Virtual Multi-Criterial Calibration of Operating Strategies for Hybrid-Electric Powertrains
Abstract
:1. Introduction
1.1. Motivation
1.2. Virtual Calibration of Automotive Control Units
1.3. Use Case: Virtual Calibration of the Operating Strategies of a Hybrid-Electric Vehicle
1.4. Need for Scientific Research
2. Material and Methods
2.1. Methodology for Virtual Calibration of Hybrid Electric Vehicles
2.2. Testbench Setup and Target Vehicle
3. Results
- : Change in the electrical energy of the rechargeable electrical energy storage system (REESS) in the charge sustaining test
- : Fuel energy consumption in the charge sustaining test
- : Nominal voltage of the high voltage battery
- : Electrical current of the battery during the charge sustaining test
- : Heating value of the fuel used, for E10 gasoline = 8.640 kWh/l
- : Uncorrected fuel consumption in the charge sustaining test
- : Distance driven in the charge sustaining test
3.1. One-Dimensional Internal Combustion Engine Simulation
- Engine speed in min−1
- Throttle valve position in %
- Turbocharger wastegate position in %
- Variable intake valve position in °CA bTDC (gas exchange)
- Variable exhaust valve position in °CA bTDC (gas exchange)
- Ignition timing in °CA bTDC (firing)
- Injection timing in °CA bTDC (firing)
- Injection duration in °CA
3.2. Artifical Neural Network for Gasous Emission Simulation
- Engine speed in min−1
- Engine inner torque in Nm
- Variable intake valve position in °CA bTDC (gas exchange)
- Variable exhaust valve position in °CA bTDC (gas exchange)
- Ignition timing in °CA bTDC (firing)
- Variable valve lift position (small lift or large lift)
- : exhaust mass flow of component i
- : mass flow of the complete exhaust gas
- : molar mass fraction of exhaust component i
- : molar mass of exhaust component i
- : molar mass of complete exhaust gas
- : fuel volume in L
- : mass of CO2 in kg
- : Constant fuel volume per kg CO2, for E10 [50]
3.3. Semi Physical Electric Motor and Battery Simulation
- Torque demand of the electric motor provided by the operating strategy in Nm
- Actual speed of the electric motor in min−1
4. Discussion and Conclusions
5. Summary
- The one-dimensional internal combustion engine model is assessed in a charge-sustaining WLTC driving cycle. The simulated engine torque follows the measurement over the complete driving cycle and reaches a coefficient of determination of R2 = 0.9935.
- Representative for the raw emission neural network, the CO2 emission results are taken. The model is again tested in a charge sustaining WLTC driving cycle. The cumulated CO2 mass over the test and the continuous emissions are simulated with high accuracy. At the end of the scenario, the total deviation is 0.017 g, corresponding to a relative deviation of 0.0235%.
- The electrical system simulation is evaluated as a compound model combining the electrical machine, high-voltage battery, and the respective controllers. The compound model is assessed in a charge-depleting WLTC driving cycle and a charge-increasing driving cycle on the road. The differences between simulation and measurements are <1.0% in both scenarios.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulholland, E.; Miller, J.; Braun, C.; Jin, L.; Rodríguez, F. Quantifying the Long-Term Air Quality and Health Benefits from Euro 7/VII Standards in Europe; ICCT-The international Coucil on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Mulholland, E.; Miller, J.; Bernard, Y.; Lee, K.; Rodríguez, F. The role of NOx emission reductions in Euro 7/VII vehicle emission standards to reduce adverse health impacts in the EU27 through 2050. Transp. Eng. 2022, 9, 100133. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2019/631 of the European Parliament and of the Council; European Union: Luxembourg, 2019. [Google Scholar]
