Impact of Transportation Electrification on the Electricity Grid—A Review
Abstract
:1. Introduction
2. Environmental Benefits
3. Impact on the Consumer Side
3.1. Cost of Ownership
3.2. EV Adoption Rate
3.3. Range Anxiety
3.4. Social Justice Concerns
4. Battery Technologies
5. Sustainability after Salvage and Battery Second Life
6. Technological Trends
6.1. Fast Charging Availability
6.2. Charging Levels and Current State of the Art Charging Units
7. Impacts on the Utility Side
7.1. Potential for V2G and V2V
7.2. Advantages to Utility
7.3. Disadvantages to Utility
8. Self-Driving Car and Potential to Leverage Communication Technologies to “Save Energy”
9. Socio-Economic Benefits
10. Conclusions and Key Findings
- It should be noted that EVs consume electricity energy. That is why for the implementation of transportation electrification to be successful, transitioning toward cleaner sources of electricity generation such as renewable energy is essential.
- Currently, the cost of EV ownership is higher than conventional vehicles. However, it is expected that higher fuel costs and technological improvements will render EV ownership competitive with ICEs.
- It is concluded that EV price is a key factor in social justice and a lower cost of ownership promotes social justice.
- A major hurdle in the usage of second-life batteries is the complex transformation process of different batteries.
- Compared to combustion engine vehicles, EVs suffer from a higher charging speed in terms of miles per hour.
- Vehicle-to-Vehicle (V2V) charging/discharging has been found to be effective to offload the distribution system in presence of high EV loads.
- Even though there have been efforts to establish bulk energy storage systems in the electricity network, they are not comparable to the storage capacity offered by EVs.
11. Policy Recommendations
12. Limitations and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Armstrong, R.C. Addressing the global energy challenge In Presentation Held during World Energy Congress; MIT Energy Initiative: Cambridge, MA, USA, 2007. [Google Scholar]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019. Available online: https://bit.ly/3rAM7L4 (accessed on 11 April 2022).
- United States Environmental Protection Agency. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks. Available online: https://bit.ly/3hNHB8I (accessed on 19 July 2021).
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the case for electrified transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Jian, L.; Xue, H.; Xu, G.; Zhu, X.; Zhao, D.; Shao, Z.Y. Regulated Charging of Plug-in Hybrid Electric Vehicles for Minimizing Load Variance in Household Smart Microgrid. IEEE Trans. Ind. Electron. 2012, 60, 3218–3226. [Google Scholar] [CrossRef]
- Yu, X.E.; Xue, Y.; Sirouspour, S.; Emadi, A. Microgrid and transportation electrification: A review. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 18–20 June 2012; pp. 1–6. [Google Scholar]
- Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K. Energy storage devices for future hybrid electric vehicles. J. Power Sources 2007, 168, 2–11. [Google Scholar] [CrossRef]
- Dijk, M.; Orsato, R.J.; Kemp, R. The emergence of an electric mobility trajectory. Energy Policy 2012, 52, 135–145. [Google Scholar] [CrossRef]
- He, L.-Y.; Chen, Y. Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission miti-gation for road transportation sector in China. Transp. Policy 2013, 25, 30–40. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Schuitema, G. Online engagement for sustainable energy projects: A systematic review and framework for integration. Renew. Sustain. Energy Rev. 2016, 54, 1611–1621. [Google Scholar] [CrossRef]
- Indiana, E. President Obama Announces $2.4 Billion in Grants to Accelerate the Manufacturing and Deployment of The Next Generation of US Batteries and Electric Vehicles. 2009. Available online: https://bit.ly/3hZ58Uc (accessed on 5 June 2021).
- Bayani, R.; Soofi, A.F.; Manshadi, S.D. Coordinated Scheduling of Electric Vehicles within Zero Carbon Emission Hybrid AC/DC Microgrids. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kempton, W.; Tomić, J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 2005, 144, 268–279. [Google Scholar] [CrossRef]
- Tamor, M.A.; Stechel, E.B. Electrification of transportation means a lot more than a lot more electric vehicles. iScience 2022, 25, 104376. [Google Scholar] [CrossRef]
- Su, W.; Eichi, H.; Zeng, W.; Chow, M.-Y. A Survey on the Electrification of Transportation in a Smart Grid Environment. IEEE Trans. Ind. Inform. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Cempírek, V.; Rybicka, I.; Ljubaj, I. Development of electromobility in terms of freight transport. LOGI–Sci. J. Transp. Logist. 2019, 10, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H. A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 2018, 6, 13866–13890. [Google Scholar] [CrossRef]
- Xiaoqin, W.; Hu, L.; Qiaolin, R.; Yan, W.; Wei, X. Overview of the development and related research of electric vehicles. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017; pp. 814–818. [Google Scholar]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Laefer, D.; Mangina, E. State of Technology Review of Civilian UAVs. Recent Patents Eng. 2016, 10, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, C.; Liu, G.; Fu, H.; Xue, S.; Lu, L.; Hua, J.; Ouyang, M. Research on driving range estimation for EVs based on corrected battery model. In Proceedings of the SAE 2015 World Congress & Exhibition, Detroit, MI, USA, 21–23 April 2015. Paper 2015-01-0250. [Google Scholar]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.; Shahidehpour, M.; Yan, M.; Guo, J.; Yao, W.; Paaso, A.; Zhang, L.; Wen, J. Coordinated planning of trans-portation and electric power networks with the proliferation of electric vehicles. IEEE Trans. Smart Grid 2020, 11, 4005–4016. [Google Scholar] [CrossRef]
- Arias, N.B.; Tabares, A.; Franco, J.F.; Lavorato, M.; Romero, R. Robust Joint Expansion Planning of Electrical Distribution Systems and EV Charging Stations. IEEE Trans. Sustain. Energy 2017, 9, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Park, W.-J.; Song, K.-B.; Park, J.-W. Impact of Electric Vehicle Penetration-Based Charging Demand on Load Profile. J. Electr. Eng. Technol. 2013, 8, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of Electric Vehicles in the Electric Power System. Proc. IEEE 2011, 99, 168–183. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, S.; Fotuhi-Firuzabad, M.; Rastegar, M. Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Trans. Smart Grid 2013, 4, 1351–1360. [Google Scholar] [CrossRef]
- Humayd, A.S.B.; Bhattacharya, K. A novel framework for evaluating maximum pev penetration into distribution systems. IEEE Trans. Smart Grid 2016, 9, 2741–2751. [Google Scholar] [CrossRef]
- Mortazavi, H.; Mehrjerdi, H.; Saad, M.; Lefebvre, S.; Asber, D.; Lenoir, L. A Monitoring Technique for Reversed Power Flow Detection with High PV Penetration Level. IEEE Trans. Smart Grid 2015, 6, 2221–2232. [Google Scholar] [CrossRef]
- Lanati, F.; Benini, M.; Gelmini, A. Impact of the penetration of electric vehicles on the Italian power system: A 2030 scenario. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24-28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Vagropoulos, S.I.; Balaskas, G.A.; Bakirtzis, A.G. An Investigation of Plug-In Electric Vehicle Charging Impact on Power Systems Scheduling and Energy Costs. IEEE Trans. Power Syst. 2016, 32, 1902–1912. [Google Scholar] [CrossRef]
- Bayani, R.; Manshadi, S.D.; Liu, G.; Wang, Y.; Dai, R. Autonomous charging of electric vehicle fleets to enhance renewable generation dispatchability. CSEE J. Power Energy Syst. 2021, 8, 669–681. [Google Scholar]
- Shao, C.; Wang, X.; Wang, X.; Du, C.; Wang, B. Hierarchical Charge Control of Large Populations of EVs. IEEE Trans. Smart Grid 2015, 7, 1147–1155. [Google Scholar] [CrossRef]
