Health and Growth Performance During the Pre-Weaning Phase of Angus × Holstein Crossbred and Holstein Calves Managed Under the Same Conditions
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Calving Type and Birth Weight
3.2. Colostrum Management and Serum Total Protein (STP)
3.3. Disease Occurrence
3.4. Weaning Weight and ADG
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berry, D.P. Invited review: Beef-on-dairy—The generation of crossbred beef × dairy cattle. J. Dairy Sci. 2021, 104, 3789–3819. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Schmidtmann, C.; Mugambe, J.; Thaller, G. Effects of the breeding strategy beef-on-dairy at animal, farm, and sector levels. Animals 2023, 13, 2182. [Google Scholar] [CrossRef] [PubMed]
- Mota, R.R.; Brito, L.F.; Berry, D.P. Editorial: Beef on Dairy: The use of a simple tool to improve both cattle production systems. Front. Genet. 2022, 13, 813949. [Google Scholar] [CrossRef] [PubMed]
- Sterry, R.; Schlesser, H.; Stuttgen, S. Beef × Dairy Crossbreeding and Calf Management Practices on Wisconsin Dairy Farms. Livestock. 2023. Available online: https://livestock.extension.wisc.edu/articles/beef-x-dairy-crossbreeding-and-calf-management-practices-on-wisconsin-dairy-farms-part-2/ (accessed on 2 November 2023).
- Creutzinger, K.; Pempek, J.A.; Locke, S.R.; Renaud, D.L. Dairy producer perceptions toward male dairy calves in the Midwestern United States. Front. Anim. Sci. 2020, 3, 1000897. [Google Scholar] [CrossRef]
- Renaud, D.L.; Waalderbos, K.M.; Beavers, L.; Duffield, T.F.; Leslie, K.E.; Windeyer, M.C. Risk factors associated with failed transfer of passive immunity in male and female dairy calves: A 2008 retrospective cross-sectional study. J. Dairy Sci. 2020, 103, 3521–3528. [Google Scholar] [CrossRef] [PubMed]
- Dairy Calf & Heifer Association (DCHA). Dairy Calf & Heifer Association—Gold Standards, 3rd ed.; 2023; Available online: https://calfandheifer.org/gold-standards (accessed on 10 February 2024).
- Fouz, R.; Gandoy, F.; Sanjuán, M.L.; Yus, E.; Diéguez, F.J. The use of crossbreeding with beef bulls in dairy herds: Effects on calving difficulty and gestation length. Animal 2013, 7, 211–215. [Google Scholar] [CrossRef]
- Vallée, A.; van Arendonk, J.A.M.; Bovenhuis, H. Genetic parameters for calving and conformation traits in Charolais × Montbéliard and Charolais × Holstein crossbred calves. J. Anim. Sci. 2013, 91, 5582–5588. [Google Scholar] [CrossRef] [PubMed]
- Abney, C.S. Feedlot Performance, Carcass and Palatability Traits, as Well as Subsequent Economic Relevance in Calf-Fed and Yearling Holsteins and Angus Steers. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2004. Available online: https://www.proquest.com/openview/b4c7be755dd774592ba422fbc4fde506/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 20 February 2023).