- European Union. Proposal for a Regulation of the European Parliament and of the Council: COM 2022 586 Final: EU7 Proposal; European Union: Luxembourg, 2022. [Google Scholar]
- Donn, C.; Zulehner, W.; Pfister, F. Realfahrtests für die Antriebsentwicklung mithilfe des virtuellen Fahrversuchs. ATZ Extra 2019, 24, 44–49. [Google Scholar] [CrossRef]
- Jeske, T.; Lennings, F. Produktivitätsmanagement 4.0: Praxiserprobte Vorgehensweisen zur Nutzung der Digitalisierung in der Industrie, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-662-61583-6. [Google Scholar]
- Maurer, R.; Kossioris, T.; Hausberger, S.; Toenges-Schuller, N.; Sterlepper, S.; Günther, M.; Pischinger, S. How to define and achieve Zero-Impact emissions in road transport? Transp. Res. Part D Transp. Environ. 2023, 116, 103619. [Google Scholar] [CrossRef]
- Maurer, R.; Yadla, S.K.; Balazs, A.; Thewes, M.; Walter, V.; Uhlmann, T. Designing Zero Impact Emission Vehicle Concepts. In Experten-Forum Powertrain: Ladungswechsel und Emissionierung 2020; Springer Vieweg: Berlin/Heidelberg, Germany, 2021; pp. 75–116. [Google Scholar]
- Plötz, P.; Moll, C.; Bieker, G.; Mock, P.; Li, Y. White Paper: Real-World Usage of Plug-In Hybrid Electric Vehicles: Fuel Consumption, Electric Driving and CO2 Emissions; ICCT, International Council of Clean Transportation: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Martínez-Boggio, S. Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Convers. Manag. 2019, 190, 73–90. [Google Scholar] [CrossRef]
- Bai, Y. Research on Control Strategy of Hybrid Electric Vehicle. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 22022. [Google Scholar] [CrossRef]
- Enang, W.; Bannister, C. Modelling and control of hybrid electric vehicles (A comprehensive review). Renew. Sustain. Energy Rev. 2017, 74, 1210–1239. [Google Scholar] [CrossRef]
- Andert, J.; Xia, F.; Klein, S.; Guse, D.; Savelsberg, R.; Tharmakulasingam, R.; Thewes, M.; Scharf, J. Road-to-rig-to-desktop: Virtual development using real-time engine modelling and powertrain co-simulation. Int. J. Engine Res. 2019, 20, 686–695. [Google Scholar] [CrossRef]
- Isermann, R.; Sequenz, H. Model-based development of combustion-engine control and optimal calibration for driving cycles: General procedure and application. IFAC-PapersOnLine 2016, 49, 633–640. [Google Scholar] [CrossRef]
- Morcinkowski, B.; Adomeit, P.; Mally, M.; Esposito, S.; Walter, V.; Yadla, S. Emissionsvorhersage in der Entwicklung ottomotorischer EU7-Antriebe. In Moderne Antriebe–Emissionsarm, Elektrifiziert und Variabel: Experten-Forum Powertrain: Ladungswechsel und Emissionierung 2019; Liebl, J., Ed.; Springer Vieweg: Wiesbaden, Germany, 2020; pp. 11–23. ISBN 978-3-658-28708-5. [Google Scholar]
- Trampert, S.; Nijs, M.; Huth, T.; Guse, D. Simulation von realen Fahrszenarien am Prüfstand. MTZExtra 2017, 22, 12–19. [Google Scholar] [CrossRef]
- Dorscheidt, F.; Düzgün, M.; Claßen, J.; Krysmon, S.; Pischinger, S.; Görgen, M.; Dönitz, C.; Nijs, M. Hardware-in-the-Loop Based Virtual Emission Calibration for a Gasoline Engine. In SAE Technical Paper Series, Proceedings of the SAE WCX Digital Summit, 13 April 2021; SAE International Commonwealth Drive: Warrendale, PA, USA, 2021. [Google Scholar]