- Leou, R.C.; Su, C.L.; Lu, C.N. Stochastic analyses of electric vehicle charging impacts on distribution network. IEEE Trans. Power Syst. 2014, 29, 1055–1063. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, N.; Wang, C.; Zhang, J. Optimal power utilizing strategy for PV-based EV charging stations considering real-time price. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–6. [Google Scholar]
- Khaki, B.; Chu, C.; Gadh, R. Hierarchical distributed framework for EV charging scheduling using exchange problem. Appl. Energy 2019, 241, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, Z.; Ahmad, I.; Habibi, D.; Phung, Q.V. Smart Charging Strategy for Electric Vehicle Charging Stations. IEEE Trans. Transp. Electrif. 2017, 4, 76–88. [Google Scholar] [CrossRef]
- Aravinthan, V.; Jewell, W. Controlled Electric Vehicle Charging for Mitigating Impacts on Distribution Assets. IEEE Trans. Smart Grid 2015, 6, 999–1009. [Google Scholar] [CrossRef]
- Hua, L.; Wang, J.; Zhou, C. Adaptive Electric Vehicle Charging Coordination on Distribution Network. IEEE Trans. Smart Grid 2014, 5, 2666–2675. [Google Scholar] [CrossRef]
- Manshadi, S.D.; Khodayar, M.E. Strategic Behavior of In-Motion Wireless Charging Aggregators in the Electricity and Transportation Networks. IEEE Trans. Veh. Technol. 2020, 69, 14780–14792. [Google Scholar] [CrossRef]
- Luo, C.; Huang, Y.-F.; Gupta, V. Stochastic Dynamic Pricing for EV Charging Stations with Renewable Integration and Energy Storage. IEEE Trans. Smart Grid 2017, 9, 1494–1505. [Google Scholar] [CrossRef]
- Lee, W.; Schober, R.; Wong, V.W.S. An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations. IEEE Trans. Smart Grid 2018, 10, 3990–4002. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Wen, F.; Salam, A.; Mao, J.; Li, L. Bidding Strategy for Aggregators of Electric Vehicles in Day-Ahead Electricity Markets. Energies 2017, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Vagropoulos, S.I.; Bakirtzis, A.G. Optimal Bidding Strategy for Electric Vehicle Aggregators in Electricity Markets. IEEE Trans. Power Syst. 2013, 28, 4031–4041. [Google Scholar] [CrossRef]
- Baringo, L.; Amaro, R.S. A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator. Electr. Power Syst. Res. 2017, 146, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Han, B.; Xue, F.; Jiang, L.; Feng, X. Stochastic bidding strategy of electric vehicles and energy storage systems in uncertain reserve market. IET Renew. Power Gener. 2020, 14, 3653–3661. [Google Scholar] [CrossRef]
- Vaya, M.G.; Andersson, G. Optimal bidding strategy of a plug-in electric vehicle aggregator in day-ahead electricity markets under uncertainty. IEEE Trans. Power Syst. 2014, 30, 2375–2385. [Google Scholar] [CrossRef]
- Manshadi, S.D.; Khodayar, M.E.; Abdelghany, K.; Ster, H.U. Wireless charging of electric vehicles in electricity and transportation networks. IEEE Trans. Smart Grid 2017, 9, 4503–4512. [Google Scholar] [CrossRef]
- Qian, T.; Shao, C.; Li, X.; Wang, X.; Shahidehpour, M. Enhanced Coordinated Operations of Electric Power and Transportation Networks via EV Charging Services. IEEE Trans. Smart Grid 2020, 11, 3019–3030. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Li, Z.; Tian, W.; Shahidehpour, M. EV charging schedule in coupled constrained networks of trans-portation and power system. IEEE Trans. Smart Grid 2018, 10, 4706–4716. [Google Scholar] [CrossRef]
- Geng, L.; Lu, Z.; He, L.; Zhang, J.; Li, X.; Guo, X. Smart charging management system for electric vehicles in coupled transportation and power distribution systems. Energy 2019, 189, 116275. [Google Scholar] [CrossRef]
- Sortomme, E.; El-Sharkawi, M.A. Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services. IEEE Trans. Smart Grid 2011, 3, 351–359. [Google Scholar] [CrossRef]
- Chukwu, U.C.; Mahajan, S.M. V2G electric power capacity estimation and ancillary service market evaluation. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Melo, D.F.R.; Trippe, A.; Gooi, H.B.; Massier, T. Robust Electric Vehicle Aggregation for Ancillary Service Provision Considering Battery Aging. IEEE Trans. Smart Grid 2016, 9, 1728–1738. [Google Scholar] [CrossRef]
- Thingvad, A.; Ziras, C.; Hu, J.; Marinelli, M. Assessing the energy content of system frequency and electric vehicle charging efficiency for ancillary service provision. In Proceedings of the 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- DeForest, N.; MacDonald, J.S.; Black, D.R. Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration. Appl. Energy 2018, 210, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, S. Grid Power Peak Shaving and Valley Filling Using Vehicle-to-Grid Systems. IEEE Trans. Power Deliv. 2013, 28, 1822–1829. [Google Scholar] [CrossRef]
- Ioakimidis, C.S.; Thomas, D.; Rycerski, P.; Genikomsakis, K.N. Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot. Energy 2018, 148, 148–158. [Google Scholar] [CrossRef]
- Li, X.; Tan, Y.; Liu, X.; Liao, Q.; Sun, B.; Cao, G.; Li, C.; Yang, X.; Wang, Z. A cost-benefit analysis of V2G electric vehicles supporting peak shaving in Shanghai. Electr. Power Syst. Res. 2019, 179, 106058. [Google Scholar] [CrossRef]
- Khan, S.U.; Mehmood, K.K.; Haider, Z.M.; Rafique, M.K.; Khan, M.O.; Kim, C.-H. Coordination of Multiple Electric Vehicle Aggregators for Peak Shaving and Valley Filling in Distribution Feeders. Energies 2021, 14, 352. [Google Scholar] [CrossRef]
- Uddin, M.; Romlie, M.F.; Abdullah, M.F.; Halim, S.A.; Kwang, T.C. A review on peak load shaving strategies. Renew. Sustain. Energy Rev. 2018, 82, 3323–3332. [Google Scholar] [CrossRef]
- Bedir, A.; Ogden, J.M.; Yang, C. Quantifying the Economic Value of Vehicle-Grid Integration: A Case Study of Dynamic Pricing in the Sacramento Municipal Utility District; UC Davis Institute of Transportation Studies: Davis, CA, USA, 2015. [Google Scholar]
- Sortomme, E.; El-Sharkawi, M.A. Optimal Charging Strategies for Unidirectional Vehicle-to-Grid. IEEE Trans. Smart Grid 2011, 2, 131–138. [Google Scholar] [CrossRef]
- Sundstrom, O.; Binding, C. Flexible Charging Optimization for Electric Vehicles Considering Distribution Grid Constraints. IEEE Trans. Smart Grid 2011, 3, 26–37. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hamanaka, M.; Niimi, K.; Yukita, K.; Matsumura, T.; Goto, Y. Power Quality Improvement Method Using EV for PV Output Fluctuation. In Proceedings of the 2018 International Conference on Smart Grid (icSmartGrid), Nagasaki, Japan, 4–6 December 2018; pp. 272–275. [Google Scholar] [CrossRef]
- Singh, M.; Kar, I.; Kumar, P. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC, Ohrid, Macedonia, 6–8 September 2010. [Google Scholar] [CrossRef]
- Yang, H.; Chung, C.Y.; Zhao, J. Application of plug-in electric vehicles to frequency regulation based on distributed signal acquisition via limited communication. IEEE Trans. Power Syst. 2012, 28, 1017–1026. [Google Scholar] [CrossRef]
- Escudero-Garza´s, J.J.; Garc´ıa-Armada, A.; Seco-Granados, G. Fair design of plug-in electric vehicles aggregator for (V2G) regulation. IEEE Trans. Veh. Technol. 2012, 61, 3406–3419. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Han, S.; Sezaki, K. Development of an optimal vehicle-to-grid aggregator for frequency regulation. IEEE Trans. Smart Grid 2010, 1, 65–72. [Google Scholar]
- Izadkhast, S.; Garcia-Gonzalez, P.; Frías, P. An aggregate model of plug-in electric vehicles for primary frequency control. IEEE Trans. Power Syst. 2014, 30, 1475–1482. [Google Scholar] [CrossRef]
- Lam, A.Y.S.; Leung, K.-C.; Li, V.O.K. Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism. IEEE Trans. Smart Grid 2015, 7, 156–166. [Google Scholar] [CrossRef]
- Han, S.; Han, S.; Sezaki, K. Estimation of achievable power capacity from plug-in electric vehicles for V2G frequency regulation: Case studies for market participation. IEEE Trans. Smart Grid 2011, 2, 632–641. [Google Scholar] [CrossRef]
- Masuta, T.; Yokoyama, A. Supplementary Load Frequency Control by Use of a Number of Both Electric Vehicles and Heat Pump Water Heaters. IEEE Trans. Smart Grid 2012, 3, 1253–1262. [Google Scholar] [CrossRef]
- Khalil, A.; Rajab, Z.; Alfergani, A.; Mohamed, O. The impact of the time delay on the load frequency control system in microgrid with plug-in-electric vehicles. Sustain. Cities Soc. 2017, 35, 365–377. [Google Scholar] [CrossRef]
