A Preliminary Investigation into the Design of Driver Evaluator Using a Physics-Assisted Machine Learning Technique
Abstract
:1. Introduction
2. System Modeling
3. Methodology
3.1. Mathematical Interpretation of Sensitivity Analysis
3.1.1. First-Order Sensitivity Analysis
3.1.2. Second-Order Sensitivity Analysis
3.2. Unsupervised Machine Learning
4. Results and Discussion
4.1. Sensitivity Analysis Results
4.1.1. First-Order Sensitivity Analysis Results
4.1.2. Second-Order Sensitivity Analysis Results
4.2. Machine Learning Simulation Results
4.2.1. Database Construction with Step-Steer Test
4.2.2. Gaussian Mixture Models Clustering Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheller, M. Automotive emotions: Feeling the car. Theory Cult. Soc. 2004, 21, 221–224. [Google Scholar] [CrossRef]
- Melman, T.; Winter, J.D.; Mouton, X.; Tapus, A.; Abbink, D. How do driving modes affect the vehicle’s dynamic behaviour? Comparing Renault’s Mult-Sense sport and comfort modes during on-road naturalistic driving. Veh. Syst. Dyn. 2021, 4, 485–503. [Google Scholar] [CrossRef]
- Novellis, L.D.; Sorniotti, A.; Gruber, P. Driving modes for designing the cornering response of fully electric vehicles with multiple motors. Mech. Syst. Signal Process. 2015, 64–65, 1–15. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.B.; Oh, J.J.; Eo, J. Satisfactory Driving Mode Classification Based on Pedal Operation Characteristics. IEEE Trans. Intell. Veh. 2024, 9, 2988–2998. [Google Scholar] [CrossRef]
- Eftekhari, H.R.; Ghatee, M. A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors. J. Intell. Transp. Syst. 2019, 23, 72–83. [Google Scholar] [CrossRef]
- Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An overview on study of identification of driver behavior characteristics for automotive control. Hindawi Publ. Corp. Math. Probl. Eng. 2014, 2014, 569109. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2018. [Google Scholar]
- Hao, Z.; Liu, S.; Zhang, Y.; Ying, C.; Feng, Y.; Su, H.; Zhu, J. Physics-informed machine learning: A survey on problems, methods and applications. arXiv 2023, arXiv:2211.08064. [Google Scholar]
- Koysuren, K.; Keles, A.F.; Cakmakci, M. Online Parameter Estimation using Physics-Informed Deep Learning for Vehicle Stability Algorithms. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023; pp. 466–471. [Google Scholar]
- Liu, J.; Han, X.; Pan, Y. Physics-assisted machine learning methods for predicting the splitting tensile strength of recycled aggregate concrete. Sci. Rep. 2023, 13, 9078. [Google Scholar] [CrossRef] [PubMed]
- Othaganont, P.; Assadian, F.; Auger, D. Sensitivity analyses for cross-coupled parameters in automotive powertrain optimization. Energies 2014, 7, 3733–3747. [Google Scholar] [CrossRef]
- Mantripragada, V.K.T.; Kumar, R.K. Sensitivity analysis of tyre characteristic parameters on ABS performance. Veh. Syst. Dyn. 2022, 60, 47–72. [Google Scholar] [CrossRef]
- Suarez, B.; Felez, J.; Maroto, J.; Rodriguez, P. Sensitivity analysis to assess the influence of the inertial properties of railway vehicle bodies on the vehicle’s dynamic behaviour. Veh. Syst. Dyn. 2012, 51, 251–279. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abdelkareem, M.A.; Tan, G.; Moheyeldein, M.M. A Monte Carlo parametric sensitivity analysis of automobile handling, comfort, and stability. Hindawi Shock Vib. 2021, 2021, 6638965. [Google Scholar] [CrossRef]
- Pacejka, H.B. Tyre and Vehicle Dynamcis, 2nd ed.; Elsevier/BH: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Langari, R. AVA: Automated Vehicles for All. U.S. Department of Transportation. Available online: https://rip.trb.org/View/1878930 (accessed on 20 April 2023).
