The Protein Composition of Bovine Milk from Once-a-Day and Twice-a-Day Milking Production Systems in New Zealand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cow Characteristics
2.2. Milk Characterization
2.3. Statistical Analysis
- Yijkl is the observation for the trait for milking frequency i, breed j, lactation stage k, and cow l
- μ is the population mean
- Mi is the fixed effect of milking frequency i (i = OAD and TAD)
- Bj(Mi) is the fixed effect of breed j nested in milking frequency i (j = F, F × J and J)
- Sk is the fixed effect of stage of lactation k (k = early, mid and late)
- β1 and β2 are the regression coefficients of the linear and quadratic effects of parity p (years) of cow l
- β3 is the regression coefficient of the linear effect of deviation (days) from herd median calving date d of cow l
- Cl is the random effect of cow l
- eijkl is the residual random error assumed with mean zero and variance .
3. Results
3.1. Descriptive Statistics
3.2. Diet Composition
3.3. Effect of Milking Frequency on Milk Yield, Proximate, and Protein Composition
3.4. The Effect of Stage of Lactation on the Milk from OAD and TAD-Milked Cows
3.4.1. Milk and Milk Solids Yield
3.4.2. Proximate Milk Composition
3.4.3. Protein Composition
4. Discussion
4.1. Effect of Milking Frequency on Milk Yield
4.2. The Overall Effect of OAD Milking on the Concentration of Major Components
4.3. The Effect of OAD Milking on the Protein Composition
4.4. The Effect of Stage of Lactation on the Milk from OAD and TAD-Milked Cows
4.4.1. Milk and Milk Solids Yield
4.4.2. Proximate Milk Composition
4.4.3. Protein Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bewsell, D.; Clark, D.A.; Dalley, D.E. Understanding motivations to adopt once-a-day milking amongst New Zealand dairy farmers. J. Agric. Educ. Ext. 2008, 14, 69–80. [Google Scholar] [CrossRef]
- Kendall, P.E.; Tucker, C.B.; Dalley, D.E.; Clark, D.A.; Webster, J.R. Milking frequency affects the circadian body temperature rhythm in dairy cows. Livest. Sci. 2008, 117, 130–138. [Google Scholar] [CrossRef]
- Stelwagen, K.; Phyn, C.V.C.; Davis, S.R.; Guinard-Flament, J.; Pomiès, D.; Roche, J.R.; Kay, J.K. Invited review: Reduced milking frequency: Milk production and management implications. J. Dairy Sci. 2013, 96, 3401–3413. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P. Milking efficiency through extended milking intervals. In Inside Dairy; DairyNZ Ltd.: Hamilton, New Zealand, 2019. [Google Scholar]
- Lazzarini, B.; Lopez-Villalobos, N.; Lyons, N.; Hendrikse, L.; Baudracco, J. Productive, economic and risk assessment of grazing dairy systems with supplemented cows milked once a day. Animal 2018, 12, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Lembeye, F.; Lopez-Villalobos, N.; Burke, J.L.; Davis, S.R. Milk production of Holstein-Friesian, Jersey and crossbred cows milked once-a-day or twice-a-day in New Zealand. N. Z. J. Agric. Res. 2016, 59, 50–64. [Google Scholar] [CrossRef]
- Stockdale, C.R. Influence of milking frequency on the productivity of dairy cows. Aust. J. Exp. Agric. 2006, 46, 965–974. [Google Scholar] [CrossRef]