- Khodayar, M.; Manshadi, S.D.; Vafamehr, A. The short-term operation of microgrids in a transactive energy architecture. Electr. J. 2016, 29, 41–48. [Google Scholar] [CrossRef]
- Mallaki, M.; Naderi, M.S.; Abedi, M.; Manshadi, S.D.; Gharehpetian, G.B. A novel energy-reliability market framework for participation of microgrids in transactive energy system. Int. J. Electr. Power Energy Syst. 2020, 122, 106193. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Cao, Y.; Tan, Y.; Rehtanz, C. Transactive energy system: A review of cyber-physical infrastructure and optimal scheduling. IET Gener. Transm. Distrib. 2019, 14, 173–179. [Google Scholar] [CrossRef]
- Zhou, Q.; Shahidehpour, M.; AlAbdulwahab, A.; Abusorrah, A. Unification Scheme for Managing Master Controller Failures in Networked Microgrids. IEEE Trans. Power Syst. 2020, 35, 3004–3014. [Google Scholar] [CrossRef]
- Akter, M.N.; Mahmud, M.A.; Haque, M.E.; Oo, A.M. Transactive energy coordination mechanism for community microgrids supplying multi-dwelling residential apartments. IET Gener. Transm. Distrib. 2020, 14, 1207–1213. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Shahidehpour, M.; Lai, L.L.; Wang, Z.; Zhu, Q. Reconfigurable Distribution Network for Managing Transactive Energy in a Multi-Microgrid System. IEEE Trans. Smart Grid 2019, 11, 1286–1295. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, J.; Wang, J.; Liang, L. Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter? Transp. Res. Part A Policy Pract. 2018, 117, 58–69. [Google Scholar] [CrossRef]
- Berkeley, N.; Bailey, D.; Jones, A.; Jarvis, D. Assessing the transition towards battery electric vehicles: A multi-level per-spective on drivers of, and barriers to, take up. Transp. Res. Part A Policy Pract. 2017, 106, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Motoaki, Y.; Shirk, M.G. Consumer behavioral adaption in EV fast charging through pricing. Energy Policy 2017, 108, 178–183. [Google Scholar] [CrossRef]
- Sierzchula, W.; Bakker, S.; Maat, K.; van Wee, B. The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy 2014, 68, 183–194. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, D. The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China. Transp. Res. Part A Policy Pract. 2017, 105, 14–26. [Google Scholar] [CrossRef]
- Bowermaster, D.; Alexander, M.; Duvall, M. The Need for Charging: Evaluating utility infrastructures for electric vehicles while providing customer support. IEEE Electrif. Mag. 2017, 5, 59–67. [Google Scholar] [CrossRef]
- Danielis, R.; Giansoldati, M.; Rotaris, L. A probabilistic total cost of ownership model to evaluate the current and future prospects of electric cars uptake in Italy. Energy Policy 2018, 119, 268–281. [Google Scholar] [CrossRef]
- Weldon, P.; Morrissey, P.; O’Mahony, M. Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles. Sustain. Cities Soc. 2018, 39, 578–591. [Google Scholar] [CrossRef]
- Dumortier, J.; Siddiki, S.; Carley, S.; Cisney, J.; Krause, R.M.; Lane, B.W.; Rupp, J.A.; Graham, J.D. Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle. Transp. Res. Part A Policy Pract. 2015, 72, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Mitropoulos, L.K.; Prevedouros, P.D.; Kopelias, P. Total cost of ownership and externalities of conventional, hybrid and electric vehicle. Transp. Res. Procedia 2017, 24, 267–274. [Google Scholar] [CrossRef]
- Wu, G.; Inderbitzin, A.; Bening, C. Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy 2015, 80, 196–214. [Google Scholar] [CrossRef]
- Peterson, S.B.; Whitacre, J.; Apt, J. The economics of using plug-in hybrid electric vehicle battery packs for grid storage. J. Power Sources 2010, 195, 2377–2384. [Google Scholar] [CrossRef]
- Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M. LiFePO4/polymer/natural graphite: Low cost Li-ion batteries. Electrochim. Acta 2004, 50, 263–270. [Google Scholar] [CrossRef]
- Bin, Z.; Chengtao, L.; Quanshi, C. Performance of LiFePO4/C Li-Ion battery for electric vehicle. Chin. J. Power Sources 2008, 32, 95–98. [Google Scholar]
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J. Power Sources 2016, 332, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Hu, X.; Yang, Z.; Xie, Y.; Feng, S. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Convers. Manag. 2019, 195, 167–179. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Cai, L. Electric Vehicle Charging Scheme for a Park-and-Charge System Considering Battery Degradation Costs. IEEE Trans. Intell. Veh. 2018, 3, 361–373. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G.; Devie, A. Durability and reliability of ev batteries under electric utility grid operations: Path de-pendence of battery degradation. J. Electrochem. Soc. 2018, 165, A773. [Google Scholar] [CrossRef]
- Axsen, J.; Burke, A.; Kurani, K.S. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology Circa 2008; Institute of Transportation Studies, University of California: Davis, CA, USA, 2008. [Google Scholar]
- Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D.U. A review of current automotive battery technology and future prospects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 761–776. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Kim, G.-H.; Keyser, M. Integration Issues of Cells into Battery Packs for Plug-In and Hybrid Electric Vehicles; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Sato, N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J. Power Sources 2001, 99, 70–77. [Google Scholar] [CrossRef]
- Pesaran, A.; Keyser, M.; Burch, S. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs; National Renewable Energy Laboratory: Golden, CO, USA, 1999. [Google Scholar]
- Al-Hallaj, S.; Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M.; Selman, J. Passive Thermal Management Using Phase Change Material (PCM) for EV and HEV Li ion Batteries. In Proceedings of the 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 7 September 2005. [Google Scholar] [CrossRef]
- Khateeb, S.A.; Amiruddin, S.; Farid, M.; Selman, J.R.; Al-Hallaj, S. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation. J. Power Sources 2005, 142, 345–353. [Google Scholar] [CrossRef]
- Duvall, M. Advanced Batteries for Electric-Drive Vehicles; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2004. [Google Scholar]
- Han, W.; Wik, T.; Kersten, A.; Dong, G.; Zou, C. Next-Generation Battery Management Systems: Dynamic Reconfiguration. IEEE Ind. Electron. Mag. 2020, 14, 20–31. [Google Scholar] [CrossRef]
- Malysz, P.; Gu, R.; Ye, J.; Yang, H.; Emadi, A. State-of-charge and state-of-health estimation with state constraints and current sensor bias correction for electrified powertrain vehicle batteries. IET Electr. Syst. Transp. 2016, 6, 136–144. [Google Scholar] [CrossRef]
- Birrell, S.A.; McGordon, A.; Jennings, P.A. Defining the accuracy of real-world range estimations of an electric vehicle. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2590–2595. [Google Scholar]
- Dallinger, D.; Krampe, D.; Wietschel, M. Vehicle-to-grid regulation reserves based on a dynamic simulation of mobility be-havior. IEEE Trans. Smart Grid 2011, 2, 302–313. [Google Scholar] [CrossRef]
- Alarfaj, A.F.; Griffin, W.M.; Samaras, C. Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a travel budget. Environ. Res. Lett. 2020, 15, 0940c2. [Google Scholar] [CrossRef]
- Gardner, L.; Duell, M.; Waller, S.T.; MacGill, I. The System Impact of Travel Demand Variability in the Context of Electric Vehicles. In Proceedings of the 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 2371–2379. [Google Scholar] [CrossRef]
- Västberg, O.B.; Karlström, A.; Jonsson, D.; Sundberg, M. A dynamic discrete choice activity-based travel demand model. Transp. Sci. 2020, 54, 21–41. [Google Scholar] [CrossRef]
