Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets and Experimental Design
2.3. Intramammary Infection
2.4. Dry Matter Intake, Water Intake, Milk Yield, Milk Quality, and Rectal Temperature
2.5. Milk Bacteria Sampling and Culture
2.6. Blood Collection and Analysis
2.7. Phagocytosis Assay
2.8. Migration Assay
2.9. Statistical Analysis
3. Results
3.1. Characterization of the Silages
3.2. Overall Response to Intramammary Infection (IMI)
3.3. Response of Ewes Fed Chicory-Plantain and Se Yeast
4. Discussion
4.1. Characterization of the IMI Model
4.2. The Type of Silage Had a Minimal Effect on the Response to IMI
4.3. Se Supplementation Does Not Affect the Response to IMI
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOPP | Advanced oxidation protein products |
BHBA | β-hydroxybutyric acid |
FRAP | Ferric-reducing ability of the plasma |
IL6 | Interleukin 6 |
IMI | Intramammary infection |
NEFA | Non-esterified fatty acid |
NO | Nitric Oxide |
SCC | Milk somatic cells |
Appendix A
Appendix A.1. Bromological Analysis of the Silages
Unit | Grass | Chicory | Plantain | |
---|---|---|---|---|
Dry matter | 45.5 | 38.2 | 54.4 | |
pH | 4.43 | 4.37 | 4.74 | |
Ammonia | % DM | 1.71 | 0.74 | 0.70 |
Ammonia | % CP | 15.0 | 8.54 | 5.92 |
Total VFA | % DM | 6.10 | 7.38 | 6.30 |
Lactic acid | % VFA | 82.0 | 78.6 | 92.1 |
Lactic acid | % DM | 5.0 | 5.8 | 5.8 |
Acetic acid | % DM | 1.10 | 1.58 | 0.50 |
Propionic acid | % DM | ND | ND | ND |
Butyric acid | % DM | ND | ND | ND |
Iso-butyric acid | % DM | ND | ND | ND |
Alcohols | ND | ND | ND | |
Acetates | ND | ND | ND | |
Lactates | ND | ND | ND |
Appendix A.2. Protocol and Results of Secondary Compounds in Silages
Sample Preparation
System: | Shimadzu LC Nexera and Shimadzu MS QQQ 8060 | |
Column: | Waters Cortecs C18 1.6 µm particle size | |
2.1 mm I.D. × 50 mm L | ||
Guard Column: | C18 | |
Oven Temperature: | 40 °C | |
Flow Rate: | 0.4 mL/min | |
Pressure: | 7300 psi initial condition | |
Solvents: | (A) H2O + 0.01% formic acid | |
(B) Acetonitrile + 0.01% formic acid | ||
Gradient: | 0.00 min | 10% B |
0.10 min | 10% B | |
1.00 min | 30% B | |
1.75 min | 90% B | |
2.00 min | 90% B | |
2.01 min | 10% B | |
3.00 min | end | |
Injection: | 5 µL | |
Elution Time: | ||
1.09 min | cathechin | |
1.26 min | epicatechin | |
1.53 min | taxifolin | |
1.72 min | resveratrol | |
1.80 min | quercetin | |
1.91 min | kaempferol | |
1.93 min | isorhamnetin | |
2.10 min | biochanin A | |
MS Runtime: | 0.00 min–3.00 min | |
divert valve 0.50 min | ||
SRM Transitions: | ||
catechin (–) | Q: 289.30 → 245.20 m/z (CE: +15 eV) 15 ms | |
q: 289.30 → 203.20 m/z (CE: +20 eV) 15 ms | ||
epicatechin (–) | Q: 289.30 → 245.20 m/z (CE: +15 eV) 15 ms | |
q: 289.30 → 203.20 m/z (CE: +20 eV) 15 ms | ||
taxifolin (–) | Q: 303.30 → 285.20 m/z (CE: +12 eV) 15 ms | |
q: 303.30 → 125.20 m/z (CE: +22 eV) 15 ms | ||
resveratrol (+) | Q: 229.30 → 107.20 m/z (CE: −21 eV) 15 ms | |
q: 229.30 → 135.20 m/z (CE: −14 eV) 15 ms | ||
quercetin (–) | Q: 301.30 → 151.20 m/z (CE: +22 eV) 15 ms | |
q: 301.30 → 179.20 m/z (CE: +19 eV) 15 ms | ||
kaempferol (+) | Q: 287.30 → 153.20 m/z (CE: −31 eV) 15 ms | |
q: 287.30 → 121.20 m/z (CE: −30 eV) 15 ms | ||
isorhamnetin (+) | Q: 317.30 → 302.20 m/z (CE: −24 eV) 15 ms | |
q: 317.30 → 153.20 m/z (CE: −34 eV) 15 ms | ||
biochanin A (+) | Q: 285.30 → 213.20 m/z (CE: −39 eV) 15 ms | |
q: 285.30 → 253.20 m/z (CE: −17 eV) 15 ms |
System: | Shimadzu LC Nexera and Shimadzu MS QQQ 8060 | |
Column: | Waters Cortecs C18 1.6 µm particle size | |
2.1 mm I.D. × 50 mm L | ||
Guard Column: | C18 | |
Oven Temperature: | 40 °C | |
Flow Rate: | 0.4 mL/min | |
Pressure: | 8000 psi initial condition | |
