Assessing Serum Vaspin Dynamics in Dairy Cows during Late Pregnancy and Early Lactation in Relation to Negative Energy Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Implementation
2.2. Blood Sampling
2.3. Measurement of Blood Hormones and Metabolites
2.4. Statistical Analyses
3. Results
3.1. Milk Production and Body Condition
3.2. Metabolic and Endocrine Factors
Differences in Changes Pre- and Post-Calving
3.3. Correlation Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef]
- Martens, H. Invited review: Increasing milk yield and negative energy balance: A gordian knot for dairy cows? Animals 2023, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Sundrum, A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals 2015, 5, 978–1020. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.; Huber, K. Metabolic and endocrine role of adipose tissue during lactation. Annu. Rev. Anim. Biosci. 2018, 6, 177–195. [Google Scholar] [CrossRef]
- Li, Q.; Chen, R.; Moriya, J.; Yamakawa, J.; Sumino, H.; Kanda, T.; Takahashi, T. A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J. Int. Med. Res. 2008, 36, 625–629. [Google Scholar] [CrossRef]
- Kurowska, P.; Mlyczyńska, E.; Barbe, A.; Mellouk, N.; Dupont, J.; Rak, A. The adipokines in domestic animal reproduction: Expression and role in the regulation of ovarian function. In New Insights into Theriogenology; IntechOpen: London, UK, 2018. [Google Scholar]
- Sammad, A.; Khan, M.Z.; Abbas, Z.; Hu, L.; Ullah, Q.; Wang, Y.; Zhu, H.; Wang, Y. Major nutritional metabolic alterations influencing the reproductive system of postpartum dairy cows. Metabolites 2022, 12, 60. [Google Scholar] [CrossRef]
- Nigussie, T. A review on the role of energy balance on reproduction of dairy cow. J. Dairy Res. Tech. 2018, 1, 003. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Bocco, B.M. Hepatic mediators of lipid metabolism and ketogenesis: Focus on fatty liver and diabetes. Curr. Diabetes Rev. 2021, 17, 81–92. [Google Scholar] [CrossRef]
- Mlyczyńska, E.; Kieżun, M.; Kurowska, P.; Dawid, M.; Pich, K.; Respekta, N.; Daudon, M.; Rytelewska, E.; Dobrzyń, K.; Kamińska, B. New aspects of corpus luteum regulation in physiological and pathological conditions: Involvement of adipokines and neuropeptides. Cells 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Dimova, R.; Tankova, T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. BioMed Res. Int. 2015, 2015, 823481. [Google Scholar] [CrossRef]
- Bradford, B. The role of inflammation in metabolic disorders. In Proceedings of the Mid-South Ruminant Nutrition Conference; Texas Animal Nutrition Council: Grapevine, TX, USA, 2011; pp. 35–41. [Google Scholar]
- Kessler, E.C.; Gross, J.J.; Bruckmaier, R.; Albrecht, C. Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J. Dairy Sci. 2014, 97, 5481–5490. [Google Scholar] [CrossRef]
- Khalphallah, A.; Aamer, A.; Abdelall, T.; Elmeligy, E.; Oikawa, S.; Nakada, K. Changes in clinical and blood lipid metabolism parameters in Holstein dairy cattle during the transition period. Bulg. J. Vet. Med. 2018, 21, 420–428. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Levanti, M.; Rizzo, M.; Di Pietro, S.; Giudice, E.; Piccione, G. Lipid and lipoprotein profile changes in dairy cows in response to late pregnancy and the early postpartum period. Arch. Anim. Breed. 2016, 59, 429–434. [Google Scholar] [CrossRef]
- Vazquez, R. Comparison of Three Reproductive Management Strategies for Lactating Dairy Cows Using Detection of Oestrus or Synchronisation of Ovulation and Fixed-Timed Artificial Insemination; University of Glasgow: Glasgow, UK, 2022. [Google Scholar]