- Tannahill, V.R.; Muttaqi, K.M.; Sutanto, D. Driver alerting system using range estimation of electric vehicles in real time under dynamically varying environmental conditions. IET Electr. Syst. Transp. 2016, 6, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Sarrafan, K.; Sutanto, D.; Muttaqi, K.M.; Town, G. Accurate range estimation for an electric vehicle including changing environmental conditions and traction system efficiency. IET Electr. Syst. Transp. 2017, 7, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.K.; Mak, H.-Y.; Rong, Y. Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties. Manuf. Serv. Oper. Manag. 2015, 17, 101–119. [Google Scholar] [CrossRef]
- Franke, T.; Krems, J.F. What drives range preferences in electric vehicle users? Transp. Policy 2013, 30, 56–62. [Google Scholar] [CrossRef]
- Noel, L.; de Rubens, G.Z.; Sovacool, B.K.; Kester, J. Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety. Energy Res. Soc. Sci. 2018, 48, 96–107. [Google Scholar] [CrossRef]
- Lee, C.-H.; Wu, C.-H. A Novel Big Data Modeling Method for Improving Driving Range Estimation of EVs. IEEE Access 2015, 3, 1980–1993. [Google Scholar] [CrossRef]
- Wang, M.; Liang, H.; Zhang, R.; Deng, R.; Shen, X. Mobility-Aware Coordinated Charging for Electric Vehicles in VANET-Enhanced Smart Grid. IEEE J. Sel. Areas Commun. 2014, 32, 1344–1360. [Google Scholar] [CrossRef]
- Bonges, H.A., III; Lusk, A.C. Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation. Transp. Res. Part A Policy Pract. 2016, 83, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Yang, J.; Lu, J. The battery charging station location problem: Impact of users’ range anxiety and distance con-venience. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 1–18. [Google Scholar] [CrossRef]
- Bulut, E.; Kisacikoglu, M.C. Mitigating Range Anxiety via Vehicle-to-Vehicle Social Charging System. In Proceedings of the 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Neaimeh, M.; Hill, G.A.; Hu¨bner, Y.; Blythe, P.T. Routing systems to extend the driving range of electric vehicles. IET Intell. Transp. Syst. 2013, 7, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Faraj, M.; Basir, O. Range anxiety reduction in battery-powered vehicles. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016; pp. 1–6. [Google Scholar]
- Shao, C.; Qian, T.; Wang, Y.; Wang, X. Coordinated Planning of Extreme Fast Charging Stations and Power Distribution Networks Considering On-Site Storage. IEEE Trans. Intell. Transp. Syst. 2020, 22, 493–504. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal Planning of PEV Charging Station with Single Output Multiple Cables Charging Spots. IEEE Trans. Smart Grid 2016, 8, 2119–2128. [Google Scholar] [CrossRef]
- Zenginis, I.; Vardakas, J.; Zorba, N.; Verikoukis, C.V. Analysis and quality of service evaluation of a fast charging station for electric vehicles. Energy 2016, 112, 669–678. [Google Scholar] [CrossRef]
- Zhang, H.; Moura, S.J.; Hu, Z.; Song, Y. PEV Fast-Charging Station Siting and Sizing on Coupled Transportation and Power Networks. IEEE Trans. Smart Grid 2016, 9, 2595–2605. [Google Scholar] [CrossRef]
- Fyhr, P.; Domingues, G.; Andersson, M.; Márquez-Fernández, F.J.; Bängtsson, H.; Alaküla, M. Electric roads: Reducing the societal cost of automotive electrification. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; pp. 773–778. [Google Scholar]
- Noel, L.; de Rubens, G.Z.; Sovacool, B.K. Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark. Energy 2018, 153, 628–637. [Google Scholar] [CrossRef]
- Pourrahmani, E.; Jaller, M.; Maizlish, N.; Rodier, C. Health Impact Assessment of Connected and Autonomous Vehicles in San Francisco, Bay Area. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 898–916. [Google Scholar] [CrossRef]
- Akerlind, I.G.B.A. Driving change: Evaluating Strategies to Control Automotive Energy Demand Growth in China. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Zhao, S.J.; Heywood, J.B. Projected pathways and environmental impact of China’s electrified passenger vehicles. Transp. Res. Part D Transp. Environ. 2017, 53, 334–353. [Google Scholar] [CrossRef] [Green Version]
- Skrúcaný, T.; Kendra, M.; Stopka, O.; Milojević, S.; Figlus, T.; Csiszár, C. Impact of the electric mobility implementation on the greenhouse gases production in central European countries. Sustainability 2019, 11, 4948. [Google Scholar] [CrossRef] [Green Version]
- Małek, A.; Dudziak, A.; Stopka, O.; Caban, J.; Marciniak, A.; Rybicka, I. Charging electric vehicles from photovoltaic sys-tems—Statistical analyses of the small photovoltaic farm operation. Energies 2022, 15, 2137. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services. Environ. Sci. Technol. 2009, 43, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Onn, C.C.; Chai, C.; Rashid, A.F.A.; Karim, M.R.; Yusoff, S. Vehicle electrification in a developing country: Status and issue, from a well-to-wheel perspective. Transp. Res. Part D Transp. Environ. 2017, 50, 192–201. [Google Scholar] [CrossRef]
- Dyke, K.J.; Schofield, N.; Barnes, M. The Impact of Transport Electrification on Electrical Networks. IEEE Trans. Ind. Electron. 2010, 57, 3917–3926. [Google Scholar] [CrossRef]
- Borlaug, B.; Salisbury, S.; Gerdes, M.; Muratori, M. Levelized Cost of Charging Electric Vehicles in the United States. Joule 2020, 4, 1470–1485. [Google Scholar] [CrossRef]
- Bu¨hler, F.; Cocron, P.; Neumann, I.; Franke, T.; Krems, J.F. Is EV experience related to EV acceptance? Results from a German field study. Transp. Res. Part F Traffic Psychol. Behav. 2014, 25, 34–49. [Google Scholar] [CrossRef]
- Ugay, S.; Pogotovkina, N.; Agochkov, A.; Kompanez, V. Influence of hybrid vehicles on the environment. World Appl. Sci. J. 2013, 28, 176–179. [Google Scholar]
- Koengkan, M.; Fuinhas, J.A.; Belucio, M.; Alavijeh, N.K.; Salehnia, N.; Machado, D.; Silva, V.; Dehdar, F. The Impact of Battery-Electric Vehicles on Energy Consumption: A Macroeconomic Evidence from 29 European Countries. World Electr. Veh. J. 2022, 13, 36. [Google Scholar] [CrossRef]
- Bayati, M.; Abedi, M.; Gharehpetian, G.B.; Farahmandrad, M. Short-term interaction between electric vehicles and microgrid in decentralized vehicle-to-grid control methods. Prot. Control Mod. Power Syst. 2019, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.F.; Sirkin, D.; Gür, T.M.; Steinert, M. Displayed uncertainty improves driving experience and behavior: The case of range anxiety in an electric car. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 2201–2210. [Google Scholar]
- Esmaili, M.; Shafiee, H.; Aghaei, J. Range anxiety of electric vehicles in energy management of microgrids with controllable loads. J. Energy Storage 2018, 20, 57–66. [Google Scholar] [CrossRef]
- Roth, M.W. Whittier Boulevard, Sixth Street Bridge, and the Origins of Transportation Exploitation in East Los Angeles. J. Urban Hist. 2004, 30, 729–748. [Google Scholar] [CrossRef]
- Kaufmann, V.; Jemelin, C. Coordination of land-use planning and transportation: How much room to maneuver? Int. Soc. Sci. J. 2003, 55, 295–305. [Google Scholar] [CrossRef]
- Skippon, S.; Garwood, M. Responses to battery electric vehicles: UK consumer attitudes and attributions of symbolic meaning following direct experience to reduce psychological distance. Transp. Res. Part D Transp. Environ. 2011, 16, 525–531. [Google Scholar] [CrossRef]
- Tyfield, D.; Zuev, D.; Ping, L.; Urry, J. Low Carbon Innovation in Chinese Urban Mobility: Prospects Politics and Practices; Working Paper, 2014; STEPS: Brighton, UK, 2015; Volume 71. [Google Scholar]
- Rivera, S.; Kouro, S.; Wu, B. Charging architectures for electric and plug-in hybrid electric vehicles. In Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles; Springer: Berlin/Heidelberg, Germany, 2017; pp. 111–149. [Google Scholar]
- Emadi, A. Advanced Electric Drive Vehicles; CRC Press: Boca Raton, FL, USA, 2015; p. 616. [Google Scholar]
- Zhang, T.; Gao, C.; Gao, Q.; Wang, G.; Liu, M.; Guo, Y.; Xiao, C.; Yan, Y. Status and development of electric vehicle integrated thermal management from BTM to HVAC. Appl. Therm. Eng. 2015, 88, 398–409. [Google Scholar] [CrossRef]
- Hamut, H.; Dincer, I.; Naterer, G. Analysis and optimization of hybrid electric vehicle thermal management systems. J. Power Sources 2013, 247, 643–654. [Google Scholar] [CrossRef]