- Rémond, B.; Pomiès, D.; Dupont, D.; Chilliard, Y. Once-a-day milking of multiparous Holstein cows throughout the entire lactation: Milk yield and composition, and nutritional status. Anim. Res. 2004, 53, 201–212. [Google Scholar] [CrossRef]
- Murney, R.; Stelwagen, K.; Wheeler, T.T.; Margerison, J.K.; Singh, K. The effects of milking frequency in early lactation on milk yield, mammary cell turnover, and secretory activity in grazing dairy cows. J. Dairy Sci. 2015, 98, 305–311. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system. J. Dairy Sci. 2019, 102, 7747–7759. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, B.; Guinee, T.P. Seasonal Effects on Processing Properties of Cows’ Milk. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sorensen, A.; Muir, D.D.; Knight, C.H. Extended lactation in dairy cows: Effects of milking frequency, calving season and nutrition on lactation persistency and milk quality. J. Dairy Res. 2008, 75, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Johnston, K.A.; White, N.J.; Fitzsimons, W.P.; Boland, M.J. A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from friesian and jersey dairy cows. J. Dairy Res. 2004, 71, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Back, P.; Lopez-Villalobos, N. Breed and heterosis effects for milk protein composition estimated in two stages of lactation in New Zealand dairy cows. Proc. N. Z. Soc. Anim. Prod. 2007, 67, 399–402. [Google Scholar]
- Bobe, G.; Beitz, D.C.; Freeman, A.E.; Lindberg, G.L. Separation and quantification of bovine milk proteins by reversed-phase high-performance liquid chromatography. J. Agric. Food Chem. 1998, 46, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Gedye, K.; Notcovich, S.; Correa-Luna, M.; Ariyarathne, P.; Heiser, A.; Lopez-Lozano, R.; Lopez-Villalobos, N. Lactoferrin concentration and expression in New Zealand cows milked once or twice a day. Anim. Sci. J. 2020, 91, e13331. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Farr, V.C.; Stelwagen, K. Regulation of yield loss and milk composition during once-daily milking: A review. Livest. Prod. Sci. 1999, 59, 77–94. [Google Scholar] [CrossRef]
- Correa-Luna, M.; Donaghy, D.; Kemp, P.; Shalloo, L.; Ruelle, E.; Hennessy, D.; López-Villalobos, N. Productivity, profitability and nitrogen utilisation efficiency of two pasture-based milk production systems differing in the milking frequency and feeding level. Sustainability 2021, 13, 2098. [Google Scholar] [CrossRef]
- Edwards, J.P. Comparison of milk production and herd characteristics in New Zealand herds milked once or twice a day. Anim. Prod. Sci. 2018, 59, 570–580. [Google Scholar] [CrossRef]
- O’Brien, B.; Ryan, G.; Meaney, W.J.; McDonagh, D.; Kelly, A. Effect of frequency of milking on yield, composition and processing quality of milk. J. Dairy Res. 2002, 69, 367–374. [Google Scholar] [CrossRef]
- Clark, D.A.; Phyn, C.V.C.; Tong, M.J.; Collis, S.J.; Dalley, D.E. A systems comparison of once- versus twice-daily milking of pastured dairy cows. J. Dairy Sci. 2006, 89, 1854–1862. [Google Scholar] [CrossRef]
