholar] [CrossRef]
- Justnes, H.; Meland, I.; Bjoergum, O.; Krane, J.; Skjetne, T. Nuclear magnetic resonance—A powerful tool in cement and concrete research. Adv. Cem. Res. 1990, 3, 105–110. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2004, 34, 857–868. [Google Scholar] [CrossRef]
- Engelhardt, G.; Michel, D. High-Resolution Solid State NMR of Silicates and Zeolites; John Wiley & Sons: Chichester, UK, 1987. [Google Scholar]
- Skibsted, J.; Jakobsen, H.J.; Hall, C. Direct observations of aluminium guest ions in the silicate phases of cement minerals by 27Al MAS NMR spectroscopy. J. Chem. Soc. Faraday Trans. 1994, 90, 2095–2098. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. A new aluminium-hydrate species in hydrated Portland cements characterized 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2006, 36, 3–17. [Google Scholar] [CrossRef]
- Coleman, N.J.; Bellantone, M.; Nicholson, J.W.; Mendham, A.P. Textural and structural properties of bioactive glasses in the system CaO–SiO2. Ceramics-Silikáty 2007, 51, 1–8. [Google Scholar]
- Makvandi, P.; Ting Gu, J.; Nazarzadeh Zare, E.; Ashtari, B.; Moeini, A.; Tay, F.R.; Niu, L. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. 2020, 101, 69–101. [Google Scholar] [CrossRef]
- Pye, A.D.; Lockhart, D.E.A.; Dawson, M.P.; Murray, C.A.; Smith, A.J. A review of dental implants and infection. J. Hosp. Infect. 2009, 72, 104–110. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Turco, G.; Porrelli, D.; Marsich, E.; Vecchies, F.; Lombardi, T.; Stacchi, C.; Di Lenarda, R. Three-dimensional bone substitutes for oral and maxillofacial surgery: Biological and structural characterization. J. Funct. Biomater. 2018, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Clavijo, A.; Hurt, A.P.; Kotha, A.K.; Coleman, N.J. Effect of calcium precursor on the bioactivity and biocompatibility of sol-gel-derived glasses. J. Funct. Biomater. 2019, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry, 2nd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Li, Q.; Coleman, N.J. Early hydration of white Portland cement in the presence of bismuth oxide. Adv. Appl. Ceram. 2013, 112, 207–212. [Google Scholar] [CrossRef]
- Coleman, N.J.; Li, Q. The impact of zirconium oxide radiopacifier on the early hydration behavior of white Portland cement. Mater. Sci. Eng. C 2013, 33, 427–433. [Google Scholar] [CrossRef]
- Silva, G.F.; Bosso, R.; Ferino, R.V.; Tanomaru-Filho, M.; Bernardi, M.I.B.; Guerreiro-Tanomaru, J.M.; Cerri, P.S. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties. J. Biomed. Mater. Res. Part. A 2014, 102, 4336–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Han, B.; Li, Z.; Yu, X.; Dong, X. Effect investigation of nanofillers on C-S-H gel structure with Si NMR. J. Mater. Civ. Eng. 2019, 31. [Google Scholar] [CrossRef]
- Manochehrifar, H.; Parirokh, M.; Kakooei, S.; Oloomi, M.M.; Asgary, S.; Eghbal, M.J.; Abbas, F.M. The effect of mineral trioxide aggregate mixed with chlorhexidine as direct pulp capping agent in dogs teeth: A histologic study. Iran Endod. J. 2016, 11, 320–324. [Google Scholar] [PubMed]
- Nikhil, V.; Madan, M.; Agarwal, C.; Suri, N. Effect of addition of 2% chlorhexidine or 10% doxycycline on antimicrobial activity of biodentine. J. Conserv. Dent. 2014, 17, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Suri, N.K.; Nikhil, V.; Jha, P.; Jaiswal, S. Evaluation of effect of addition of 2% chlorhexidine on the sealing ability of Biodentine: An in vitro study. J. Conserv. Dent. 2015, 18, 479–482. [Google Scholar]
- Deveci, C.; Tüzüner, T.; Cinar, C.; Odabas, M.E.; Buruk, C.K. Short-term antibacterial activity and compressive strength of Biodentine containing chlorhexidine/cetirimide mixtures. Niger J. Clin. Pract. 2019, 22, 227–231. [Google Scholar]
- Darvell, B.W. Materials Science for Dentistry, 10th ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 771–789. [Google Scholar]