- Fagcang, H.; Stobart, R.; Steffen, T. A review of component-in-the-loop: Cyber-physical experiments for rapid system development and integration. Adv. Mech. Eng. 2022, 14, 168781322211099. [Google Scholar] [CrossRef]
- Mihalič, F.; Truntič, M.; Hren, A. Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges. Electronics 2022, 11, 2462. [Google Scholar] [CrossRef]
- Riccio, A.; Monzani, F.; Landi, M. Towards a Powerful Hardware-in-the-Loop System for Virtual Calibration of an Off-Road Diesel Engine. Energies 2022, 15, 646. [Google Scholar] [CrossRef]
- Zlojo, H.; Kuznik, A.; Steinhaus, T.; Beidl, C. Modellbasierte Hybridentwicklung: Verschmelzung von virtuellem und realem Test. MTZextra 2020, 25, 22–25. [Google Scholar] [CrossRef]
- Walter, S.; Guse, D.; Klein, S.; Meyer, N.; Andert, J.; Schulze, T. Engine-in-the-Loop Auswirkung der Echtzeitperformance auf die Abbildungsgüte von Fahrzyklen. In Experten-Forum Powertrain: Simulation und Test 2019: Vom Prüfstand bis Big Data-ganzheitliche Validierung-in-the-Loop, 1st ed.; Liebl, J., Ed.; Springer Vieweg: Wiesbaden, Germany, 2020; pp. 153–171. ISBN 978-3-658-28706-1. [Google Scholar]
- Vahldiek, M. Einsatz einer Software-in-the-Loop-Umgebung zur virtuell gestützten Applikation des Motorstarts eines hybriden Ottomotors. In Experten-Forum Powertrain: Simulation und Test 2020; Liebl, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 87–103. ISBN 978-3-662-63605-3. [Google Scholar]
- Picerno, M.; Lee, S.-Y.; Pasternak, M.; Siddareddy, R.; Franken, T.; Mauss, F.; Andert, J. Real-Time Emission Prediction with Detailed Chemistry under Transient Conditions for Hardware-in-the-Loop Simulations. Energies 2022, 15, 261. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Motevalli, V.; Qian, Y.; Wolfe, A. Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation. In SAE Technical Paper Series, Proceedings of the SAE 2013 World Congress & Exhibition, Detroit, MI, USA, 16 April 2013; SAE International Commonwealth Drive: Warrendale, PA, USA, 2013. [Google Scholar]
- Merl, R.; Kokalj, G.; Wultsch, B.; Klumaier, K.; Eberhard, F.; Ivarson, M. Innovative Lösungen zur Applikation hybrider Antriebe. In Experten-Forum Powertrain: Simulation und Test 2020; Liebl, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 121–134. ISBN 978-3-662-63605-3. [Google Scholar]
- Kuznik, A.; Steinhaus, T.; Stumpp, M.; Beidl, C. Optimierung des Emissionsverhaltens innerhalb der hybriden Betriebsstrategie am Prüfstand mittels Co-Simulation. In Experten-Forum Powertrain: Simulation und Test 2020; Liebl, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 31–45. ISBN 978-3-662-63605-3. [Google Scholar]
- Schmidt, H.; Büttner, K.; Prokop, G. Methods for Virtual Validation of Automotive Powertrain Systems in Terms of Vehicle Drivability—A Systematic Literature Review. IEEE Access 2023, 11, 27043–27065. [Google Scholar] [CrossRef]
- Prati, M.V.; Costagliola, M.A.; Giuzio, R.; Corsetti, C.; Beatrice, C. Emissions and energy consumption of a plug-in hybrid passenger car in Real Driving Emission (RDE) test. Transp. Eng. 2021, 4, 100069. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Y.; Zeng, Y.; Yu, J. Multi-Objective Optimization for Plug-In 4WD Hybrid Electric Vehicle Powertrain. Appl. Sci. 2019, 9, 4068. [Google Scholar] [CrossRef]