- Lacy-Hulbert, S.J.; Woolford, M.W.; Nicholas, G.D.; Prosser, C.G.; Stelwagen, K. Effect of milking frequency and pasture intake on milk yield and composition of late lactation cows. J. Dairy Sci. 1999, 82, 1232–1239. [Google Scholar] [CrossRef]
- Edwards, J.P. A comparison of profitability between farms that milk once or twice a day. Anim. Prod. Sci. 2019, 60, 102–106. [Google Scholar] [CrossRef]
- Auldist, M.; Prosser, C. Differential effects of short-term once-daily milking on milk yield, milk composition and concentrations of selected blood metabolites in cows with low or high pasture intake. Proc. N. Z. Soc. Anim. Prod. 1998, 58, 41–43. [Google Scholar]
- Martin, B.; Pomiès, D.; Pradel, P.; Verdier-Metz, L.; Rémond, B. Yield and sensory properties of cheese made with milk from Holstein or montbéliarde cows milked twice or once daily. J. Dairy Sci. 2009, 92, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Pomiès, D.; Martin, B.; Chilliard, Y.; Pradel, P.; Rémond, B. Once-a-day milking of Holstein and Montbéliarde cows for 7 weeks in mid-lactation. Animal 2007, 1, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.Q.; Keating, A.F. Expression and regulation of glucose transporters in the bovine mammary gland. J. Dairy Sci. 2007, 90, E76–E86. [Google Scholar] [CrossRef] [PubMed]
- Strucken, E.M.; Laurenson, Y.C.; Brockmann, G.A. Go with the flow—Biology and genetics of the lactation cycle. Front. Genet. 2015, 6, 118. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.L.; Reid, S.; Joyce, P.; Meaney, W.J.; Foley, J. Effect of decreased milking frequency of cows in late lactation on milk somatic cell count, polymorphonuclear leucocyte numbers, composition and proteolytic activity. J. Dairy Res. 1998, 65, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.P.; Collier, J.L.; Hadsell, D.L.; Collier, R.J. Milk yield differences between 1× and 4× milking are associated with changes in mammary mitochondrial number and milk protein gene expression, but not mammary cell apoptosis or SOCS gene expression. J. Dairy Sci. 2015, 98, 4439–4448. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.; Guyomarc’h, F. Formation and properties of the whey protein/κ-casein complexes in heated skim milk—A review. Dairy Sci. Technol. 2009, 89, 3–29. [Google Scholar] [CrossRef]
- Jõudu, I.; Henno, M.; Kaart, T.; Püssa, T.; Kärt, O. The effect of milk protein contents on the rennet coagulation properties of milk from individual dairy cows. Int. Dairy J. 2008, 18, 964–967. [Google Scholar] [CrossRef]
- Guyomarc’h, F.; Law, A.J.R.; Dalgleish, D.G. Formation of soluble and micelle-bound protein aggregates in heated milk. J. Agric. Food Chem. 2003, 51, 4652–4660. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Effect of seasonal variations on the acid gelation of milk. J. Dairy Sci. 2020, 103, 4965–4974. [Google Scholar] [CrossRef]
- Cases, E.; Vidal, V.; Cuq, J.L. Effect of κ-casein deglycosylation on the acid coagulability of Milk. J. Food Sci. 2003, 68, 2406–2410. [Google Scholar] [CrossRef]