- Perry, R.C.; Corah, L.R.; Cochran, R.C.; Brethour, J.R.; Olson, K.C.; Higgins, J.J. Effects of Hay Quality, Breed, and Ovarian Development on Onset of Puberty and Reproductive Performance of Beef Heifers. J. Prod. Agric. 1991, 4, 13–18. [Google Scholar] [CrossRef]
- Jaborek, J.R.; Zerby, H.N.; Moeller, S.J.; Fluharty, F.L.; Relling, A.E. Evaluation of feedlot performance, carcass characteristics, carcass retail cut distribution, Warner-Bratzler shear force, and fatty acid composition of purebred Jersey and crossbred Jersey steers. Transl. Anim. Sci. 2019, 3, 1475–1491. [Google Scholar] [CrossRef]
- Foraker, B.A.; Frink, J.L.; Woerner, D.R. Invited review: A carcass and meat perspective of crossbred beef × dairy cattle. Transl. Anim. Sci. 2022, 6, txac027. [Google Scholar] [CrossRef]
- Fuerniss, L.K.; Young, J.D.; Hall, J.R.; Wesley, K.R.; Bowman, S.M.; Felizari, L.D.; Woerner, D.R.; Rathmann, R.J.; Johnson, B.J. Body, carcass, and steak dimensions of straightbred Holstein calves and Angus-sired calves from Holstein, Jersey, and crossbred beef dams. J. Anim. Sci. 2023, 101, skad358. [Google Scholar] [CrossRef]
- Reinhardt, C.D.; Hubbert, M.E. Control of liver abscesses in feedlot cattle: A review. Prof. Anim. Sci. 2015, 31, 101–108. [Google Scholar] [CrossRef]
- Gelsinger, S.L.; Heinrichs, A.J.; Jones, C.M. A meta-analysis of the effects of preweaned calf nutrition and growth on first-lactation performance. J. Dairy Sci. 2016, 99, 6206–6214. [Google Scholar] [CrossRef]
- Dunn, T.R.; Ollivett, T.L.; Renaud, D.L.; Leslie, K.E.; LeBlanc, S.J.; Duffield, T.F.; Kelton, D.F. The effect of lung consolidation, as determined by ultrasonography, on first-lactation milk production in Holstein dairy calves. J. Dairy Sci. 2018, 101, 5404–5410. [Google Scholar] [CrossRef] [PubMed]
- Gubbels, E.R.; Jaeger, J.R.; Salverson, R.R.; Cammack, K.M.; Grubbs, J.K.; Underwood, K.R.; Olson, K.C.; Blair, A.D. Case study: Effects of low-stress weaning on calf growth performance and carcass characteristics. Transl. Anim. Sci. 2023, 7, txad015. [Google Scholar] [CrossRef] [PubMed]
- Michalski, E.; Woodrum, M.M.; Mazon, G.; Neave, H.W.; Costa, J.H.C. Personality of individually housed dairy-beef crossbred calves is related to performance and behavior. Front. Anim. Sci. 2023, 3, 1097503. [Google Scholar] [CrossRef]
- Setser, M.M.W.; Neave, H.W.; Costa, J.H.C. Individuality of calves: Linking personality traits to feeding and activity daily patterns measured by precision livestock technology. J. Dairy Sci. 2024, 107, 3235–3251. [Google Scholar] [CrossRef]
- Pereira, J.M.V.; Ferreira, F.C.; Carvalho, P.H.V.; Bittar, J.; Del-Rio, N.S.; Marcondes, M.I. Association of morbidity, mortality, and average daily gain with transfer of passive immunity in dairy-beef crossbred calves up to 60 days of life. J. Dairy Sci. 2024, 107, 8223–8233. [Google Scholar] [CrossRef]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum management for dairy calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef]
- McGuirk, S.M. Disease management of dairy calves and calves. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef]
- Cramer, M.C.; Ollivett, T.L. Growth of preweaned, group-housed dairy calves diagnosed with respiratory disease using clinical respiratory scoring and thoracic ultrasound: A cohort study. J. Dairy Sci. 2019, 102, 4322–4331. [Google Scholar] [CrossRef] [PubMed]
- Casella, E.; Cantor, M.C.; Setser, M.M.W.; Silvestri, S.; Costa, J.H.C. A machine learning and optimization framework for the early diagnosis of bovine respiratory disease. IEEE Access 2023, 11, 71164–71179. [Google Scholar] [CrossRef]
- Long, N.M.; Collier, R.J.; Smith, J.F. Short communication: Comparison of 2 methods of assessing calf birth weights in dairy calves. J. Dairy Sci. 2012, 95, 7206–7209. [Google Scholar] [CrossRef] [PubMed]
- Parish, J.A.; Smith, T.; Parish, J.R.; Best, T.F.; Boland, H.T. Evaluation of four different methods of calf birth weight data collection. Prof. Anim. Sci. 2009, 25, 716–721. [Google Scholar] [CrossRef]
- Ozkaya, S.; Bozkurt, Y. The accuracy of prediction of body weight from body measurements in beef cattle. Arch. Anim. Breed. 2009, 52, 371–377. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.R-project.org/ (accessed on 20 February 2023).
- RStudio Team. RStudio: Integrated Development Environment for R; Version 2023.06.1+524; RStudio, PBC: Boston, MA, USA, 2023; Available online: http://www.rstudio.com/ (accessed on 20 February 2023).