- Moreno, G.; Narumanchi, S.; Bennion, K.; Waye, S.; Devoto, D. Gaining Traction: Thermal Management and Reliability of Automotive Electric Traction-Drive Systems. IEEE Electrif. Mag. 2014, 2, 42–49. [Google Scholar] [CrossRef]
- O’Keefe, M.; Bennion, K. A Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options. In Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX, USA, 9–12 September 2007; pp. 116–123. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, M. Lithium Has Transformed Vehicle Technology: How trends in Li-ion battery technology have developed for vehicle electrification. IEEE Electrif. Mag. 2017, 5, 43–52. [Google Scholar] [CrossRef]
- Momen, F.; Rahman, K.M.; Son, Y.; Savagian, P. Electric Motor Design of General Motors’ Chevrolet Bolt Electric Vehicle. SAE Int. J. Altern. Powertrains 2016, 5, 286–293. [Google Scholar] [CrossRef]
- Momen, F.; Rahman, K.; Son, Y. Electrical propulsion system design of Chevrolet Bolt battery electric vehicle. IEEE Trans. Ind. Appl. 2018, 55, 376–384. [Google Scholar] [CrossRef]
- Mehrjardi, R.T.; Ershad, N.F.; Ehsani, M. Transmotor-Based Powertrain for High-Performance Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 1199–1210. [Google Scholar] [CrossRef]
- Sripad, S.; Viswanathan, V. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities. J. Electrochem. Soc. 2017, 164, E3635–E3646. [Google Scholar] [CrossRef] [Green Version]
- Sitterly, M.; Wang, L.Y.; Yin, G.G.; Wang, C. Enhanced Identification of Battery Models for Real-Time Battery Management. IEEE Trans. Sustain. Energy 2011, 2, 300–308. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Goodenough, J.B. High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. Chem. Mater. 2008, 20, 7237–7241. [Google Scholar] [CrossRef]
- Lajunen, A.; Yang, Y.; Emadi, A. Recent Developments in Thermal Management of Electrified Powertrains. IEEE Trans. Veh. Technol. 2018, 67, 11486–11499. [Google Scholar] [CrossRef]
- Suh, I.-S.; Lee, M.; Kim, J.; Oh, S.T.; Won, J.-P. Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging. Energy 2015, 81, 262–273. [Google Scholar] [CrossRef]
- Burke, A.F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 806–820. [Google Scholar] [CrossRef]
- Reynolds, C.; Kandlikar, M. How hybrid-electric vehicles are different from conventional vehicles: The effect of weight and power on fuel consumption. Environ. Res. Lett. 2007, 2, 014003. [Google Scholar] [CrossRef]
- Yang, X.-G.; Ge, S.; Wu, N.; Mao, Y.; Sun, F.; Wang, C.-Y. All-Climate Battery Technology for Electric Vehicles: Inching Closer to the Mainstream Adoption of Automated Driving. IEEE Electrif. Mag. 2019, 7, 12–21. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Blocking, J.T.; Andersson, A.S.; Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Ther-mal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef] [Green Version]
- Long, R.T.; Blum, A.F.; Bress, T.J.; Cotts, B.R. Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results; National Fire Protection Research Foundation: Quincy, MA, USA, 2013. [Google Scholar]
- Larsson, F.; Mellander, B.-E. Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells. J. Electrochem. Soc. 2014, 161, A1611–A1617. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Lore´n, A.; Mellander, B.-E. Characteristics of Lithium-ion batteries during fire tests. J. Power Sources 2014, 271, 414–420. [Google Scholar] [CrossRef]
- Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laruelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2011, 5, 5271–5280. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, S.; Li, K.; Liu, C.; Cheng, X.; Zhang, H. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J. Power Sources 2015, 273, 216–222. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Q.; Li, K.; Ping, P.; Sun, J. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, F.; Andersson, P.; Mellander, B.-E. Battery aspects on fires in electrified vehicles. In Proceedings of the Fires in Vehicles (FIVE) 2014 Conference Proceedings, Berlin, Germany, 1–2 October 2014; Volume 2, pp. 209–220. [Google Scholar]
- Ahrens, M. Automobile fires in the US: 2006–2010 estimates. In Proceedings of the Conference Proceedings of Fires in Vehicles (FIVE), Chicago, IL, USA, 27–28 September 2012; pp. 95–104. [Google Scholar]
- Goto, N. Aircraft Serious Incident Investigation Report: All Nippon Airways Co; JA804A; Transport Safety Board, Ltd.: Tokyo, Japan, 2014. [Google Scholar]
- Auxiliary Power Unit Battery Fire. Japan Airlines Boeing 787–8, JA829J, Boston, Massachusetts; NTSB/AIR-14/01; National Transportation Safety Board: Washington, DC, USA, 2014. [Google Scholar]
- SAFO 16001. Risks of Fire or Explosion When Transporting Lithium Ion or Lithium Metal Batteries as Cargo on Passenger and Cargo Aircraft. Available online: https://www.faa.gov/sites/faa.gov/files/other_visit/aviation_industry/airline_operators/airline_safety/SAFO16001.pdf (accessed on 30 September 2022).
- International Air Transport Association. Lithium Batteries as Cargo in 2016 Update III. 2016. Available online: https://bit.ly/3zuxNXo (accessed on 30 September 2021).
- Larsson, F.; Andersson, P.; Mellander, B.-E. Lithium-Ion Battery Aspects on Fires in Electrified Vehicles on the Basis of Experimental Abuse Tests. Batteries 2016, 2, 9. [Google Scholar] [CrossRef]
- Opitz, A.; Badami, P.; Shen, L.; Vignarooban, K.; Kannan, A.M. Can Li-ion batteries be the panacea for automotive ap-plications? Renew. Sustain. Energy Rev. 2017, 68, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Foley, A.M.; Winning, I.J.; Gallachóir, B.Ó.Ó. State-of-the-art in electric vehicle charging infrastructure. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6. [Google Scholar]
- Alam, M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dynamic Charging of Electric Vehicle with Negligible Power Transfer Fluctuation. Energies 2017, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Edelenbosch, O.Y.; Hof, A.F.; Nykvist, B.; Girod, B.; van Vuuren, D.P. Transport electrification: The effect of recent battery cost reduction on future emission scenarios. Clim. Chang. 2018, 151, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, A.G.; Chu, A.C.; Maxx, S.; Waltz, D.L. Vehicle Electrification: Status and Issues. Proc. IEEE 2011, 99, 1116–1138. [Google Scholar] [CrossRef] [Green Version]
- Ban, M.; Yu, J.; Li, Z.; Guo, D.; Ge, J. Battery Swapping: An aggressive approach to transportation electrification. IEEE Electrif. Mag. 2019, 7, 44–54. [Google Scholar] [CrossRef]
- Jung, C. Power Up with 800-V Systems: The benefits of upgrading voltage power for battery-electric passenger vehicles. IEEE Electrif. Mag. 2017, 5, 53–58. [Google Scholar] [CrossRef]
- Sakti, A.; Michalek, J.J.; Fuchs, E.R.; Whitacre, J.F. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sources 2015, 273, 966–980. [Google Scholar] [CrossRef]
- Safari, M. Battery electric vehicles: Looking behind to move forward. Energy Policy 2018, 115, 54–65. [Google Scholar] [CrossRef]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Rothgang, S.; Rogge, M.; Becker, J.; Sauer, D.U. Battery Design for Successful Electrification in Public Transport. Energies 2015, 8, 6715–6737. [Google Scholar] [CrossRef] [Green Version]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.-Y. Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Wenig, J.; Sodenkamp, M.; Staake, T. Battery versus infrastructure: Tradeoffs between battery capacity and charging infrastructure for plug-in hybrid electric vehicles. Appl. Energy 2019, 255, 113787. [Google Scholar] [CrossRef]
- Hossain, E.; Murtaugh, D.; Mody, J.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N. A comprehensive review on second-life batteries: Current state, manufacturing considerations, applications, impacts, barriers & potential solutions, business strategies, and policies. IEEE Access 2019, 7, 215–273. [Google Scholar]
- Olsson, L.; Fallahi, S.; Schnurr, M.; Diener, D.; van Loon, P. Circular Business Models for Extended EV Battery Life. Batteries 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef] [PubMed]
- Bayani, R.; Soofi, A.F.; Manshadi, S.D. Strategic competition of electric vehicle charging stations in a regulated retail electricity market. arXiv 2021, arXiv:2111.11592. [Google Scholar]