- Duan, B.; Wang, Q.; Wang, J.; Li, X.; BA, T. Calibration Efficiency Improvement of Rule-Based Energy Management System For A Plug-In Hybrid Electric Vehicle. Int. J. Automot. Technol. 2017, 18, 335–344. [Google Scholar] [CrossRef]
- Goerke, D.; Bargende, M.; Keller, U.; Ruzicka, N.; Schmiedler, S. Optimal Control based Calibration of Rule-Based Energy Management for Parallel Hybrid Electric Vehicles. SAE Int. J. Altern. Powertrains 2015, 4, 178–189. [Google Scholar] [CrossRef]
- Claßen, J. Entwicklung Statistisch Relevanter Prüfszenarien zur Bewertung der Fahrzeug-Emissionsrobustheit unter Realen Fahrbedingungen; RWTH Aachen University: Aachen, Germany, 2022. [Google Scholar]
- Claßen, J.; Pischinger, S.; Krysmon, S.; Sterlepper, S.; Dorscheidt, F.; Doucet, M.; Reuber, C.; Görgen, M.; Scharf, J.; Nijs, M.; et al. Statistically supported real driving emission calibration: Using cycle generation to provide vehicle-specific and statistically representative test scenarios for Euro 7. Int. J. Engine Res. 2020, 21, 1783–1799. [Google Scholar] [CrossRef]
- Roberts, P.; Mason, A.; Whelan, S.; Tabata, K.; Kondo, Y.; Kumagai, T.; Mumby, R.; Bates, L. RDE Plus-A Road to Rig Development Methodology for Whole Vehicle RDE Compliance: Overview. In SAE Technical Paper Series, Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 21 April 2020; SAE International Commonwealth Drive: Warrendale, PA, USA, 2020. [Google Scholar]
- Roberts, P.J.; Mumby, R.; Mason, A.; Redford-Knight, L.; Kaur, P. RDE Plus-The Development of a Road, Rig and Engine-in-the-Loop Test Methodology for Real Driving Emissions Compliance. In SAE Technical Paper Series, Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 9 April 2019; SAE International Commonwealth Drive: Warrendale, PA, USA, 2019. [Google Scholar]
- Clerc, M. Particle Swarm Optimization; Wiley: Hoboken, NJ, USA, 2006; ISBN 9781905209040. [Google Scholar]
- Mirjalili, S.; Song Dong, J.; Lewis, A.; Sadiq, A.S. Particle Swarm Optimization: Theory, Literature Review, and Application in Airfoil Design. In Nature-Inspired Optimizers: Theories, Literature Reviews and Applications; Mirjalili, S., Ed.; Springer International Publishing AG: Cham, Switzerland, 2020; pp. 167–184. ISBN 978-3-030-12126-6. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; 7 Print; MIT Press: Cambridge, MA, USA, 2001; ISBN 0262631857. [Google Scholar]
- Du, W.; Zhao, S.; Jin, L.; Gao, J.; Li, H. Parameter optimization of rule-based control strategy for multi-mode hybrid electric vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 2706–2716. [Google Scholar] [CrossRef]
- Vadala, B. An Offline Dynamic Programming Technique for Autonomous Vehicles with Hybrid Electric Powertrain. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2018. [Google Scholar]
- Murgovski, N.; Grahn, M.; Mardh Johannesson, L.; McKelvey, T. Automated Engine Calibration of Hybrid Electric Vehicles. IEEE Trans. Contr. Syst. Technol. 2015, 23, 1063–1074. [Google Scholar] [CrossRef]
- Krysmon, S.; Dorscheidt, F.; Claßen, J.; Düzgün, M.; Pischinger, S. Real Driving Emissions—Conception of a Data-Driven Calibration Methodology for Hybrid Powertrains Combining Statistical Analysis and Virtual Calibration Platforms. Energies 2021, 14, 4747. [Google Scholar] [CrossRef]
- Krammer, J. Echtzeit-Simulation für RDE-System–Entwicklung und Kalibrierung. In Ladungswechsel und Emissionierung 2018; Liebl, J., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 85–95. ISBN 978-3-658-24983-0. [Google Scholar]