- Hosmer, D.W.; Hosmer, T.; Lemeshow, S. A goodness-of-fit test for the multiple logistic regression model. Commun. Stat. 1980, 10, 1043–1069. [Google Scholar] [CrossRef]
- Carvalho, P.H.V.; Latack, B.C.; Ferraz, M.V.C.; Nolasco, L.J.R.P.; Meireles, W.R.; Oliveira, H.O.M.; Zinn, R.A. Influence of low-level tannin supplementation on comparative growth performance of Holstein and Angus × Holstein cross calf-fed concentrate-based finishing diets for 328 d. J. Anim. Sci. 2024, 102, 87. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; Weary, D.M.; von Keyserlingk, M.A.G. Corrigendum to “The effect of milk allowance on behavior and weight gains in dairy calves” (J. Dairy Sci. 100:504–512). J. Dairy Sci. 2017, 100, 3327. [Google Scholar] [CrossRef]
- De Paula Vieira, A.; von Keyserlingk, M.A.G.; Weary, D.M. Effects of pair versus single housing on performance and behavior of dairy calves before and after weaning from milk. J. Dairy Sci. 2010, 93, 3079–3085. [Google Scholar] [CrossRef]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Short communication: Pair housing dairy calves in modified calf hutches. J. Dairy Sci. 2018, 101, 5428–5433. [Google Scholar] [CrossRef]
- Drackley, J.K.; Garnsworthy, P.C. Early Growth Effects on Subsequent Health and Performance of Dairy Heifers; CABI Digital Library: Wallingford, UK, 2005; pp. 213–235. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20053079274 (accessed on 20 May 2023).
- Curtis, G.; McGregor Argo, C.; Jones, D.; Grove-White, D. The impact of early life nutrition and housing on growth and reproduction in dairy cattle. PLoS ONE 2018, 13, e0191687. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Haley, D.B.; Kelton, D.F. Management practices for male calves on Canadian dairy farms. J. Dairy Sci. 2017, 100, 6862–6871. [Google Scholar] [CrossRef]
- Hennessy, D.W.; Morris, S.G. Effect of a preweaning growth restriction on the subsequent growth and meat quality of yearling steers and heifers. Aust. J. Exp. Agric. 2003, 43, 335–341. [Google Scholar] [CrossRef]
- Soberon, F.; Raffrenato, E.; Everett, R.W.; Van Amburgh, M.E. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J. Dairy Sci. 2012, 95, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.K.; Norberg, E.; Pedersen, J.; Christensen, L.G. Invited review: Crossbreeding in dairy cattle: A Danish perspective. J. Dairy Sci. 2008, 91, 4116–4128. [Google Scholar] [CrossRef]
- Facó, O.; Lôbo, R.N.B.; Martins Filho, R.; Martins, G.A.; Oliveira, S.M.P.; Azevêdo, D.M.M.R. Efeitos genéticos aditivos e não-aditivos para características produtivas e reprodutivas em vacas mestiças Holandês × Gir. Rev. Bras. Zootec. 2008, 37, 48–53. [Google Scholar] [CrossRef]
- Nix, J.M.; Spitzer, J.C.; Grimes, L.W.; Burns, G.L.; Plyler, B.B. A retrospective analysis of factors contributing to calf mortality and dystocia in beef cattle. Theriogenology 1998, 49, 1515–1523. [Google Scholar] [CrossRef]
- Schiermiester, L.N.; Thallman, R.M.; Kuehn, L.A.; Kachman, S.D.; Spangler, M.L. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle. J. Anim. Sci. 2015, 93, 46–52. [Google Scholar] [CrossRef]
- Basiel, B.L.; Barragan, A.A.; Felix, T.L.; Dechow, C.D. The impact of beef sire breed on dystocia, stillbirth, gestation length, health, and lactation performance of cows that carry beef × dairy calves. J. Dairy Sci. 2024, 107, 2241–2252. [Google Scholar] [CrossRef]
- Misaka, M.; Uematsu, M.; Hashimoto, K.; Kitahara, G.; Osawa, T.; Sasaki, Y. Impact of dystocia and cow/calf characteristics on mortality from 0 to 120 days of age in Japanese Black calves in commercial cow-calf operations. Prev. Vet. Med. 2022, 207, 105716. [Google Scholar] [CrossRef]
- Shivley, C.B.; Lombard, J.E.; Urie, N.J.; Weary, D.M.; von Keyserlingk, M.A.G. Management of preweaned bull calves on dairy operations in the United States. J. Dairy Sci. 2019, 102, 4489–4497. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.; Pardon, B. Preparing male dairy calves for the veal and dairy beef industry. Vet. Clin. N. Am. Food Anim. 2022, 38, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef]
- Sutter, F.; Venjakob, P.L.; Heuwieser, W.; Borchardt, S. Association between transfer of passive immunity, health, and performance of female dairy calves from birth to weaning. J. Dairy Sci. 2023, 106, 7043–7055. [Google Scholar] [CrossRef]
- Crannell, P.; Abuelo, A. Comparison of calf morbidity, mortality, and future performance across categories of passive immunity: A retrospective cohort study in a dairy herd. J. Dairy Sci. 2023, 106, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.T.; Cundiff, L.V. Breeding Cattle for Genetic Resistance to Disease. Roman L. Hruska U.S. Meat Animal Research Center. Report No. 31. 1985. Available online: https://digitalcommons.unl.edu/hruskareports/31 (accessed on 20 April 2023).