Solvents: | (A) H2O + 0.1% formic acid | |
(B) Acetonitrile + 0.1% formic acid | ||
Gradient: | 0.00 min | 5% B |
0.15 min | 5% B | |
1.75 min | 45% B | |
2.75 min | 90% B | |
3.00 min | 90% B | |
3.01 min | 5% B | |
4.00 min | end | |
Injection: | 5 µL | |
Elution Time: | ||
1.56 min | cyanidin-3-O-glucoside | |
1.65 min | peonidin-3-O-glucoside | |
1.66 min | malvidin-3-O-glucoside | |
1.85 min | peonidin-3-O-acetylglucoside | |
1.86 min | malvidin-3-O-acetylglucoside | |
1.90 min | malvidin-3-O-caffeoylglucoside | |
1.92 min | cyanidin-3-O-p-coumarylglucoside | |
1.99 min | peonidin-3-O-p-coumarylglucoside | |
2.00 min | malvidin-3-O-p-coumarylglucoside | |
2.82 min | biochanin A | |
MS Runtime: | 0.00 min–4.00 min | |
divert valve 0.50 min | ||
SRM Transitions: | ||
*cyanidin-3-O-glucoside (+) | Q: 449.30 → 287.20 m/z (CE: −25 eV) 15 ms | |
q: 449.30 → 137.20 m/z (CE: −50 eV) 15 ms | ||
*peonidin-3-O-glucoside (+) | Q: 463.30 → 301.20 m/z (CE: −25 eV) 15 ms | |
q: 463.30 → 286.20 m/z (CE: −43 eV) 15 ms | ||
*malvidin-3-O-glucoside (+) | Q: 493.30 → 331.20 m/z (CE: −25 eV) 15 ms | |
q: 493.30 → 315.20 m/z (CE: −50 eV) 15 ms | ||
*peonidin-3-O-acetylglucoside (+) | Q: 505.30 → 301.20 m/z (CE: −25 eV) 15 ms | |
*malvidin-3-O-acetylglucoside (+) | Q: 535.30 → 331.20 m/z (CE: −25 eV) 15 ms | |
*malvidin-3-O-caffeoylglucoside (+) | Q: 655.30 → 331.20 m/z (CE: −25 eV) 15 ms | |
*cyanidin-3-O-p-coumarylglucoside (+) | Q: 595.30 → 287.20 m/z (CE: −25 eV) 15 ms | |
*peonidin-3-O-p-coumarylglucoside (+) | Q: 609.30 → 301.20 m/z (CE: −25 eV) 15 ms | |
*malvidin-3-O-p-coumarylglucoside (+) | Q: 639.30 → 331.20 m/z (CE: −25 eV) 15 ms | |
*biochanin A (+) | Q: 285.30 → 213.20 m/z (CE: −39 eV) 15 ms | |
q: 285.30 → 253.20 m/z (CE: −17 eV) 15 ms |
System: | Shimadzu LC Nexera and Shimadzu MS Q-ToF 9030 | |
Column: | Waters Cortecs C18 2.7 µm particle size | |
2.1 mm I.D. × 50 mm L | ||
Guard Column: | C18 | |
Oven Temperature: | 35 °C | |
Flow Rate: | 0.3 mL/min | |
Pressure: | 2500 psi initial condition | |
Solvents: | (A) H2O + 0.1% formic acid | |
(B) Acetonitrile + 0.1% formic acid | ||
Gradient: | ||
0.00 min | 10% B | |
0.10 min | 10% B | |
1.00 min | 30% B | |
13.0 min | 90% B | |
14.0 min | 10% B | |
16.0 min | end |
- Data analysis:
- Results
Appendix A.3. Protocol for the Bacterial Analysis in Milk
- Samples were plated on MacConkey (Gram-negative specific) and blood agar with esculin (sheep blood, supports general growth).
- Plates were placed in a humidified incubator at 37 °C.
- Agar plates were observed for growth at 24 and 48 h after inoculation.
- If no growth on blood or MacConkey agars was observed after 48 h, the sample was identified as “No Growth”.
- If growth occurred on MacConkey agar after 24 h, colonies were identified as Gram-negative organisms. Identification was by colony morphology on blood and MacConkey agar.
- If growth occurred on blood agar but not on MacConkey agar at 24 or 48 h, colonies were identified as Gram-positive organisms.
- Initial identification was based on colony morphology on blood agar.
- Organisms were identified as Staphylococcus or Streptococcus organisms using the catalase test and esculin fermentation on the plate:
- i.
- Catalase positive = Staphylococcus;
- ii.
- Catalase negative = Streptococcus.
- Staphylococcal organisms were further speciated using the coagulase test and colony morphology:
- i.
- Coagulase positive = Staphylococcus aureus;
- ii.
- Coagulase negative = “Staphylococcus species”.
- If 2–3 species were present on the blood agar, the sample was classified as mixed. If more than 3 species occurred on the blood agar, the sample was classified as contaminated.