- Wu, H.; Li, M.-F. A Hardware-in-the-Loop (HIL) Bench Test of a GT-Power Fast Running Model for Rapid Control Prototyping (RCP) Verification. In SAE Technical Paper Series, Proceedings of the SAE 2016 World Congress and Exhibition, Detroit, MI, USA, 12 April 2016; SAE International Commonwealth Drive: Warrendale, PA, USA, 2016. [Google Scholar]
- Dorscheidt, F.; Meli, M.; Claßen, J.; Krysmon, S.; Pischinger, S.; Görgen, M.; Dönitz, C.; Bailly, P.; Nijs, M. Modelling of Gasoline Engine-Out Emissions Using Artificial Neural Networks. In FISITA World Congress 2021-Technical Programme, Proceedings of the FISITA World Congress 2021, Online, 14–16 September 2021; FISITA: Prague, Czech Republic, 2021; ISBN 9781916025929. [Google Scholar]
- Xia, F.; Dorscheidt, F.; Lücke, S.; Andert, J.; Gardini, P.; Scheel, T.; Walter, V.; Tharmakulasingam, J.K.R.; Böhmer, M.; Nijs, M. Experimental Proof-of-Concept of HiL Based Virtual Calibration for a Gasoline Engine with a Three-Way-Catalyst. In SAE Technical Paper Series, Proceedings of the 2019 JSAE/SAE Powertrains, Fuels and Lubricants, Kyoto, Japan, 26 August 2019; SAE International Commonwealth Drive: Warrendale, PA, USA, 2019. [Google Scholar]
- European Union. Comission Regulation (EU) 2017/1151; European Union: Luxembourg, 2017. [Google Scholar]
- Platner, S.; Kordon, M.; Fakiolas, E.; Atzler, H. Modellbasierte Serien-kalibrierung—der effiziente Weg für Variantenentwicklung. MTZ-Mot. Z. 2013, 74, 754–761. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Dorscheidt, F.; Pischinger, S.; Claßen, J.; Sterlepper, S.; Krysmon, S.; Görgen, M.; Nijs, M.; Straszak, P.; Abdelkader, A.M. Development of a Novel Gasoline Particulate Filter Loading Method Using a Burner Bench. Energies 2021, 14, 4914. [Google Scholar] [CrossRef]
- Llopart Vázques, G.; Weck, T.R.; Kolar, A.; Jones, S. Multi-XiL as a Central Tool for the Integration, Calibration and Validation of Hybrid Powertrains. In VPC–Simulation und Test 2015; Liebl, J., beidl, C., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 81–95. ISBN 978-3-658-20735-9. [Google Scholar]
Simulation Model | Validation Scenario |
---|---|
One-dimensional combustion engine model | Charge sustaining WLTC driving cycle |
Raw emission model | Charge sustaining WLTC driving cycle |
Electric propulsion system model | Charge depleting driving cycle Charge increasing road driving cycle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Düzgün, M.T.; Dorscheidt, F.; Krysmon, S.; Bailly, P.; Lee, S.-Y.; Dönitz, C.; Pischinger, S. Virtual Multi-Criterial Calibration of Operating Strategies for Hybrid-Electric Powertrains. Vehicles 2023, 5, 1367-1383. https://doi.org/10.3390/vehicles5040075
Düzgün MT, Dorscheidt F, Krysmon S, Bailly P, Lee S-Y, Dönitz C, Pischinger S. Virtual Multi-Criterial Calibration of Operating Strategies for Hybrid-Electric Powertrains. Vehicles. 2023; 5(4):1367-1383. https://doi.org/10.3390/vehicles5040075
Chicago/Turabian StyleDüzgün, Marc Timur, Frank Dorscheidt, Sascha Krysmon, Peter Bailly, Sung-Yong Lee, Christian Dönitz, and Stefan Pischinger. 2023. "Virtual Multi-Criterial Calibration of Operating Strategies for Hybrid-Electric Powertrains" Vehicles 5, no. 4: 1367-1383. https://doi.org/10.3390/vehicles5040075
APA StyleDüzgün, M. T., Dorscheidt, F., Krysmon, S., Bailly, P., Lee, S. -Y., Dönitz, C., & Pischinger, S. (2023). Virtual Multi-Criterial Calibration of Operating Strategies for Hybrid-Electric Powertrains. Vehicles, 5(4), 1367-1383. https://doi.org/10.3390/vehicles5040075