- Carruthers, V.R.; Davis, S.R.; Bryant, A.M.; Copeman, P.J. Response of Jersey and Friesian Cows to once a day milking and prediction of response based on udder characteristics and milk composition. J. Dairy Res. 1993, 60, 1–11. [Google Scholar] [CrossRef]
- Stelwagen, K.; Knight, C.H. Effect of unilateral once or twice daily milking of cows on milk yield and udder characteristics in early and late lactation. J. Dairy Res. 1997, 64, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Hickson, R.E.; Lopez-Villalobos, N.; Dalley, D.E.; Clark, D.A.; Holmes, C.W. Yields and persistency of lactation in Friesian and Jersey cows milked once daily. J. Dairy Sci. 2006, 89, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Lembeye, F.; Lopez-Villalobos, N.; Burke, J.L.; Davis, S.R.; Richardson, J.; Sneddon, N.W.; Donaghy, D.J. Comparative performance in Holstein-Friesian, Jersey and crossbred cows milked once daily under a pasture-based system in New Zealand. N. Z. J. Agric. Res. 2016, 59, 351–362. [Google Scholar] [CrossRef]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef]
- Bernier-Dodier, P.; Delbecchi, L.; Wagner, G.F.; Talbot, B.G.; Lacasse, P. Effect of milking frequency on lactation persistency and mammary gland remodeling in mid-lactation cows1. J. Dairy Sci. 2010, 93, 555–564. [Google Scholar] [CrossRef]
- Knight, C.H.; Dewhurst, R. Once daily milking of dairy cows: Relationship between yield loss and cisternal-milk storage. J. Dairy Res. 1994, 61, 441–449. [Google Scholar] [CrossRef]
- Ng-Kwai-Hang, K.; Hayes, J.; Moxley, J.; Monardes, H. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 1982, 65, 1993–1998. [Google Scholar] [CrossRef] [PubMed]
- Coulon, J.-B.; Hurtaud, C.; Rémond, B.; Verite, R. Factors contributing to variation in the proportion of casein in cows’ milk true protein: A review of recent INRA experiments. J. Dairy Res. 1998, 65, 375–387. [Google Scholar] [CrossRef] [PubMed]
- O’connell, A.; Kelly, A.L.; Tobin, J.; Ruegg, P.L.; Gleeson, D. The effect of storage conditions on the composition and functional properties of blended bulk tank milk. J. Dairy Sci. 2017, 100, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.G.; Donnelly, W.J. Casein compositional studies 1. The composition of casein from Friesian herd milks. J. Dairy Res. 1980, 47, 71–81. [Google Scholar] [CrossRef]
- Ostersen, S.; Foldager, J.; Hermansen, J.E. Effects of stage of lactation, milk protein genotype and body condition at calving on protein composition and renneting properties of bovine milk. J. Dairy Res. 1997, 64, 207–219. [Google Scholar] [CrossRef]
- Bonfatti, V.; Chiarot, G.; Carnier, P. Glycosylation of κ-casein: Genetic and nongenetic variation and effects on rennet coagulation properties of milk. J. Dairy Sci. 2014, 97, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, G.; Ng-Kwai-Hang, K.F.; Monardes, H.G. Variation in the N-acetyl neuraminic acid content of bovine κ-casein. J. Dairy Res. 1991, 58, 107–114. [Google Scholar] [CrossRef]
- Brew, K. α-Lactalbumin. In Advanced Dairy Chemistry—1 Proteins; Springer: Berlin/Heidelberg, Germany, 2003; pp. 387–419. [Google Scholar]