- evaluated by Gram-stain and microscopic evaluation.
References
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Steeneveld, W.; Wolf, C.A. Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis. Annu. Rev. Resour. Econ. 2019, 11, 289–312. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Mavrogianni, V.S.; Petridis, I.G.; Vasileiou, N.G.C.; Fthenakis, G.C. Mastitis in sheep—The last 10 years and the future of research. Vet. Microbiol. 2015, 181, 136–146. [Google Scholar] [CrossRef]
- Martí-De Olives, A.; Peris, C.; Molina, M.P. Effect of subclinical mastitis on the yield and cheese-making properties of ewe’s milk. Small Rumin. Res. 2020, 184, 106044. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Leslie, K.E. Evaluation of changes in somatic cell counts as indicators of new intramammary infections. Prev. Vet. Med. 1991, 10, 225–237. [Google Scholar] [CrossRef]
- Libera, K.; Konieczny, K.; Grabska, J.; Smulski, S.; Szczerbal, I.; Szumacher-Strabel, M.; Pomorska-Mól, M. Potential novel biomarkers for mastitis diagnosis in sheep. Animals 2021, 11, 2783. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weersink, A.; Vanleeuwen, J.; Chi, J. Direct Production Losses and Treatment Costs due to Four Dairy Cattle Diseases. Adv. Dairy. Technol. 2002, 14, 55. [Google Scholar]
- White, D.G.; McDermott, P.F. Emergence and Transfer of Antibacterial Resistance. J. Dairy. Sci. 2001, 84, E151–E155. [Google Scholar] [CrossRef]
- Li, X.; Xu, C.; Liang, B.; Kastelic, J.P.; Han, B.; Tong, X.; Gao, J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front. Vet. Sci. 2023, 10, 1160350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilson, R.L.; Bionaz, M.; MacAdam, J.W.; Beauchemin, K.A.; Naumann, H.D.; Ates, S. Milk production, nitrogen utilization, and methane emissions of dairy cows grazing grass, forb, and legume-based pastures. J. Anim. Sci. 2020, 98, skaa220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pena-Espinoza, M.; Valente, A.H.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L.; Lopez-Munoz, R.; Williams, A.R. Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: A review. Parasit. Vectors 2018, 11, 475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gardiner, C.; Clough, T.; Cameron, K.; Di, H.; Edwards, G.; de Klein, C. Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: A review. N. Z. J. Agric. Res. 2016, 59, 301–317. [Google Scholar] [CrossRef]
- Navarrete, S.; Kemp, P.D.; Pain, S.J.; Back, P.J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2016, 222, 158–167. [Google Scholar] [CrossRef]
- Park, K.S. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-alpha-induced inflammatory responses through suppression of NF-kappaB activation in 3T3-L1 adipocytes. Cytokine 2013, 62, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M. Mammary Gland Immunobiology and Resistance to Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaaf, S.; Batty, B.; Krueger, A.; Estill, C.T.; Bionaz, M. Selenium biofortified alfalfa hay fed in low quantities improves selenium status and glutathione peroxidase activity in transition dairy cows and their calves. J. Dairy. Res. 2020, 87, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Vorachek, W.R.; Stewart, W.C.; Gorman, M.E.; Mosher, W.D.; Pirelli, G.J.; Bobe, G. Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS ONE 2013, 8, e82572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, K.L.; Harrison, J.H.; Hancock, D.D.; Todhunter, D.A.; Conrad, H.R. Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. J. Dairy Sci. 1984, 67, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Ford, H.; Hasan, D.; Ates, S.; Puerto-Hernandez, G.; Klopfenstein, J.J.; Trevisi, E.; Smallman, M.; Matra, M.; Bionaz, M. Feeding chicory silage, but not Se-yeast or a single injection of inorganic Se, affects metabolism, fat in milk, and type I immunity in transition ewes. Front. Anim. Sci. 2024, 5, 1499480. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384. [Google Scholar]