- Edmonson, A.; Lean, I.; Weaver, L.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Grubić, G.; Novaković, Ž.; Aleksić, S.; Sretenović, L.; Pantelić, V.; Ostojić-Andrić, D. Evaluation of the body condition of high yielding cows. Biotechnol. Anim. Husb. 2009, 25, 81–91. [Google Scholar] [CrossRef]
- Roche, J.R.; Kay, J.K.; Friggens, N.C.; Loor, J.J.; Berry, D.P. Assessing and managing body condition score for the prevention of metabolic disease in dairy cows. Vet. Clin. Food Anim. Pract. 2013, 29, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, P.; Mlyczyńska, E.; Dupont, J.; Rak, A. Novel insights on the corpus luteum function: Role of vaspin on porcine luteal cell angiogenesis, proliferation and apoptosis by activation of GRP78 receptor and MAP3/1 kinase pathways. Int. J. Mol. Sci. 2020, 21, 6823. [Google Scholar] [CrossRef]
- Vitenberga-Verza, Z.; Pilmane, M.; Šerstņova, K.; Melderis, I.; Gontar, Ł.; Kochański, M.; Drutowska, A.; Maróti, G.; Prieto-Simón, B. Identification of inflammatory and regulatory cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-producing cells in the milk of dairy cows with subclinical and clinical mastitis. Pathogens 2022, 11, 372. [Google Scholar] [CrossRef]
- Tessari, R.; Berlanda, M.; Morgante, M.; Badon, T.; Gianesella, M.; Mazzotta, E.; Contiero, B.; Fiore, E. Changes of plasma fatty acids in four lipid classes to understand energy metabolism at different levels of non-esterified fatty acid (NEFA) in dairy cows. Animals 2020, 10, 1410. [Google Scholar] [CrossRef]
- Civiero, M.; Cabezas-Garcia, E.; Ribeiro-Filho, H.; Gordon, A.W.; Ferris, C.P. Relationships between energy balance during early lactation and cow performance, blood metabolites, and fertility: A meta-analysis of individual cow data. J. Dairy Sci. 2021, 104, 7233–7251. [Google Scholar] [CrossRef]
- Motulsky, H. Prism 5 Statistics Guide; GraphPad Software: La Jolla, CA, USA, 2007; Volume 31, pp. 39–42. [Google Scholar]
- Breda, J.C.d.S.; Facury Filho, E.J.; Flaiban, K.K.d.C.; Lisboa, J.A.N. Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period. Animals 2023, 13, 2509. [Google Scholar] [CrossRef]
- Bastin, C. Body condition score and milk fatty acids as indicators of dairy cattle reproductive performances. 2013. Ph.D. Dissertation, ULiège—University of Liège, Liège, Belgium, 24 July 2013. Available online: https://hdl.handle.net/2268/153531 (accessed on 18 March 2024).
- Carvalho, P.; Souza, A.; Amundson, M.; Hackbart, K.; Fuenzalida, M.; Herlihy, M.; Ayres, H.; Dresch, A.; Vieira, L.; Guenther, J. Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. J. Dairy Sci. 2014, 97, 3666–3683. [Google Scholar] [CrossRef] [PubMed]
- Nazhat, S.A.; Aziz, A.; Zabuli, J.; Rahmati, S. Importance of body condition scoring in reproductive performance of dairy cows: A review. Open J. Vet. Med. 2021, 11, 272–288. [Google Scholar] [CrossRef]
- Wathes, D.; Bourne, N.; Cheng, Z.; Mann, G.; Taylor, V.; Coffey, M. Multiple correlation analyses of metabolic and endocrine profiles with fertility in primiparous and multiparous cows. J. Dairy Sci. 2007, 90, 1310–1325. [Google Scholar] [CrossRef] [PubMed]
- Häussler, S.; Sadri, H.; Ghaffari, M.H.; Sauerwein, H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J. Dairy Sci. 2022, 105, 3648–3669. [Google Scholar] [CrossRef] [PubMed]
- Cziszter, L.-T.; Ilie, D.-E.; Neamt, R.-I.; Neciu, F.-C.; Saplacan, S.-I.; Gavojdian, D. Comparative study on production, reproduction and functional traits between Fleckvieh and Braunvieh cattle. Asian-Australas. J. Anim. Sci. 2017, 30, 666. [Google Scholar] [CrossRef] [PubMed]