- Li, Q.; Deacon, A.D.; Coleman, N.J. The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dent. Mater. J. 2013, 32, 808–815. [Google Scholar] [CrossRef] [Green Version]
Sample | Time (Day) | Q0(H) (%) | Q1 (%) | Q2(1Al) (%) | Q2 (%) | Hydration (%) | MCL | Al/Si |
---|---|---|---|---|---|---|---|---|
WPC | 7 | 4.48 | 29.10 | 9.17 | 17.02 | 59.8 | 4.1 | 0.077 |
14 | 2.23 | 40.19 | 10.25 | 15.96 | 68.6 | 3.6 | 0.075 | |
28 | 1.38 | 41.13 | 9.84 | 17.79 | 70.1 | 3.6 | 0.070 | |
WPC-I | 7 | 0.95 | 37.77 | 8.68 | 14.85 | 62.3 | 3.5 | 0.070 |
14 | 1.06 | 39.13 | 7.08 | 19.34 | 66.6 | 3.5 | 0.053 | |
28 | 0.36 | 42.73 | 7.99 | 18.92 | 70.0 | 3.5 | 0.057 |
Bacterium: Cement Concentration | Control | WPC | WPC-I |
---|---|---|---|
S. aureus: 5 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.70 × 109 | 5.36 × 107 | 2.08 × 107 |
St. Dev. (cfu cm-3) | 1.43 × 109 | 2.83 × 107 | 1.45 × 107 |
Observed |t| | - | 9.63 | 8.23 |
S. aureus: 10 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.70 × 109 | 4.44 ×107 | 1.08 × 106 |
St. Dev. (cfu cm−3) | 1.43 × 109 | 5.10 × 106 | 1.45 × 105 |
Observed |t| | - | 6.47 | 8.27 |
S. aureus: 15 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.70 × 109 | 1.68 × 105 | No growth |
St. Dev. (cfu cm−3) | 1.43 × 109 | 8.80 ×104 | - |
Observed |t| | - | 6.53 | - |
P. aeruginosa: 5 mg cement cm−3 | |||
Mean (cfu cm−3) | 1.03 × 109 | 3.66 × 108 | 8.13 × 108 |
St. Dev. (cfu cm−3) | 3.20 × 108 | 2.00 ×108 | 5.10 × 108 |
Observed |t| | - | 4.5 | 0.89 |
P. aeruginosa: 10 mg cement cm−3 | |||
Mean (cfu cm−3) | 1.03 × 109 | 2.17 × 107 | No growth |
St. Dev. (cfu cm−3) | 3.20 × 108 | 2.70 × 106 | - |
Observed |t| | - | 8.93 | - |
P. aeruginosa: 15 mg cement cm−3 | |||
Mean (cfu cm−3) | 1.03 × 109 | No growth | No growth |
St. Dev. (cfu cm−3) | 3.20 × 108 | - | - |
Observed |t| | - | - | - |
E. coli: 5 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.95 × 108 | 2.11 × 107 | No growth |
St. Dev. (cfu cm−3) | 2.26 × 108 | 1.77 × 107 | - |
Observed |t| | - | 7.23 | - |
E. coli: 10 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.95 × 108 | No growth | No growth |
St. Dev. (cfu cm−3) | 2.26 × 108 | - | - |
Observed |t| | - | - | - |
E. coli: 15 mg cement cm−3 | |||
Mean (cfu cm−3) | 4.95 × 108 | No growth | No growth |
St. Dev. (cfu cm−3) | 2.26 × 108 | - | - |
Observed |t| | - | - | - |
Bacterium | S. Aureus | P. Aeruginosa | E. Coli | |
---|---|---|---|---|
Minimum inhibitory range (mg cm−3) | WPC | 10–15 | 10–15 | 5–10 |
WPC-I | 10–15 | 5–10 | 0–5 | |
Minimum bactericidal range (mg cm−3) | WPC | >15 | 10–15 | 5–10 |
WPC-I | 10–15 | 5–10 | 0–5 |
Property | WPC | WPC-I |
---|---|---|
Mean Absorbance (arb) | 1.09 | 0.88 |
Standard Deviation (arb) | 0.37 | 0.12 |
95% Confidence limits (arb) | ± 0.36 | ± 0.12 |
Observed |t| | 1.09 | |
Critical |t| | 2.35 |
Major Oxide Components | Minor Oxide Components | Major Crystalline Phases | |||
---|---|---|---|---|---|
Formula | Mass (%) | Formula | Mass (%) | Formula | Mass (%) |
CaO | 69.2 | MgO | 0.49 | Ca3SiO5 | 65 |
SiO2 | 25.0 | P2O5 | 0.43 | Ca2SiO4 | 22 |
Al2O3 | 1.76 | Fe2O3 | 0.33 | Ca3Al2O6 | 4.1 |
SO3 | 2.00 | SrO | 0.14 | Ca2(Al/Fe)O5 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Deacon, A.D.; Coleman, N.J. Iodoform-Blended Portland Cement for Dentistry. Prosthesis 2020, 2, 277-296. https://doi.org/10.3390/prosthesis2040025
Li Q, Deacon AD, Coleman NJ. Iodoform-Blended Portland Cement for Dentistry. Prosthesis. 2020; 2(4):277-296. https://doi.org/10.3390/prosthesis2040025
Chicago/Turabian StyleLi, Qiu, Andrew D. Deacon, and Nichola J. Coleman. 2020. "Iodoform-Blended Portland Cement for Dentistry" Prosthesis 2, no. 4: 277-296. https://doi.org/10.3390/prosthesis2040025
APA StyleLi, Q., Deacon, A. D., & Coleman, N. J. (2020). Iodoform-Blended Portland Cement for Dentistry. Prosthesis, 2(4), 277-296. https://doi.org/10.3390/prosthesis2040025