- Rosa, F.; Osorio, J.S.; Trevisi, E.; Yanqui-Rivera, F.; Estill, C.T.; Bionaz, M. 2,4-Thiazolidinedione Treatment Improves the Innate Immune Response in Dairy Goats with Induced Subclinical Mastitis. PPAR Res. 2017, 2017, 7097450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Addis, M.F.; Pisanu, S.; Marogna, G.; Cubeddu, T.; Pagnozzi, D.; Cacciotto, C.; Campesi, F.; Schianchi, G.; Rocca, S.; Uzzau, S. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep. Infect. Immun. 2013, 81, 3182–3197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ginn, R.E.; Packard, V.S.; Fox, T.L. Evaluation of the 3M Dry Medium Culture Plate (Petrifilm SM) Method for Determining Numbers of Bacteria in Raw Milk (1). J. Food Prot. 1984, 47, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, T.C.; Trevisi, E.; Osorio, J.S. An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants 2021, 10, 1478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jahan, N.; Minuti, A.; Trevisi, E. Assessment of immune response in periparturient dairy cows using ex vivo whole blood stimulation assay with lipopolysaccharides and carrageenan skin test. Vet. Immunol. Immunopathol. 2015, 165, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Alba, D.F.; da Rosa, G.; Hanauer, D.; Saldanha, T.F.; Souza, C.F.; Baldissera, M.D.; da Silva Dos Santos, D.; Piovezan, A.P.; Girardini, L.K.; Schafer Da Silva, A. Subclinical mastitis in Lacaune sheep: Causative agents, impacts on milk production, milk quality oxidative profiles and treatment efficacy of ceftiofur. Microb. Pathog. 2019, 137, 103732. [Google Scholar] [CrossRef] [PubMed]
- Moyes, K.M.; Larsen, T.; Sorensen, P.; Ingvartsen, K.L. Changes in various metabolic parameters in blood and milk during experimental Escherichia coli mastitis for primiparous Holstein dairy cows during early lactation. J. Anim. Sci. Biotechnol. 2014, 5, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Randolph, H.E.; Erwin, R.E. Influence of mastitis on properties of milk. X. Fatty acid composition. J. Dairy Sci. 1974, 57, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.E.; Weber, H. Dehydration despite drinking: Beyond the BUN/Creatinine ratio. J. Am. Med. Dir. Assoc. 2004, 5, S67–S71. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, N.G.C.; Chatzopoulos, D.C.; Sarrou, S.; Fragkou, I.A.; Katsafadou, A.I.; Mavrogianni, V.S.; Petinaki, E.; Fthenakis, G.C. Role of staphylococci in mastitis in sheep. J. Dairy Res. 2019, 86, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement. Sci. World J. 2017, 2017, 7343928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Webster, J. The Biochemistry of Silage (Second Edition). By P. McDonald, A.R. Henderson and S. J. E. Heron. Marlow, Bucks, UK: Chalcombe Publications, (1991), pp. 340, £49.50, ISBN 0-948617-225. Exp. Agric. 1992, 28, 125. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Seeno, E.; MacAdam, J.; Melathopoulos, A.; Filley, S.; Ates, S. Management of perennial forbs sown with or without self-regenerating annual clovers for forage and nectar sources in a low-input dryland production system. Grass Forage Sci. 2023, 78, 462–479. [Google Scholar] [CrossRef]