- Pevneva, A.G.; Inna, P. Comparison of the probabilistic model of a fuzzy Bayesian classifier and the Gaussian mixture problem. J. Phys. Conf. Ser. 2022, 2373, 062022. [Google Scholar] [CrossRef]
- Buffle, E.; Papadis, A.; Blaser, I.; Nozica, N.; Kassar, M.; Ludwig, R.; Berger, D.; Haenggi, M. In-vivo validation of a nomogram with isostiffness-lines for the assessment of aortic stenosis severity. Eur. Heart J. 2023, 44, ehad655.033. [Google Scholar] [CrossRef]
- Prusti, D.; Behera, R.K.; Rath, S.K. Hybridizing graph-based Gaussian mixture model with machine learning for classification of fraudulent transactions. Comput. Intell. 2022, 38, 2134–2160. [Google Scholar] [CrossRef]
- Liu, H.; Roeder, K.; Wasserman, L.A. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv. Neural Inf. Process. Syst. 2010, 24, 1432–1440. [Google Scholar] [PubMed]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the akaike information criterion (aic) and the bayesian information criterion (bic). Psychol. Methods 2012, 17, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Dziak, J.J.; Coffman, D.L.; Lanza, S.T.; Li, R.; Jermiin, L.S. Sensitivity and specificity of information criteria. Brief. Bioinform. 2019, 21, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.M.M.; Ibrahim, M.M.; Mourad, M.A.; EI-Gwwad, K.A.A. Sensitivity analysis of vehicle parameters on dynamic stability and vehicle handling performance. Int. J. Veh. Struct. Syst. 2021, 13, 65–71. [Google Scholar] [CrossRef]
- Žuraulis, Ž.; Robertas, P.; Mourad, M.A.; Ginas, J. Semi-Active Suspension Influence on Comfort Sensation of a Vehicle Occupant. Available online: https://api.semanticscholar.org/CorpusID:55490476 (accessed on 15 March 2022).
- ISO 7401; Road Vehicles: Lateral Transient Response Test Methods = Véhicules Routiers: Méthodes d’Essai en réGime Transitoire sous AccéLération latéRALE, 1st ed. International Organization for Standardization: Geneva, Switzerland, 1988.
Parameter | Unit | Symbol | Value |
---|---|---|---|
Mass | kg | m | 2300 |
Yaw moment of inertia | kg·m2 | 3474 | |
Front wheel cornering stiffness | kN/rad | 138,830 | |
Rear wheel cornering stiffness | kN/rad | 206,400 | |
Distance from CG to front axle | m | a | 1.4025 |
Distance from CG to rear axle | m | b | 1.5055 |
Modes | Sport (Reduced) | Comfort (Reduced) | Sport (Full) | Comfort (Full) |
---|---|---|---|---|
Mass | 2300 | 2300 | 2300.5 | 2297.8 |
Yaw moment of inertia | 3474 | 3474 | 3473.3 | 3474.6 |
Front wheel cornering stiffness | 157,072 | 138,568 | 153,297 | 121,754 |
Rear wheel cornering stiffness | 189,636 | 225,793 | 184,183 | 247,392 |
Distance from CG to front axle | 1.4011 | 1.4022 | 1.4015 | 1.4026 |
Distance from CG to rear axle | 1.5057 | 1.5058 | 1.5065 | 1.5054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.; Assadian, F. A Preliminary Investigation into the Design of Driver Evaluator Using a Physics-Assisted Machine Learning Technique. Vehicles 2025, 7, 49. https://doi.org/10.3390/vehicles7020049
Hou M, Assadian F. A Preliminary Investigation into the Design of Driver Evaluator Using a Physics-Assisted Machine Learning Technique. Vehicles. 2025; 7(2):49. https://doi.org/10.3390/vehicles7020049
Chicago/Turabian StyleHou, Mingke, and Francis Assadian. 2025. "A Preliminary Investigation into the Design of Driver Evaluator Using a Physics-Assisted Machine Learning Technique" Vehicles 7, no. 2: 49. https://doi.org/10.3390/vehicles7020049
APA StyleHou, M., & Assadian, F. (2025). A Preliminary Investigation into the Design of Driver Evaluator Using a Physics-Assisted Machine Learning Technique. Vehicles, 7(2), 49. https://doi.org/10.3390/vehicles7020049