- Overton, T.; Waldron, M. Nutritional management of transition dairy cows: Strategies to optimize metabolic health. J. Dairy Sci. 2004, 87, E105–E119. [Google Scholar] [CrossRef]
- Andrade, J.d.S.; Moreira, E.M.; de Souza, V.L.; Barbosa, I.P.; Silva, G.M.; Gomes, L.S.; Silva, S.A.d.S.; Noleto, G.C.S.; da Silva, R.R.; Londero, U.S. Exploring uterine inflammation in postpartum primiparous precocious and conventional and multiparous Bos indicus beef cows. Reprod. Domest. Anim. 2024, 59, e14496. [Google Scholar] [CrossRef]
- Spaans, O.K. The Role of Inflammatory State during the Periparturient Period on the Uterine Health of Pasture-Based Dairy Cows; ResearchSpace: Auckland, New Zealand, 2022. [Google Scholar]
- Macrae, A. Assessment of energy balance in dairy cattle. Livestock 2019, 24, 229–235. [Google Scholar] [CrossRef]
- Tang, C.; Liang, Y.; Guo, J.; Wang, M.; Li, M.; Zhang, H.; Arbab, A.A.I.; Karrow, N.A.; Yang, Z.; Mao, Y. Effects of seasonal heat stress during late gestation on growth performance, metabolic and immuno-endocrine parameters of calves. Animals 2022, 12, 716. [Google Scholar] [CrossRef]
- Jonsson, N.; Fortes, M.; Piper, E.; Vankan, D.; de Cisneros, J.P.J.; Wittek, T. Comparison of metabolic, hematological, and peripheral blood leukocyte cytokine profiles of dairy cows and heifers during the periparturient period. J. Dairy Sci. 2013, 96, 2283–2292. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Olsen, J.R.; Jeffress, E.J.; Moore, D.A.; Kastelic, J.P. Associations among serum pro-and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows. Reprod. Biol. Endocrinol. 2013, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Sabzikar, Z.N.; Mohri, M.; Seifi, H.A. Variations of some adipokines, pro-inflammatory cytokines, oxidative stress biomarkers, and energy characteristics during the transition period in dairy cows. Vet. Res. Forum 2023, 14, 87–95. [Google Scholar]
- Schüler-Toprak, S.; Ortmann, O.; Buechler, C.; Treeck, O. The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022, 10, 2503. [Google Scholar] [CrossRef]
- Grossi, P. Transition Period of Dairy Cows and Inflammation: A Novel Index to Assess the Individual Response, Pre-Calving Treatments Aiming to Mitigate It and Consequences on Productive and Reproductive Performances; Università Cattolica del Sacro Cuore: Cattolica, Italy, 2012. [Google Scholar]
- McFadden, J. Lipid biology in the periparturient dairy cow: Contemporary perspectives. Animal 2020, 14, s165–s175. [Google Scholar] [CrossRef]
- Brzoskwinia, M.; Pardyak, L.; Rak, A.; Kaminska, A.; Hejmej, A.; Marek, S.; Kotula-Balak, M.; Bilinska, B. Flutamide alters the expression of chemerin, apelin, and vaspin and their respective receptors in the testes of adult rats. Int. J. Mol. Sci. 2020, 21, 4439. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.; Carreón-Torres, E.; Correa-Solís, E.; Ángel-García, J.; Arias-Rico, J.; Jiménez-Garza, O.; Morales-Castillejos, L.; Díaz-Zuleta, H.; Baltazar-Tellez, R.; Sánchez-Padilla, M. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants 2023, 12, 1894. [Google Scholar] [CrossRef]
- Mikuła, R.; Pruszyńska-Oszmałek, E.; Maćkowiak, P.; Nowak, W. Effect of different pre-calving feeding strategies on the metabolic status and lactation performance of dairy cows. J. Anim. Feed Sci. 2018, 27, 292–300. [Google Scholar] [CrossRef]
- Schuermann, Y.; Welsford, G.E.; Nitschmann, E.; Wykes, L.; Duggavathi, R. Association between pre-breeding metabolic profiles and reproductive performance in heifers and lactating dairy cows. Theriogenology 2019, 131, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Nazifi, S.; Saeb, M.; Ghavami, S. Serum lipid profile in iranian fat-tailed sheep in late pregnancy, at parturition and during the post-parturition period. J. Vet. Med. Ser. A 2002, 49, 9–12. [Google Scholar] [CrossRef]