- Seeno, E.; Naumann, H.; Ates, S. Production and chemical composition of pasture forbs with high bioactive compounds in a low input production system in the Pacific Northwest. Anim. Feed. Sci. Technol. 2022, 289, 115324. [Google Scholar] [CrossRef]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Bertolin, J.R.; Blanco, M.; Lobon, S.; Joy, M. Fatty acid profile, secondary compounds and antioxidant activities in the fresh forage, hay and silage of sainfoin (Onobrychis viciifolia) and sulla (Hedysarum coronarium). J. Sci. Food Agric. 2022, 102, 4736–4743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martens, S.D.; Hoedtke, S.; Avila, P.; Heinritz, S.N.; Zeyner, A. Effect of ensiling treatment on secondary compounds and amino acid profile of tropical forage legumes, and implications for their pig feeding potential. J. Sci. Food Agric. 2014, 94, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Bochniarz, M.; Zdzisinska, B.; Wawron, W.; Szczubial, M.; Dabrowski, R. Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative staphylococci. J. Dairy Sci. 2017, 100, 9674–9680. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.M.; Hassan, H.M.; Ibrahim, I.M.; Mikhail, M.M. The impact of staphylococcal mastitis on the level of milk IL-6, lysozyme and nitric oxide. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Spittler, A.; Razenberger, M.; Kupper, H.; Kaul, M.; Hackl, W.; Boltz-Nitulescu, G.; Fugger, R.; Roth, E. Relationship between interleukin-6 plasma concentration in patients with sepsis, monocyte phenotype, monocyte phagocytic properties, and cytokine production. Clin. Infect. Dis. 2000, 31, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Forcina, L.; Franceschi, C.; Musaro, A. The hormetic and hermetic role of IL-6. Ageing Res. Rev. 2022, 80, 101697. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Merin, U.; Shapiro, F.; Leitner, G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J. Dairy Sci. 2014, 97, 3449–3455. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Gabai, G.; Trevisi, E. Administration of an Immune Stimulant during the Transition Period Improved Lipid Metabolism and Rumination without Affecting Inflammatory Status. Animals 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tabatabaee, N.; Heidarpour, M.; Khoramian, B. Milk metabolites, proteins and oxidative stress markers in dairy cows suffering from Staphylococcus aureus subclinical mastitis with or without spontaneous cure. J. Dairy Res. 2021, 88, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jia, D.; He, R.; Lian, S.; Wang, J.; Wu, R. Association Between Serum Selenium Level and Subclinical Mastitis in Dairy Cattle. Biol. Trace Elem. Res. 2021, 199, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Chen, Y.; Qiu, C.; Guo, M.Y. LncRNAs Transcriptome Analysis Revealed Potential Mechanisms of Selenium to Mastitis in Dairy Cows. Biol. Trace Elem. Res. 2022, 200, 4316–4324. [Google Scholar] [CrossRef] [PubMed]
- Malbe, M.; Klaassen, M.; Fang, W.; Myllys, V.; Vikerpuur, M.; Nyholm, K.; Sankari, S.; Suoranta, K.; Sandholm, M. Comparisons of selenite and selenium yeast feed supplements on Se-incorporation, mastitis and leucocyte function in Se-deficient dairy cows. Zentralbl Vet. A 1995, 42, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.L.; Hogan, J.S.; Weiss, W.P. Dietary vitamin E and selenium affect mastitis and milk quality. J. Anim. Sci. 1997, 75, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Salman, S.; Khol-Parisini, A.; Schafft, H.; Lahrssen-Wiederholt, M.; Hulan, H.W.; Dinse, D.; Zentek, J. The role of dietary selenium in bovine mammary