- Tuttle, D.P.; Kockelman, K.M. Electrified vehicle technology trends, infrastructure implications, and cost comparisons. J. Transp. Res. Forum 2012, 51, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.A.; Santini, D.J.; Barnes, J. Factors Determining the Manufacturing Costs of Lithium-Ion Batteries for PHEVs. World Electr. Veh. J. 2009, 3, 457–468. [Google Scholar] [CrossRef]
- Howell, D. Annual Merit Review: Energy Storage R&D Overview; US Department of Energy, Energy Efficiency and Renewable Energy: Washington, DC, USA, 2009. [Google Scholar]
- Barnett, B. PHEV Battery Cost Assessment; US Department of Energy Annual Merit Review: Washington, DC, USA, 2009. [Google Scholar]
- Anderson, D.L.; Patino-Echeverri, D. An Evaluation of Current and Future Costs for Lithium-Ion Batteries for Use in Electrified Vehicle Powertrains; Duke University: Durham, NC, USA, 2009. [Google Scholar]
- Kromer, M.A.; Heywood, J.B. Electric Powertrains: Opportunities and Challenges in the US Light-Duty Fleet; Sloan Automotive Laboratory, Massachusetts Institute of Technology, LFEE: Cambridge, MA, USA, 2007; Volume 2. [Google Scholar]
- Markel, T.; Simpson, A. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology. World Electr. Veh. J. 2007, 1, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, V.V.; Kintner-Meyer, M. Second use of transportation batteries: Maximizing the value of batteries for trans-portation and grid services. IEEE Trans. Veh. Technol. 2011, 60, 2963–2970. [Google Scholar] [CrossRef]
- Skarvelis-Kazakos, S.; Daniel, S.; Buckley, S. Distributed energy storage using second-life electric vehicle batteries. In Proceedings of the IET Conference on Power in Unity: A Whole System Approach, London, UK, 16–17 October 2013. [Google Scholar]
- Kirby, B.; Hirst, E. Ancillary-Service Costs For 12 US Electric Utilities; (No. ORNL/CON-427); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1996. [Google Scholar]
- Schoenung, S.; Hassenzahl, W. Long Vs. Short-Term Energy Storage Technology Analysis; Sandia Report, Sandia National Laboratories: Albuquerque, NM, USA, 2003. [Google Scholar]
- Cready, E.; Lippert, J.; Pihl, J.; Weinstock, I.; Symons, P.; Jungst, R.G. Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications: A Study for the DOE Energy Storage Systems Program; Sandia National Laboratories: Albuquerque, NM, USA, 2003. [Google Scholar]
- Iannucci, J.; Eyer, J.; Erdman, B. Innovative Applications of Energy Storage in a Restructured Electricity Marketplace Phase III Final Report; SAND2003–2546; Sandia National Laboratories: Albuquerque, NM, USA, 2005. [Google Scholar]
- Kintner-Meyer, M. Smart Charger Technology for Customer Convenience and Grid Reliability. In Proceedings of the 24th Electric Vehicle Symposium, Stavanger, Norway, 13–16 May 2009; pp. 13–16. [Google Scholar]
- Hirst, E. Maximizing Generator Profits across Energy and Ancillary-Services Markets. Electr. J. 2000, 13, 61–69. [Google Scholar] [CrossRef]
- Keeli, A.; Sharma, R.K. Optimal use of second life battery for peak load management and improving the life of the battery. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Braco, E.; Martín, I.S.; Sanchis, P.; Ursu´a, A. Characterization and capacity dispersion of Lithium-ion second-life bat-teries from electric vehicles. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE In-dustrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–6. [Google Scholar]
- Neubauer, J.; Smith, K.; Wood, E.; Pesaran, A. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries (No. NREL/TP-5400-63332); National Renewable Energy Lab (NREL): Golden, CO, USA, 2015. [Google Scholar]
- Lih, W.-C.; Yen, J.-H.; Shieh, F.-H.; Liao, Y.-M. Second use of retired Lithium-ion battery packs from electric vehicles: Technological challenges, cost analysis and optimal business model. In Proceedings of the 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4–6 June 2012; pp. 381–384. [Google Scholar]
- Wood, E.; Alexander, M.; Bradley, T.H. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. J. Power Sources 2011, 196, 5147–5154. [Google Scholar] [CrossRef]
- Reinhardt, R.; Domingo, S.G.; Garcıa, B.A.; Christodoulou, I. Macro environmental analysis of the electric vehicle battery second use market. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Ahmadi, L.; Yip, A.; Fowler, M.; Young, S.B.; Fraser, R.A. Environmental feasibility of re-use of electric vehicle batteries. Sustain. Energy Technol. Assess. 2014, 6, 64–74. [Google Scholar] [CrossRef]
- Shokrzadeh, S.; Bibeau, E. Sustainable integration of intermittent renewable energy and electrified light-duty trans-portation through repurposing batteries of plug-in electric vehicles. Energy 2016, 106, 701–711. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A. Assessing electric vehicles battery second life remanufacture and management. J. Green Eng. 2016, 6, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Frieske, B.; Kloetzke, M.; Mauser, F. Trends in vehicle concept and key technology development for hybrid and battery electric vehicles. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Yang, F.; Wang, S.; Ouyang, M. Efficiency Improvement of Wireless Charging System Based on Active Power Source in Receiver. IEEE Access 2019, 7, 98136–98143. [Google Scholar] [CrossRef]
- Zhang, L.; Shaffer, B.; Brown, T.; Samuelsen, G.S. The optimization of DC fast charging deployment in California. Appl. Energy 2015, 157, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2012, 28, 2151–2169. [Google Scholar] [CrossRef]
- Suh, I.-S.; Kim, J. Electric vehicle on-road dynamic charging system with wireless power transfer technology. In Proceedings of the 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 234–240. [Google Scholar] [CrossRef]
- Wang, H.; Hasanzadeh, A.; Khaligh, A. Transportation Electrification: Conductive charging of electrified vehicles. IEEE Electrif. Mag. 2013, 1, 46–58. [Google Scholar] [CrossRef]
- Koufakis, A.-M.; Rigas, E.S.; Bassiliades, N.; Ramchurn, S.D. Towards an optimal EV charging scheduling scheme with V2G and V2V energy transfer. In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, Australia, 6–9 November 2016; pp. 302–307. [Google Scholar]
- Zeng, L.; Li, C.; Li, Z.; Shahidehpour, M.; Zhou, B.; Zhou, Q. Hierarchical Bipartite Graph Matching Method for Transactive V2V Power Exchange in Distribution Power System. IEEE Trans. Smart Grid 2020, 12, 301–311. [Google Scholar] [CrossRef]
- Saber, A.Y.; Venayagamoorthy, G.K. Intelligent unit commitment with vehicle-to-grid—A cost-emission optimization. J. Power Sources 2010, 195, 898–911. [Google Scholar] [CrossRef]
- Taylor, J.; Maitra, A.; Alexander, M.; Brooks, D.; Duvall, M. Evaluations of plug-in electric vehicle distribution system impacts. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008, 36, 3578–3587. [Google Scholar] [CrossRef]
- Hoang, D.T.; Wang, P.; Niyato, D.; Hossain, E. Charging and discharging of plug-in electric vehicles (PEVs) in vehi-cle-to-grid (V2G) systems: A cyber insurance-based model. IEEE Access 2017, 5, 732–754. [Google Scholar] [CrossRef]
- Wu, C.; Mohsenian-Rad, H.; Huang, J. Vehicle-to-Aggregator Interaction Game. IEEE Trans. Smart Grid 2011, 3, 434–442. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Hirsh, R.F. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy 2009, 37, 1095–1103. [Google Scholar] [CrossRef]
- Emadi, A. Transportation 2.0. IEEE Power Energy Mag. 2011, 9, 18–29. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Roget, A.B.; O’Neill, Z. Integrating Home Energy Simulation and Dynamic Electricity Price for Demand Response Study. IEEE Trans. Smart Grid 2013, 5, 779–788. [Google Scholar] [CrossRef]
- Lui, T.J.; Stirling, W.; Marcy, H.O. Get smart. IEEE Power Energy Mag. 2010, 8, 66–78. [Google Scholar] [CrossRef]
- Prendeville, S.; Sanders, C.; Sherry, J.; Costa, F. Circular economy: Is it enough. EcoDesign Centre, Wales. 2014. Available online: http://www.edcw.org/en/resources/circulareconomy-it-enough (accessed on 21 July 2014).