Milking Frequency | ||
---|---|---|
OAD | TAD | |
Number of observations | 81 | 81 |
Deviation from the median calving date (days) | 17 ± 13 | 15 ± 10 |
Parity (years) | 3.4 ± 0.5 | 3.8 ± 1.3 |
Proportion of Friesian | 0.481 | 0.563 |
Proportion of Jersey | 0.519 | 0.438 |
Breeding worth at the start of the season | 139 ± 32 | 148 ± 33 |
Trait | N | Mean | SD | CV% | Min | Max |
---|---|---|---|---|---|---|
Milk yield (kg/cow/day) | 162 | 22.1 | 7.4 | 33.7 | 9.3 | 42.0 |
Protein yield (kg/cow/day) | 162 | 0.80 | 0.21 | 26.1 | 0.39 | 1.28 |
Fat yield (kg/cow/day) | 162 | 1.04 | 0.32 | 30.3 | 0.44 | 2.22 |
Lactose yield (kg/cow/day) | 162 | 0.99 | 0.35 | 35.2 | 0.39 | 1.95 |
Protein content (%) | 162 | 3.84 | 0.46 | 11.9 | 2.84 | 5.02 |
Fat content (%) | 162 | 5.02 | 0.94 | 18.7 | 2.64 | 9.00 |
Lactose content (%) | 162 | 4.58 | 0.15 | 3.3 | 4.22 | 5.02 |
Casein (%) | 162 | 80.0 | 3.8 | 4.7 | 73.1 | 87.7 |
αs1-casein (%) | 162 | 22.6 | 1.6 | 7.2 | 19.1 | 27.3 |
αs2-casein (%) | 162 | 5.7 | 1.1 | 19.1 | 3.6 | 8.9 |
β-casein (%) | 162 | 37.4 | 2.4 | 6.5 | 31.4 | 43.8 |
κ-casein (%) | 162 | 14.3 | 1.5 | 10.7 | 9.9 | 17.1 |
Glycosylated κ-casein (%) | 162 | 43.6 | 5.3 | 12.1 | 29.8 | 57.3 |
Whey protein (%) | 162 | 20.0 | 3.8 | 18.9 | 12.3 | 26.9 |
β-lactoglobulin (%) | 162 | 16.9 | 3.9 | 23.2 | 8.7 | 23.9 |
α-lactalbumin (%) | 162 | 3.1 | 0.4 | 14.4 | 1.9 | 4.0 |
Factor 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Trait | M | B | S | M × S | B × S (M) | p | p2 | d |
Milk yield | 15.6 *** | 4.9 ** | 457.3 *** | 2.9 | 6.8 *** | 2.4 | 2.4 | 0.1 |
Protein yield | 20.7 *** | 5.1 ** | 213.4 *** | 0.3 | 2.4 * | 2.1 | 2.0 | 1.4 |
Fat yield | 6.2 * | 0.4 | 140.6 *** | 4.4 * | 2.5 * | 0.8 | 0.7 | 0.0 |
Lactose yield | 15.6 *** | 4.5 ** | 405.2 *** | 1.7 | 5.6 *** | 2.4 | 2.4 | 0.3 |
Protein content | 0.2 | 0.7 | 202.5 *** | 6.2 ** | 2.2 * | 0.4 | 0.4 | 0.4 |
Fat content | 0.5 | 3.2 * | 8.3 *** | 1.5 | 0.7 | 0.1 | 0.2 | 0.0 |
Lactose content | 0.2 | 2.6 * | 62.8 *** | 6.5 ** | 4.0 *** | 7.0 ** | 2.3 | |
Casein | 0.2 | 1.8 | 40.7 *** | 1.0 | 0.3 | 0.1 | 0.1 | 0.3 |
αs1-casein | 1.6 | 0.8 | 51.5 *** | 0.5 | 0.5 | 1.3 | 1.3 | 1.7 |
αs2-casein | 15.9 *** | 2.4 | 36.0 *** | 3.7 * | 0.8 | 0.9 | 1.2 | 0.1 |
β-casein | 1.0 | 2.0 | 28.4 *** | 2.8 | 1.2 | 1.7 | 1.7 | 0.0 |
κ-casein | 10.7 ** | 8.7 *** | 8.3 *** | 4.0 * | 3.5 ** | 6.4 * | 6.6 * | 0.0 |
Glycosylated κ-casein | 3.8 | 2.2 | 90.7 *** | 3.3 * | 2.5 * | 1.2 | 1.2 | 0.3 |
Whey protein | 0.2 | 1.8 | 40.7 *** | 1.0 | 0.3 | 0.1 | 0.1 | 0.3 |
β-lactoglobulin | 0.1 | 2.0 | 60.3 *** | 0.5 | 0.4 | 0.1 | 0.1 | 0.4 |
α-lactalbumin | 6.4 * | 4.2 ** | 58.3 *** | 3.4 * | 0.9 | 7.7 ** | 0.1 |
OAD 8 | TAD 9 | |||||
---|---|---|---|---|---|---|
Early | Mid | Late | Early | Mid | Late | |
Chemical composition | ||||||
ME 1 (MJ/kg DM) | 11.41 | 11.19 | 10.61 | 11.36 | 11.13 | 10.90 |
CP 2 (g/100 g DM) | 22.18 | 21.40 | 19.71 | 20.86 | 19.66 | 19.57 |
NDF 3 (g/100 g DM) | 37.55 | 40.94 | 41.61 | 37.53 | 44.12 | 44.74 |