gland health and immune function. Anim. Health Res. Rev. 2009, 10, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.N.; Das, Z.C.; Rahman, A.; Hoque, M.M. Effect of administration of vitamin E, selenium and antimicrobial therapy on incidence of mastitis, productive and reproductive performances in dairy cows. Int. J. Vet. Sci. Med. 2016, 4, 63–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giadinis, N.D.; Panousis, N.; Petridou, E.J.; Siarkou, V.I.; Lafi, S.Q.; Pourliotis, K.; Hatzopoulou, E.; Fthenakis, G.C. Selenium, vitamin E and vitamin A blood concentrations in dairy sheep flocks with increased or low clinical mastitis incidence. Small Rumin. Res. 2011, 95, 193–196. [Google Scholar] [CrossRef]
Treatment Group 1 | ||||
---|---|---|---|---|
GCT | GSY | CPCT | CPSY | |
Ingredients, % DM | ||||
Grass silage | 50.0 | 50.0 | 0.00 | 0.00 |
Chicory silage | 0.00 | 0.00 | 25.0 | 25.0 |
Plantain silage | 0.00 | 0.00 | 25.0 | 25.0 |
Corn | 16.5 | 16.5 | 20.7 | 20.7 |
Barley | 20.5 | 20.5 | 14.8 | 14.8 |
Soybean meal | 11.4 | 11.4 | 13.2 | 13.2 |
Alfalfa meal | 0.62 | 0.00 | 0.62 | 0.00 |
Se yeast | 0.00 | 0.62 | 0.00 | 0.62 |
CaCO3 | 0.75 | 0.75 | 0.40 | 0.40 |
NaCl | 0.20 | 0.20 | 0.20 | 0.20 |
Mineral mix 2 | 0.10 | 0.10 | 0.10 | 0.10 |
Chemical composition * | ||||
CP% | 14.7 | 14.7 | 14.7 | 14.7 |
NDF% | 34.9 | 34.9 | 30.7 | 30.7 |
NFC% | 42.5 | 42.5 | 44.2 | 44.2 |
Ca% | 0.57 | 0.57 | 0.82 | 0.82 |
P% | 0.26 | 0.26 | 0.34 | 0.34 |
Ca/P | 2.19 | 2.19 | 2.41 | 2.41 |
ME Mcal/kg DM | 2.69 | 2.69 | 2.47 | 2.47 |
Parameter 1 | Unit | Chicory | Grass | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPCT | CPSY | GCT | GSY | SEM 3 | F | Se | F*Se | F*T | Se*T | F*Se*T | ||
Rectal Temp. | °C | 39.2 | 39.0 | 39.2 | 39.1 | 0.07 | 0.28 | 0.01 | 0.45 | 0.09 | 0.76 | 0.05 |
DMI | g/d | 1879 | 1997 | 2226 | 2221 | 163 | 0.07 | 0.71 | 0.69 | 0.02 | 0.46 | 0.99 |
Milk Yield | mL/d | 470 | 561 | 649 | 557 | 64.8 | 0.19 | 1.00 | 0.17 | 0.66 | 0.52 | 0.32 |
Water intake | L/d | 4.03 | 2.10 | 3.32 | 2.48 | 0.56 | 0.75 | 0.01 | 0.31 | 0.31 | 0.55 | 0.74 |
Bacteria count | log2/mL | 4.20 b | 4.36 b | 2.04 c | 5.88 a | 0.69 | 0.79 | <0.01 | <0.01 | 0.18 | 0.53 | 0.70 |
SCC | log2(×103) | 11.0 | 11.0 | 10.7 | 11.3 | 0.28 | 0.80 | 0.35 | 0.26 | 0.44 | 0.03 | 0.31 |
Lactose | % | 3.24 | 3.43 | 3.44 | 3.29 | 0.22 | 0.90 | 0.93 | 0.43 | 0.79 | 0.76 | 0.47 |
Protein | % | 6.14 | 5.69 | 5.46 | 5.63 | 0.19 | 0.05 | 0.44 | 0.09 | 0.00 | 0.18 | 0.50 |
Fat | % | 7.11 | 6.26 | 6.33 | 5.94 | 0.29 | 0.05 | 0.03 | 0.10 | 0.30 | 0.64 | 0.87 |
Solids | % | 17.9 | 16.4 | 16.2 | 16.0 | 0.54 | 0.05 | 0.09 | 0.18 | 0.11 | 0.64 | 0.95 |
SNF | % | 10.6 | 10.3 | 10.1 | 10.1 | 0.26 | 0.14 | 0.59 | 0.53 | 0.11 | 0.76 | 0.83 |
Other Solids | % | 4.45 | 4.61 | 4.60 | 4.45 | 0.24 | 0.98 | 0.98 | 0.50 | 0.78 | 0.80 | 0.53 |
NPN | mg/dL | 26.9 | 25.0 | 26.9 | 26.6 | 1.44 | 0.56 | 0.44 | 0.54 | 0.18 | 0.41 | 0.76 |
MUN | mg/dL | 21.5 | 21.3 | 23.3 | 23.3 | 1.34 | 0.24 | 0.51 | 0.83 | 0.45 | 0.59 | 0.84 |
C16:0 | % | 2.45 | 2.03 | 2.14 | 1.97 | 0.15 | 0.19 | 0.04 | 0.36 | 0.29 | 0.63 | 0.81 |
C18:0 | % | 0.38 a | 0.30 ab | 0.28 b | 0.33 ab | 0.03 | 0.22 | 0.58 | 0.03 | 0.08 | 0.74 | 0.74 |
C18:1 | % | 0.45 a | 0.15 b | 0.24 b | 0.32 ab | 0.09 | 0.77 | 0.16 | 0.02 | 0.08 | 1.00 | 0.19 |
De novo FA | % | 2.94 | 2.62 | 2.55 | 2.31 | 0.14 | 0.01 | 0.05 | 0.76 | 0.31 | 0.60 | 0.66 |
Mixed FA | % | 2.51 | 2.07 | 2.20 | 2.08 | 0.15 | 0.21 | 0.04 | 0.38 | 0.29 | 0.62 | 0.79 |
Preformed FA | % | 1.61 a | 1.18 b | 1.17 b | 1.37 ab | 0.10 | 0.21 | 0.22 | <0.01 | 0.28 | 0.83 | 0.58 |