- Liu, C.; Chau, K.; Wu, D.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovic, I.; Thacker, T.; Dong, D.; Francis, G.; Podosinov, V.; Boroyevich, D.; Wang, F.; Burgos, R.; Skutt, G.; Lesko, J. Future home uninterruptible renewable energy system with vehicle-to-grid technology. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2675–2681. [Google Scholar] [CrossRef]
- Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale re-newable energy. J. Power Sources 2005, 144, 280–294. [Google Scholar] [CrossRef]
- Roberts, B.P.; Sandberg, C. The Role of Energy Storage in Development of Smart Grids. Proc. IEEE 2011, 99, 1139–1144. [Google Scholar] [CrossRef]
- Kempton, W.; Letendre, S.E. Electric vehicles as a new power source for electric utilities. Transp. Res. Part D Transp. Environ. 1997, 2, 157–175. [Google Scholar] [CrossRef]
- Letendre, S.E.; Kempton, W. The V2G concept: A new model for power? Public Util. Fortn. 2001, 140, 16–27. [Google Scholar]
- Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized Vehicle-to-Grid Control for Primary Frequency Regulation Considering Charging Demands. IEEE Trans. Power Syst. 2013, 28, 3480–3489. [Google Scholar] [CrossRef]
- Wei, W.; Mei, S.; Wu, L.; Shahidehpour, M.; Fang, Y. Optimal traffic-power flow in urban electrified transportation net-works. IEEE Trans. Smart Grid 2016, 8, 84–95. [Google Scholar] [CrossRef]
- Alizadeh, M.; Wai, H.-T.; Chowdhury, M.; Goldsmith, A.; Scaglione, A.; Javidi, T. Optimal Pricing to Manage Electric Vehicles in Coupled Power and Transportation Networks. IEEE Trans. Control Netw. Syst. 2016, 4, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, W.; Han, Z.; Cao, Z. Charging Scheduling of Electric Vehicles with Local Renewable Energy Under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Trans. Veh. Technol. 2013, 63, 2600–2612. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Wang, X.; Shahidehpour, M.; Wang, X.; Wang, B. Partial Decomposition for Distributed Electric Vehicle Charging Control Considering Electric Power Grid Congestion. IEEE Trans. Smart Grid 2016, 8, 75–83. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, F.; Hodge, B.-M.; Zhang, J.; Li, Z.; Shafie-Khah, M.; Catalao, J.P. Dynamic price vector formation mod-el-based automatic demand response strategy for PV-assisted EV charging stations. IEEE Trans. Smart Grid 2017, 8, 2903–2915. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Benidris, M. A smart charging strategy for electric vehicles to increase their hosting capacity in dis-tribution systems. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019; pp. 1–6. [Google Scholar]
- Liu, C.; Guo, J.; Hui, H.; Fu, Y. Modeling of Operating Reserve Demand Curves and System-Level Price Adders in Real-Time Energy-Only Market. IEEE Trans. Power Syst. 2018, 33, 4797–4808. [Google Scholar] [CrossRef]
- Zhou, Q.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. A Cyber-Attack Resilient Distributed Control Strategy in Islanded Microgrids. IEEE Trans. Smart Grid 2020, 11, 3690–3701. [Google Scholar] [CrossRef]
- Biviji, M.; Uckun, C.; Bassett, G.; Wang, J.; Ton, D. Patterns of electric vehicle charging with time of use rates: Case studies in California and Portland. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar]
- Li, G.; Zhang, X.-P. Modeling of Plug-in Hybrid Electric Vehicle Charging Demand in Probabilistic Power Flow Calculations. IEEE Trans. Smart Grid 2012, 3, 492–499. [Google Scholar] [CrossRef]
- Purnell, K.; Bruce, A.; MacGill, I. Impacts of electrifying public transit on the electricity grid, from regional to state level analysis. Appl. Energy 2022, 307, 118272. [Google Scholar] [CrossRef]
- Soofi, A.F.; Bayani, R.; Manshadi, S.D. Investigating the impact of electric vehicles on the voltage profile of distribution networks. arXiv 2020, arXiv:2012.12806. [Google Scholar]
- Soofi, A.F.; Bayani, R.; Manshadi, S.D. Analyzing Power Quality Implications of High Level Charging Rates of Electric Vehicle Within Distribution Networks. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 684–689. [Google Scholar] [CrossRef]
- Saber, A.Y.; Venayagamoorthy, G.K. Plug-in Vehicles and Renewable Energy Sources for Cost and Emission Reductions. IEEE Trans. Ind. Electron. 2010, 58, 1229–1238. [Google Scholar] [CrossRef]
- Kádár, P.; Varga, A. Photovoltaic EV charge station. In Proceedings of the 2013 IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 31 January–2 February 2013; pp. 57–60. [Google Scholar]
- Li, G.; Bie, Z.; Hua, B.; Wang, X. Reliability evaluation of distribution systems including micro-grids considering demand response and energy storage. In Proceedings of the 47th International Universities Power Engineering Conference (UPEC), Uxbridge, UK, 4–7 September 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Pourmousavi, S.A.; Nehrir, M.H. Real-Time Central Demand Response for Primary Frequency Regulation in Microgrids. IEEE Trans. Smart Grid 2012, 3, 1988–1996. [Google Scholar] [CrossRef]
- Olovsson, J.; Taljegard, M.; Von Bonin, M.; Gerhardt, N.; Johnsson, F. Impacts of Electric Road Systems on the German and Swedish Electricity Systems—An Energy System Model Comparison. Front. Energy Res. 2021, 9, 338. [Google Scholar] [CrossRef]
- Fan, Z. A Distributed Demand Response Algorithm and Its Application to PHEV Charging in Smart Grids. IEEE Trans. Smart Grid 2012, 3, 1280–1290. [Google Scholar] [CrossRef]
- Clairand, J.-M.; Rodrıguez-Garcıa, J.; lvarez-Bel, C.A. Smart charging for electric vehicle aggregators considering users’ preferences. IEEE Access 2018, 6, 624–635. [Google Scholar] [CrossRef]
- Khatami, R.; Parvania, M.; Narayan, A. Flexibility reserve in power systems: Definition and stochastic multi-fidelity opti-mization. IEEE Trans. Smart Grid 2019, 11, 644–654. [Google Scholar] [CrossRef]
- Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. Electr. J. 2015, 28, 53–68. [Google Scholar] [CrossRef]
- Suul, J.A.; D’Arco, S.; Guidi, G. Virtual synchronous machine-based control of a single-phase bi-directional battery charger for providing vehicle- to-grid services. IEEE Trans. Ind. Appl. 2016, 52, 3234–3244. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, Q.; Sun, H.; Wang, J. Tsinghua-Berkeley Shenzhen Institute (TBSI); Department of Electrical Engineering at Southern Methodist University Extended sufficient conditions for exact relaxation of the complementarity constraints in storage-concerned economic dispatch. CSEE J. Power Energy Syst. 2018, 4, 504–512. [Google Scholar] [CrossRef]
- Liu, H.; Qi, J.; Wang, J.; Li, P.; Li, C.; Wei, H. EV Dispatch Control for Supplementary Frequency Regulation Considering the Expectation of EV Owners. IEEE Trans. Smart Grid 2016, 9, 3763–3772. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Li, Z.; Sun, H.; Guo, Q.; Wang, B. Coordination on Industrial Load Control and Climate Control in Manufacturing Industry Under TOU Prices. IEEE Trans. Smart Grid 2017, 10, 139–152. [Google Scholar] [CrossRef]
- Liu, H.; Huang, K.; Yang, Y.; Wei, H.; Ma, S. Real-time vehicle-to-grid control for frequency regulation with high frequency regulating signal. Prot. Control Mod. Power Syst. 2018, 3, 13. [Google Scholar] [CrossRef]
- Dow, L.; Marshall, M.; Xu, L.; Agüero, J.R.; Willis, H.L. A novel approach for evaluating the impact of electric vehicles on the power distribution system. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [Google Scholar]
- Karmaker, A.K.; Roy, S.; Ahmed, R. Analysis of the Impact of Electric Vehicle Charging Station on Power Quality Issues. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 2011, 81, 185–192. [Google Scholar] [CrossRef]
- Nizami, M.S.H.; Hossain, J.; Fernandez, E. Multiagent-Based Transactive Energy Management Systems for Residential Buildings with Distributed Energy Resources. IEEE Trans. Ind. Inform. 2019, 16, 1836–1847. [Google Scholar] [CrossRef]
- Nour, M.; Said, S.M.; Ali, A.; Farkas, C. Smart charging of electric vehicles according to electricity price. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 432–437. [Google Scholar]
- He, F.; Wu, D.; Yin, Y.; Guan, Y. Optimal deployment of public charging stations for plug-in hybrid electric vehicles. Transp. Res. Part B Methodol. 2013, 47, 87–101. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Z.; Wen, F.; Wong, K.P. Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations. IEEE Trans. Power Deliv. 2013, 28, 2363–2372. [Google Scholar] [CrossRef]
- Yao, W.; Zhao, J.; Wen, F.; Dong, Z.; Xue, Y.; Xu, Y.; Meng, K. A Multi-Objective Collaborative Planning Strategy for Integrated Power Distribution and Electric Vehicle Charging Systems. IEEE Trans. Power Syst. 2014, 29, 1811–1821. [Google Scholar] [CrossRef]
- Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Karegar, H.K. Optimal fast charging station placing and sizing. Appl. Energy 2014, 125, 289–299. [Google Scholar] [CrossRef]
- Luo, C.; Huang, Y.-F.; Gupta, V. Placement of EV Charging Stations—Balancing Benefits Among Multiple Entities. IEEE Trans. Smart Grid 2015, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, V.; Afonso, J.A.; Ferreira, J.C.; Afonso, J.L. Vehicle electrification: New challenges and opportunities for smart grids. Energies 2019, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Trans. Power Syst. 2009, 25, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Loeb, B.; Kockelman, K.M. Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas. Transp. Res. Part A Policy Pract. 2019, 121, 374–385. [Google Scholar] [CrossRef]
- Chen, T.D.; Kockelman, K.M. Management of a Shared Autonomous Electric Vehicle Fleet: Implications of Pricing Schemes. Transp. Res. Rec. J. Transp. Res. Board 2016, 2572, 37–46. [Google Scholar] [CrossRef]
- Bauer, G.S.; Greenblatt, J.B.; Gerke, B.F. Cost, Energy, and Environmental Impact of Automated Electric Taxi Fleets in Manhattan. Environ. Sci. Technol. 2018, 52, 4920–4928. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lin, D.; Pantelidis, T.; Chow, J.; Jabari, S.E. An Agent-based Simulation for Shared Automated Electric Vehicles with Vehicle Relocation. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar] [CrossRef]
- Iacobucci, R.; McLellan, B.; Tezuka, T. The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid. Energies 2018, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.S.; Meintz, A.; Zhu, L. System Design and Optimization of In-Route Wireless Charging Infrastructure for Shared Automated Electric Vehicles. IEEE Access 2019, 7, 79968–79979. [Google Scholar] [CrossRef]
- Iacobucci, R.; McLellan, B.; Tezuka, T. Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid. Transp. Res. Part C Emerg. Technol. 2019, 100, 34–52. [Google Scholar] [CrossRef]
- Farhan, J.; Chen, T.D. Impact of ridesharing on operational efficiency of shared autonomous electric vehicle fleet. Transp. Res. Part C Emerg. Technol. 2018, 93, 310–321. [Google Scholar] [CrossRef]
- Kang, N.; Feinberg, F.M.; Papalambros, P.Y. Autonomous Electric Vehicle Sharing System Design. J. Mech. Des. 2016, 139, 011402. [Google Scholar] [CrossRef]
- Abu Alkheir, A.; Aloqaily, M.; Mouftah, H.T. Connected and Autonomous Electric Vehicles (CAEVs). IT Prof. 2018, 20, 54–61. [Google Scholar] [CrossRef]
- Miao, H.; Jia, H.; Li, J.; Qiu, T.Z. Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology. Energy 2018, 169, 797–818. [Google Scholar] [CrossRef]
- Tuttle, B.; Cowles, T. Traffic jams cost Americans 124 billion in 2013. Time-Money 2014. Available online: https://bit.ly/3rIGjzr (accessed on 30 September 2022).