- Pal, A.; Chakravarty, A.K. Disease resistance for different livestock species. In Genetics and Breeding for Disease Resistance of Livestock; Academic Press: Cambridge, MA, USA, 2019; pp. 271–296. [Google Scholar] [CrossRef]
- USDA. Dairy 2014: Health and Management Practices on U.S. Dairy Operations. 2014. Available online: https://www.aphis.usda.gov/sites/default/files/dairy14_dr_partiii.pdf (accessed on 3 June 2023).
- Virtala, A.-M.K.; Mechor, G.D.; Gröhn, Y.T.; Erb, H.N. The effect of calfhood diseases on growth of female dairy calves during the first 3 months of life in New York State. J. Dairy Sci. 1996, 79, 1040–1049. [Google Scholar] [CrossRef]
- Abuelo, A.; Cullens, F.; Brester, J.L. Effect of preweaning disease on the reproductive performance and first-lactation milk production of heifers in a large dairy herd. J. Dairy Sci. 2021, 104, 7008–7017. [Google Scholar] [CrossRef]
- Buczinski, S.; Achard, D.; Timsit, E. Effects of calfhood respiratory disease on health and performance of dairy cattle: A systematic review and meta-analysis. J. Dairy Sci. 2021, 104, 8214–8227. [Google Scholar] [CrossRef]
- Bach, A. Associations between several aspects of heifer development and dairy cow survivability to second lactation. J. Dairy Sci. 2011, 94, 1052–1057. [Google Scholar] [CrossRef]
- Pardon, B.; Hostens, M.; Duchateau, L.; Dewulf, J.; De Bleecker, K.; Deprez, P. Impact of respiratory disease, diarrhea, otitis, and arthritis on mortality and carcass traits in white veal calves. BMC Vet. Res. 2013, 9, 79. [Google Scholar] [CrossRef]
- Marcato, F.; van den Brand, H.; Kemp, B.; Engel, B.; Wolthuis-Fillerup, M.; van Reenen, K. Effects of pretransport diet, transport duration, and type of vehicle on physiological status of young veal calves. J. Dairy Sci. 2020, 103, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Jaborek, J.R.; Carvalho, P.H.V.; Felix, T.L. Post-Weaning Management of Modern Dairy Cattle Genetics for Beef Production: A Review. J. Anim. Sci. 2023, 101. [Google Scholar] [CrossRef] [PubMed]
- Coleman, L.; Back, P.; Blair, H.; López-Villalobos, N.; Hickson, R. Sire effects on birth weight, gestation length, and pre-weaning growth of beef-cross-dairy calves: A case study in New Zealand. Dairy 2021, 2, 385–395. [Google Scholar] [CrossRef]
- Fernandes, I.L.B.; Welk, A.; Renaud, D.L.; Sockett, D.; Felix, T.L.; Cantor, M.C. The Association of Lung Consolidation and Respiratory Pathogens Identified at Weaning on the Growth Performance of Beef-on-Dairy Calves. J. Dairy Sci. 2025, 108, 3980–3990. [Google Scholar] [CrossRef]
- Antonis, A.F.G.; Swanenburg, M.; Wisselink, H.J.; Smid, B.; van Klink, E.; Hagenaars, T.J. Respiratory Pathogens in Veal Calves: Inventory of Circulating Pathogens. Vet. Microbiol. 2022, 274, 109571. [Google Scholar] [CrossRef]
- Pharo, F.; Couto Serrenho, R.; Greer, A.L.; Oremush, R.; Habing, G.; Gillies, M.; Keunen, A.; Renaud, D.L. Exploring the Impact and Transmission of Salmonella Dublin in Crossbred Dairy Calves. J. Dairy Sci. 2025, 108, 4225–4233. [Google Scholar] [CrossRef]