Unsaturated FA | % | 0.12 | 0.11 | 0.11 | 0.14 | 0.02 | 0.60 | 0.58 | 0.16 | 0.69 | 0.58 | 0.39 |
Acetone | % | 0.20 ab | 0.13 b | 0.14 b | 0.24 a | 0.04 | 0.43 | 0.69 | 0.03 | 0.29 | 0.34 | 0.17 |
BHBA | % | 0.33 | 0.28 | 0.29 | 0.36 | 0.05 | 0.73 | 0.78 | 0.17 | 0.27 | 0.13 | 0.45 |
De novo FA | % FA | 41.6 b | 44.8 a | 43.3 ab | 40.7 b | 1.15 | 0.28 | 0.77 | 0.01 | 0.11 | 0.91 | 0.36 |
Mixed FA | % FA | 34.7 | 34.6 | 37.2 | 35.3 | 1.11 | 0.15 | 0.35 | 0.40 | 0.30 | 0.94 | 0.75 |
Preformed FA | % FA | 23.7 a | 20.5 ab | 19.8 b | 24.0 a | 1.40 | 0.86 | 0.69 | 0.01 | 0.33 | 0.75 | 0.18 |
Medium Chain FA | % FA | 13.1 | 13.1 | 13.2 | 13.4 | 0.13 | 0.05 | 0.35 | 0.27 | 0.33 | 0.60 | 0.37 |
Parameter 1 | Unit | Chicory | Grass | p-Value 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPCT | CPSY | GCT | GSY | SEM 3 | F | Se | Time | F*Se | F*T | Se*T | F*Se*T | ||
Metabolism | |||||||||||||
Glucose | mM | 4.27 | 4.24 | 4.19 | 4.21 | 0.10 | 0.57 | 0.92 | 0.07 | 0.81 | 0.99 | 0.21 | 0.85 |
Cholesterol | mM | 1.78 | 1.79 | 2.15 | 1.75 | 0.22 | 0.44 | 0.35 | 0.19 | 0.32 | 0.21 | 0.58 | 0.07 |
BHBA | mM | 0.51 | 0.56 | 0.43 | 0.45 | 0.05 | 0.05 | 0.39 | 0.83 | 0.69 | 0.82 | 0.21 | 0.69 |
NEFA | mM | 0.31 | 0.35 | 0.31 | 0.34 | 0.01 | 0.80 | 0.08 | 0.22 | 0.66 | 0.47 | 0.25 | 0.97 |
Total Protein | g/L | 68.4 a | 63.0 b | 63.1 b | 67.1 ab | 1.54 | 0.69 | 0.64 | <0.01 | <0.01 | 0.42 | 0.06 | 0.20 |
Urea | mM | 6.75 | 6.79 | 7.67 | 7.05 | 0.46 | 0.18 | 0.51 | <0.01 | 0.45 | 0.43 | 0.87 | 0.04 |
Ca | mM | 2.40 | 2.35 | 2.37 | 2.42 | 0.04 | 0.65 | 0.97 | 0.09 | 0.23 | 0.32 | 0.68 | 0.51 |
NEFA–Albumin | 0.67 | 0.87 | 0.69 | 0.78 | 0.06 | 0.53 | 0.01 | 0.21 | 0.34 | 0.32 | 0.58 | 0.49 | |
Acute phase indexes/inflammation/liver status | |||||||||||||
Albumin | g/L | 30.5 | 29.3 | 30.4 | 29.1 | 0.70 | 0.79 | 0.09 | 0.03 | 0.95 | 0.15 | 0.38 | 0.36 |
Haptoglobin | g/L | 0.54 | 0.49 | 0.44 | 0.67 | 0.14 | 0.80 | 0.51 | <0.01 | 0.31 | 0.17 | 0.63 | 0.73 |
Ceruloplasmin | µM | 2.84 | 3.49 | 3.48 | 3.13 | 0.52 | 0.78 | 0.76 | <0.01 | 0.32 | 0.05 | 0.15 | 0.05 |
Paraoxonase | U/L | 170 | 178 | 189 | 192 | 17.1 | 0.32 | 0.73 | <0.01 | 0.88 | 0.23 | 0.61 | 0.37 |
Zn | mM | 10.0 | 10.0 | 10.3 | 11.1 | 0.68 | 0.28 | 0.54 | <0.01 | 0.52 | 0.34 | 0.92 | 0.68 |
IL6 | pg/mL | 390 | 699 | 1317 | 1590 | 422 | 0.03 | 0.47 | 0.19 | 0.96 | 0.05 | 0.46 | 0.69 |
IL1B | pg/mL | 396 | 165 | 55 | 156 | 173 | 0.33 | 0.72 | 0.37 | 0.36 | 0.28 | 0.49 | 0.42 |
Bilirubin | µM | 1.13 | 0.82 | 0.94 | 0.89 | 0.16 | 0.41 | 0.57 | 0.13 | 0.80 | 0.22 | 0.76 | 0.30 |
GGT | U/L | 74.3 a | 63.6 b | 61.5 b | 71.9 ab | 4.08 | 0.57 | 0.97 | 0.09 | 0.01 | 0.36 | 0.93 | 0.06 |
Immune system | |||||||||||||
Globulin | g/L | 37.7 a | 33.7 ab | 32.8 b | 38.0 a | 1.63 | 0.85 | 0.70 | <0.01 | 0.01 | 0.19 | 0.05 | 0.13 |
Albumin–Globulin | 0.81 ab | 0.90 ab | 0.94 a | 0.78 b | 0.05 | 0.97 | 0.41 | <0.01 | 0.01 | 0.07 | 0.07 | 0.23 | |
Myeloperoxidase | U/L | 494 | 480 | 478 | 538 | 32.5 | 0.51 | 0.46 | <0.01 | 0.24 | 0.26 | 0.10 | 0.52 |
Oxidative status | |||||||||||||
AOPP | µM | 61.7 | 62.8 | 61.8 | 63.1 | 4.73 | 0.96 | 0.79 | 0.01 | 0.99 | 0.89 | 0.19 | 0.62 |
ROM | mg H2O2/dL | 16.3 | 19.6 | 19.8 | 18.9 | 2.33 | 0.55 | 0.59 | <0.01 | 0.36 | 0.04 | 0.11 | 0.11 |
FRAP | µM | 108 | 111 | 99 | 106 | 2.79 | 0.02 | 0.12 | 0.08 | 0.41 | 0.37 | 0.31 | 0.77 |
ROM/FRAP | 0.15 | 0.18 | 0.20 | 0.18 | 0.02 | 0.25 | 0.92 | <0.01 | 0.28 | 0.02 | 0.25 | 0.19 | |
NOX | µM | 50.3 | 52.8 | 50.9 | 51.4 | 1.88 | 0.83 | 0.43 | 0.42 | 0.57 | 0.74 | 0.02 | 0.54 |
NO2 | µM | 14.9 | 14.3 | 15.2 | 16.2 | 0.91 | 0.23 | 0.82 | 0.31 | 0.35 | 0.08 | 0.40 | 0.49 |