- Banerjee, S.; Johari, R.; Riquelme, C. Pricing in ride-sharing platforms: A queueing-theoretic approach. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, Portland, OR, USA, 15–19 June 2015; p. 639. [Google Scholar]
- Iglesias, R.; Rossi, F.; Zhang, R.; Pavone, M. A BCMP network approach to modeling and controlling autonomous mo-bility-on-demand systems. Int. J. Robot. Res. 2019, 38, 357–374. [Google Scholar] [CrossRef]
- Zhang, R.; Pavone, M. Control of robotic mobility-on-demand systems: A queueing-theoretical perspective. Int. J. Robot. Res. 2016, 35, 186–203. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; Kockelman, K.M.; Boyles, S.D.; Li, T. A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application. Comput. Environ. Urban Syst. 2017, 64, 373–383. [Google Scholar] [CrossRef]
- Maciejewski, M.; Bischoff, J.; Hörl, S.; Nagel, K. Towards a testbed for dynamic vehicle routing algorithms. In Proceedings of the International Conference on Practical Applications of Agents and Multi-Agent Systems, Porto, Portugal, 21–23 June 2017; pp. 69–79. [Google Scholar]
- Hörl, S.; Ruch, C.; Becker, F.; Frazzoli, E.; Axhausen, K.W. Fleet control algorithms for automated mobility: A simulation assessment for Zurich. In Proceedings of the 2018 TRB Annual Meeting Online. Transportation Research Board, Washington, DC, USA, 7–11 January 2018; p. 18-02171. [Google Scholar]
- Rossi, F.; Zhang, R.; Hindy, Y.; Pavone, M. Routing autonomous vehicles in congested transportation networks: Structural properties and coordination algorithms. Autonomous Robots 2018, 42, 1427–1442. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, R.; Rossi, F.; Wang, K.; Hallac, D.; Leskovec, J.; Pavone, M. Data-Driven Model Predictive Control of Autonomous Mobility-on-Demand Systems. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Spieser, K.; Treleaven, K.; Zhang, R.; Frazzoli, E.; Morton, D.; Pavone, M. Toward a systemic approach to the design and evaluation of automated mobility-on-demand systems: A case study in Singapore. In Road Vehicle Automation. Lecture Notes in Mobility; Meyer, G., Beiker, S., Eds.; Springer: Cham, Switzerland, 2014; pp. 229–245. [Google Scholar]
- Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 2009, 37, 4379–4390. [Google Scholar] [CrossRef]
- Abdul-Manan, A.F.N.; Zavaleta, V.G.; Agarwal, A.K.; Kalghatgi, G.; Amer, A.A. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Kazemzadeh, E.; Koengkan, M.; Fuinhas, J.A.; Teixeira, M.; Mejdalani, A. Heterogeneous Impact of Electrification of Road Transport on Premature Deaths from Outdoor Air Pollution: A Macroeconomic Evidence from 29 European Countries. World Electr. Veh. J. 2022, 13, 155. [Google Scholar] [CrossRef]
- Lave, L.B.; MacLean, H.L. An environmental-economic evaluation of hybrid electric vehicles: Toyota’s prius vs. its con-ventional internal combustion engine Corolla. Transp. Res. Part D Transp. Environ. 2002, 7, 155–162. [Google Scholar] [CrossRef]
- Nanaki, E.A.; Koroneos, C.J. Comparative economic and environmental analysis of conventional, hybrid and electric vehicles–the case study of Greece. J. Clean. Prod. 2013, 53, 261–266. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Ward, J.; Joseck, F.; Gohlke, D.; Lindauer, A.; Ramsden, T.; Biddy, M.; Alexander, M.; Barnhart, S.; et al. Cradle-to-grave lifecycle analysis of US light duty vehicle-fuel pathways: A greenhouse gas emissions and economic as-sessment of current (2015) and future (2025–2030) technologies; Argonne National Lab. (ANL): Argonne, IL, USA, 2016. [Google Scholar]
- Plötz, P.; Funke, S.Á.; Jochem, P. The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transp. Res. Part A Policy Pract. 2018, 118, 331–340. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Wu, Y.; Wallington, T.J.; Lu, X.; Tamor, M.A.; McElroy, M.B.; Zhang, K.M.; Nielsen, C.P.; Hao, J. Economic and climate benefits of electric vehicles in China, the United States, and Germany. Environ. Sci. Technol. 2019, 53, 11013–11022. [Google Scholar] [CrossRef]
- Al-Alawi, B.M. Techno-Economic Analysis and Decision Making for PHEV Benefits to Society, Consumers, Policymakers and Automakers. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2012. [Google Scholar]
- Fan, Z.; Oviedo, R.M.; Gormus, S.; Kulkarni, P. The reign of EVs? An economic analysis from consumer’s perspective. IEEE Electrif. Mag. 2014, 2, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Shiau, C.-S.N.; Samaras, C.; Hauffe, R.; Michalek, J.J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 2009, 37, 2653–2663. [Google Scholar] [CrossRef]
- De Schepper, E.; Van Passel, S.; Lizin, S. Economic benefits of combining clean energy technologies: The case of solar photovoltaics and battery electric vehicles. Int. J. Energy Res. 2015, 39, 1109–1119. [Google Scholar] [CrossRef]
- Malmgren, I. Quantifying the Societal Benefits of Electric Vehicles. World Electr. Veh. J. 2016, 8, 996–1007. [Google Scholar] [CrossRef]
Powertrain Type | Lifetime Maintenance and Repair Costs | Lifetime Savings versus ICE |
---|---|---|
ICE | $9200 | - |
BEV | $4600 | $4600 |
PHEV | $4600 | $4600 |
Power Level | Voltage Level (V) | Charging Speed (mph) | Location |
---|---|---|---|
Level 1 | 120 | 3 to 5 | Home/Workplace/Public |
Level 2 | 208–240 | 12 to 80 | Home/Workplace/Public |
Level 3 | 400–900 | 180 to 1200 | Public |
Without PHEVs | Uncoordinated Charging | Coordinated Charging | |
---|---|---|---|
Peak Load (kVA) | 23 | 36 | 25 |
Line Current (A) | 105 | 163 | 112 |
Node Voltage(V) | 220 | 217 | 220 |
Power Losses (%) | 1.4 | 2.4 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayani, R.; Soofi, A.F.; Waseem, M.; Manshadi, S.D. Impact of Transportation Electrification on the Electricity Grid—A Review. Vehicles 2022, 4, 1042-1079. https://doi.org/10.3390/vehicles4040056
Bayani R, Soofi AF, Waseem M, Manshadi SD. Impact of Transportation Electrification on the Electricity Grid—A Review. Vehicles. 2022; 4(4):1042-1079. https://doi.org/10.3390/vehicles4040056
Chicago/Turabian StyleBayani, Reza, Arash F. Soofi, Muhammad Waseem, and Saeed D. Manshadi. 2022. "Impact of Transportation Electrification on the Electricity Grid—A Review" Vehicles 4, no. 4: 1042-1079. https://doi.org/10.3390/vehicles4040056
APA StyleBayani, R., Soofi, A. F., Waseem, M., & Manshadi, S. D. (2022). Impact of Transportation Electrification on the Electricity Grid—A Review. Vehicles, 4(4), 1042-1079. https://doi.org/10.3390/vehicles4040056