Diet Component | Late Pregnancy | Postpartum | ||
---|---|---|---|---|
Size (gm) | Percentage (%) | Size (gm) | Percentage (%) | |
Grass Hay | 500 | 50 | 600 | 60 |
Grass Silage | 300 | 30 | 180 | 18 |
Concentrate | 200 | 20 | 220 | 22 |
Nutritional Composition | ||||
Component | Late Pregnancy Ration (kg/day) | Postpartum Ration (kg/day) | ||
Dry Matter | 0.55 | 0.70 | ||
Crude Protein | 0.12 | 0.14 | ||
Crude fiber | 0.20 | 0.18 | ||
Fat | 0.05 | 0.06 | ||
Ash | 0.08 | 0.07 | ||
Calcium | 0.015 | 0.012 | ||
Phosphorous | 0.008 | 0.009 | ||
Magnesium | 0.003 | 0.004 | ||
Potassium | 0.020 | 0.018 | ||
Sodium | 0.003 | 0.002 | ||
Sulfur | 0.002 | 0.0015 | ||
Iron | 0.002 | 0.0025 | ||
Manganese | 0.001 | 0.0012 | ||
Zinc | 0.0005 | 0.0006 | ||
Copper | 0.0003 | 0.00035 | ||
Selenium | 0.0001 | 0.00015 | ||
Vitamin A | 100 IU | 120 | ||
Vitamin D | 10 IU | 15 | ||
Vitamin E | 0.2 IU | 0.25 | ||
Vitamin K | 0.1 IU | 0.12 | ||
Thiamin | 0.002 | 0.0025 | ||
Riboflavin | 0.004 | 0.0045 | ||
Niacin | 0.006 | 0.007 | ||
Pantothenic acid | 0.005 | 0.0055 | ||
Vitamin B6 | 0.003 | 0.0032 | ||
Folate | 0.001 | 0.0011 | ||
Vitamin B12 | 0.2 | 0.25 | ||
Choline | 0.15 | 0.06 |
Metabolic Factor | Pre-Calving | Post-Calving | ||
---|---|---|---|---|
Primiparous (Mean ± SD) | Multiparous (Mean ± SD) | Primiparous (Mean ± SD) | Multiparous (Mean ± SD) | |
NEFA (Mm) | 0.5 ± 0.076 b | 0.4 ± 0.066 b | 0.6 ± 0.095 a | 0.6 ± 0.097 a |
Vaspin (ng/mL) | 0.7 ± 0.08 d | 0.7 ± 0.084 c | 0.5 ± 0.054 b | 0.6 ± 0.073 a |
Cholesterol (mg/dL) | 123.9 ± 13.737 b | 119.6 ± 14.754 b | 130.7 ± 13.603 a | 140.9 ± 20.166 a |
TG (mg/dL) | 21.8 ± 0.766 b | 24.0 ± 5.282 a | 29.1 ± 6.433 a | 26.1 ± 4.286 a |
HDL (mg/dL) | 63.2 ± 7.451 a | 60.1 ± 8.476 a | 62.0 ± 6.463 a | 65.5 ± 6.398 a |
LDL (mg/dL) | 56.4 ± 16.323 b | 54.6 ± 8.027 b | 62.9 ± 12.791 a | 70.2 ± 21.893 a |
IL-1 (pg/dL) | 89.2 ± 8.982 c | 83.1 ± 10.487 c | 97.99 ± 15.842 b | 111.95 ± 22.744 a |
TNF-α (pg/dL) | 266.2 ± 23.285 c | 213.7 ± 37.418 c | 226.9 ± 20.793 b | 254.5 ± 49.271 a |
Serum Factor | Pre-Calving | Post-Calving | ||
---|---|---|---|---|
Pearson R | p-Value | Pearson R | p-Value | |
Vaspin vs. IL-1 | −0.907 | <0.0001 *** | 0.478 | <0.01 * |
Vaspin vs. TNF | −0.566 | <0.001 ** | 0.340 | <0.05 * |
Vaspin vs. NEFA | −0.023 | >0.05 | 0.253 | >0.05 |
Serum Factor | Pre-Calving | Post-Calving | ||
---|---|---|---|---|
Pearson R | p Value | Pearson R | p Value | |
Vaspin vs. Cholesterol | 0.061 | 0.709 | 0.115 | 0.481 |
Vaspin vs. TG | 0.247 | 0.087 | −0.291 | 0.068 |
Vaspin vs. HDL | 0.021 | 0.896 | 0.136 | 0.403 |
Vaspin vs. LDL | 0.23 | 0.887 | 0.018 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naji, H.A.; Rhyaf, A.G.; ALyasari, N.K.H.; Al-Karagoly, H. Assessing Serum Vaspin Dynamics in Dairy Cows during Late Pregnancy and Early Lactation in Relation to Negative Energy Balance. Dairy 2024, 5, 229-238. https://doi.org/10.3390/dairy5010019
Naji HA, Rhyaf AG, ALyasari NKH, Al-Karagoly H. Assessing Serum Vaspin Dynamics in Dairy Cows during Late Pregnancy and Early Lactation in Relation to Negative Energy Balance. Dairy. 2024; 5(1):229-238. https://doi.org/10.3390/dairy5010019
Chicago/Turabian StyleNaji, Hala Abbas, Atiaf Ghanim Rhyaf, Noora Khadhim Hadi ALyasari, and Hassan Al-Karagoly. 2024. "Assessing Serum Vaspin Dynamics in Dairy Cows during Late Pregnancy and Early Lactation in Relation to Negative Energy Balance" Dairy 5, no. 1: 229-238. https://doi.org/10.3390/dairy5010019