NO3 | µM | 35.4 | 38.5 | 35.7 | 35.2 | 1.95 | 0.43 | 0.49 | 0.80 | 0.33 | 0.57 | <0.01 | 0.28 |
Parameter 1 | Unit | Chicory | Grass | p-Value 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPCT | CPSY | GCT | GSY | SEM 3 | F | Se | Time | F*Se | F*T | Se*T | F*Se*T | ||
WBC | 103/mL | 10.8 | 12.1 | 9.2 | 12.5 | 1.31 | 0.76 | 0.28 | 0.25 | 0.11 | 0.11 | 0.09 | 0.96 |
Lymphocytes | 103/mL | 6.20 | 6.07 | 5.42 | 7.62 | 0.65 | 0.53 | 0.10 | 0.04 | 0.06 | 0.55 | 0.03 | 1.00 |
Monocytes | 103/mL | 0.054 | 0.051 | 0.046 | 0.062 | 0.006 | 0.82 | 0.28 | 0.21 | 0.10 | 0.12 | 0.14 | 0.93 |
Neutrophils | 103/mL | 4.40 | 4.00 | 3.73 | 4.58 | 0.69 | 0.94 | 0.73 | 0.28 | 0.33 | 0.23 | 0.59 | 0.87 |
Lymphocytes | % | 58.5 | 61.4 | 59.7 | 62.3 | 2.82 | 0.68 | 0.29 | 0.09 | 0.94 | 0.58 | 0.87 | 0.89 |
Monocytes | % | 0.50 | 0.51 | 0.50 | 0.50 | 0.01 | 0.36 | 0.84 | 0.62 | 0.62 | 0.29 | 0.32 | 0.94 |
Neutrophils | % | 41.0 | 38.1 | 39.8 | 37.2 | 2.82 | 0.68 | 0.30 | 0.09 | 0.94 | 0.58 | 0.86 | 0.89 |
RBC | 106/µL | 8.43 | 8.59 | 8.57 | 8.48 | 0.32 | 0.95 | 0.89 | <0.01 | 0.67 | 0.32 | 0.26 | 0.49 |
HGB | g/dL | 6.04 | 6.21 | 6.22 | 6.16 | 0.24 | 0.78 | 0.82 | <0.01 | 0.63 | 0.58 | 0.59 | 0.70 |
HCT | g/dL | 27.7 | 28.1 | 27.2 | 27.0 | 1.06 | 0.39 | 0.94 | <0.01 | 0.76 | 0.36 | 0.41 | 0.48 |
MCV | fL | 33.0 | 32.6 | 31.8 | 31.7 | 0.41 | 0.01 | 0.66 | 0.32 | 0.70 | 0.61 | 0.78 | 0.49 |
MCH | fmol | 0.72 | 0.72 | 0.72 | 0.73 | 0.01 | 0.38 | 0.66 | 0.03 | 0.79 | 0.44 | 0.02 | 0.14 |
MCHC | g/dL | 21.8 | 22.1 | 22.8 | 22.8 | 0.22 | 0.00 | 0.58 | 0.02 | 0.36 | 0.80 | 0.15 | 0.66 |
RDW | fL | 28.6 | 27.9 | 27.7 | 27.4 | 0.40 | 0.06 | 0.19 | 0.17 | 0.57 | 0.53 | 0.36 | 0.63 |
RDW | % | 21.4 | 21.1 | 21.5 | 21.4 | 0.31 | 0.43 | 0.49 | 0.08 | 0.81 | 0.53 | 0.19 | 0.30 |
PLT | 103/dL | 151 | 102 | 115 | 190 | 42.3 | 0.51 | 0.74 | 0.10 | 0.12 | 0.51 | 0.08 | 0.49 |
PCT | % | 0.09 | 0.06 | 0.06 | 0.11 | 0.02 | 0.61 | 0.68 | 0.09 | 0.08 | 0.29 | 0.07 | 0.31 |
MPV | fL | 6.16 | 5.91 | 5.72 | 5.88 | 0.16 | 0.12 | 0.76 | 0.07 | 0.17 | 0.40 | 0.21 | 0.95 |
PDW | fL | 7.91 a | 7.20 ab | 6.31 b | 7.19 ab | 0.35 | 0.02 | 0.79 | 0.20 | 0.02 | 0.08 | 0.91 | 0.97 |
PDW | % | 30.5 a | 28.9 ab | 27.5 b | 29.4 ab | 0.71 | 0.06 | 0.85 | 0.18 | 0.01 | 0.08 | 0.69 | 0.97 |
PMN phagoc | % | 61.3 | 55.3 | 53.1 | 58.6 | 5.38 | 0.63 | 0.96 | 0.04 | 0.27 | 0.60 | 0.49 | 0.84 |
Monoc phagoc | % | 19.4 | 14.9 | 13.0 | 18.1 | 3.21 | 0.62 | 0.92 | 0.58 | 0.14 | 0.72 | 0.99 | 0.98 |
Migration | RFU | 92,960 | 80,502 | 66,035 | 68,464 | 8820 | 0.02 | 0.53 | <0.01 | 0.36 | 0.06 | 0.58 | 0.82 |
Migration/PMN | 2657 | 2281 | 1572 | 1809 | 304 | <0.01 | 0.80 | <0.01 | 0.27 | <0.01 | 0.34 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ford, H.R.; Klopfenstein, J.; Ates, S.; Busato, S.; Trevisi, E.; Bionaz, M. Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep. Dairy 2025, 6, 40. https://doi.org/10.3390/dairy6040040
Ford HR, Klopfenstein J, Ates S, Busato S, Trevisi E, Bionaz M. Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep. Dairy. 2025; 6(4):40. https://doi.org/10.3390/dairy6040040
Chicago/Turabian StyleFord, Hunter R., Joseph Klopfenstein, Serkan Ates, Sebastiano Busato, Erminio Trevisi, and Massimo Bionaz. 2025. "Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep" Dairy 6, no. 4: 40. https://doi.org/10.3390/dairy6040040
APA StyleFord, H. R., Klopfenstein, J., Ates, S., Busato, S., Trevisi, E., & Bionaz, M. (2025). Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep. Dairy, 6(4), 40. https://doi.org/10.3390/dairy6040040