- Heinrichs, A.J.; Heinrichs, B.S.; Jones, C.M.; Erickson, P.S.; Kalscheur, K.F.; Nennich, T.D.; Heins, B.J.; Cardoso, F.C. Short Communication: Verifying Holstein Heifer Heart Girth to Body Weight Prediction Equations. J. Dairy Sci. 2017, 100, 8451–8454. [Google Scholar] [CrossRef]
- Firdaus, F.; Atmoko, B.A.; Baliarti, E.; Widi, T.S.M.; Maharani, D.; Panjono, P. The Meta-Analysis of Beef Cattle Body Weight Prediction Using Body Measurement Approach with Breed, Sex, and Age Categories. J. Adv. Vet. Anim. Res. 2023, 10, 630–638. [Google Scholar] [CrossRef]
Variable | Holstein Female | Crossbred ¹ Female | Crossbred ¹ Male |
---|---|---|---|
BW, kg | 36.9 ± 0.21 a | 38.6 ± 0.57 b | 42.1 ± 0.54 c |
Brix colostrum, % | 24.9 ± 0.16 | 25.8 ± 0.44 | 25.2 ± 0.40 |
STP, mg/dL | 6.33 ± 0.04 | 6.41 ± 0.13 | 6.47 ± 0.12 |
ADG, kg | 1.31 ± 0.04 a | 1.43 ± 0.04 b | 1.47 ± 0.04 b |
Predictor | Occurrence of Diarrhea | Occurrence of BRD 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Est 3 | OR | 95% CI | p-Value | Est 3 | OR | 95% CI | p-Value | |||
Lower | Upper | Lower | Upper | |||||||
Intercept | 0.51 | 1.66 | 0.06 | 42.21 | 0.75 | 0.69 | 2.01 | 0.02 | 147.59 | 0.75 |
Group Holstein female | Referent | - | - | - | - | Referent | - | - | - | - |
Crossbred 4 female | −1.14 | 0.31 | 0.15 | 0.67 | <0.01 | 0.06 | 1.06 | 0.34 | 2.76 | 0.90 |
Crossbred 4 male | −0.95 | 0.38 | 0.17 | 0.83 | 0.01 | −0.71 | 0.49 | 0.10 | 1.59 | 0.28 |
STP 5 | −0.11 | 0.89 | 0.65 | 1.22 | 0.49 | −0.47 | 0.62 | 0.40 | 0.93 | 0.02 |
Birth weight | 0.03 | 1.03 | 0.97 | 1.10 | 0.28 | 0.01 | 1.01 | 0.92 | 1.10 | 0.75 |
Assisted calving | ||||||||||
No | Referent | - | - | - | - | Referent | - | - | - | - |
Yes | 0.36 | 1.44 | 0.68 | 3.29 | 0.35 | −0.37 | 0.68 | 0.19 | 1.85 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroz, M.S.; Martin, C.C.; Daros, R.R. Health and Growth Performance During the Pre-Weaning Phase of Angus × Holstein Crossbred and Holstein Calves Managed Under the Same Conditions. Dairy 2025, 6, 20. https://doi.org/10.3390/dairy6030020
Moroz MS, Martin CC, Daros RR. Health and Growth Performance During the Pre-Weaning Phase of Angus × Holstein Crossbred and Holstein Calves Managed Under the Same Conditions. Dairy. 2025; 6(3):20. https://doi.org/10.3390/dairy6030020
Chicago/Turabian StyleMoroz, Michail Sabino, Camila Cecilia Martin, and Ruan Rolnei Daros. 2025. "Health and Growth Performance During the Pre-Weaning Phase of Angus × Holstein Crossbred and Holstein Calves Managed Under the Same Conditions" Dairy 6, no. 3: 20. https://doi.org/10.3390/dairy6030020
APA StyleMoroz, M. S., Martin, C. C., & Daros, R. R. (2025). Health and Growth Performance During the Pre-Weaning Phase of Angus × Holstein Crossbred and Holstein Calves Managed Under the Same Conditions. Dairy, 6(3), 20. https://doi.org/10.3390/dairy6030020