ADF 4 (g/100 g DM) | 19.10 | 21.38 | 25.57 | 17.28 | 21.19 | 25.68 |
SSS 5 (g/100 g DM) | 16.00 | 11.65 | 11.38 | 18.68 | 16.27 | 13.92 |
Lipid (g/100 g DM) | 4.44 | 4.58 | 4.34 | 3.60 | 4.22 | 4.55 |
Diet composition (fed prior to sampling days on DM basis, kg DM/cow/day) | ||||||
Pasture | 11.7 | 11.3 | 7.3 | 17.0 | 17.0 | 7.5 |
Chicory | 1.3 | 2.7 | 1.0 | - | - | - |
Maize silage | 1.0 | - | 0.3 | 4.3 | 5.0 | 2.7 |
DDG 6 | 1.8 | - | - | - | 1.0 | 0.5 |
Tapioca | 0.8 | - | 1.3 | - | - | - |
Molasses | - | - | - | 1.0 | - | - |
Concentrates 7 | - | - | 2.0 | 1.0 | - | 0.7 |
Dry roughage | - | - | - | 0.1 | - | 0.1 |
Baleage | - | 2.0 | 4.0 | 0.7 | 1.0 | 6.2 |
Milking Frequency | p-Value | |||
---|---|---|---|---|
Trait | OAD | TAD | Milking Frequency | Stage of Lactation |
Milk yield (L) | 17.0 ± 1.1 | 25.2 ± 1.2 | <0.001 | <0.001 |
Protein yield (kg) | 0.65 ± 0.03 | 0.92 ± 0.03 | <0.001 | <0.001 |
Fat yield (kg) | 0.87 ± 0.07 | 1.18 ± 0.07 | 0.014 | <0.001 |
Lactose yield (kg) | 0.78 ± 0.05 | 1.16 ± 0.06 | <0.001 | <0.001 |
Protein content (%) | 3.90 ± 0.14 | 3.78 ± 0.15 | 0.657 | <0.001 |
Fat content (%) | 5.17 ± 0.25 | 4.83 ± 0.26 | 0.464 | <0.001 |
Lactose content (%) | 4.56 ± 0.03 | 4.58 ± 0.03 | 0.693 | <0.001 |
Casein (%) | 80.5 ± 1.6 | 79.2 ± 1.8 | 0.680 | <0.001 |
αs1-casein (%) | 21.8 ± 0.6 | 23.3 ± 0.7 | 0.216 | <0.001 |
αs2-casein (%) | 6.7 ± 0.3 | 4.7 ± 0.3 | <0.001 | <0.001 |
β-casein (%) | 36.5 ± 0.9 | 38.2 ± 1.0 | 0.312 | <0.001 |
κ-casein (%) | 15.5 ± 0.4 | 13.1 ± 0.4 | 0.001 | <0.001 |
Glycosylated κ-casein (% of total κ-CN) | 46.8 ± 1.6 | 41.0 ± 1.7 | 0.054 | <0.001 |
Whey protein (%) | 19.5 ± 1.6 | 20.8 ± 1.8 | 0.680 | <0.001 |
β-lactoglobulin (%) | 16.5 ± 1.7 | 17.6 ± 1.8 | 0.729 | <0.001 |
α-lactalbumin (%) | 2.9 ± 0.1 | 3.2 ± 0.1 | 0.013 | <0.001 |
OAD | TAD | M × S 1 Effect | |||||
---|---|---|---|---|---|---|---|
Early | Mid | Late | Early | Mid | Late | ||
Milk yield (L) | 21.8 ± 1.1 bc | 17.6 ± 1.2 d | 11.5 ± 1.2 e | 31.0 ± 1.2 a | 24.9 ± 1.2 b | 19.6 ± 1.2 cd | 0.061 |
Protein yield (kg) | 0.80 ± 0.03 bc | 0.65 ± 0.04 d | 0.51 ± 0.03 e | 1.08 ± 0.04 a | 0.90 ± 0.04 b | 0.78 ± 0.04 c | 0.728 |
Fat yield (kg) | 1.10 ± 0.07 bc | 0.89 ± 0.08 de | 0.62 ± 0.07 f | 1.48 ± 0.07 a | 1.08 ± 0.07 bd | 0.97 ± 0.07 ce | 0.015 |
Lactose yield (kg) | 1.02 ± 0.05 bc | 0.79 ± 0.06 d | 0.51 ± 0.05 e | 1.45 ± 0.06 a | 1.14 ± 0.06 b | 0.90 ± 0.06 cd | 0.185 |
Protein content (%) | 3.72 ± 0.14 bcd | 3.67 ± 0.15 bcd | 4.29 ± 0.15 a | 3.54 ± 0.16 d | 3.69 ± 0.16 c | 4.09 ± 0.16 ab | 0.003 |
Fat content (%) | 5.11 ± 0.26 ab | 5.06 ± 0.28 ab | 5.34 ± 0.26 ab | 4.86 ± 0.27 a | 4.48 ± 0.27 b | 5.15 ± 0.27 a | 0.228 |
Lactose content (%) | 4.69 ± 0.03 a | 4.54 ± 0.03 b | 4.46 ± 0.03 c | 4.65 ± 0.03 a | 4.56 ± 0.03 b | 4.53 ± 0.03 bc | 0.002 |
Casein (%) | 81.1 ± 1.6 abc | 81.1 ± 1.7 abc | 79.3 ± 1.7 def | 80.1 ± 1.8 ad | 79.5 ± 1.8 be | 78.1 ± 1.8 cf | 0.359 |
αs1-casein (%) | 22.7 ± 0.6 ace | 21.8 ± 0.7 bdf | 21.0 ± 0.6 g | 24.0 ± 0.7 ab | 23.4 ± 0.7 cd | 22.4 ± 0.7 efg | 0.618 |
αs2-casein (%) | 6.2 ± 0.3 b | 6.9 ± 0.3 a | 7.1 ± 0.3 a | 4.5 ± 0.3 d | 4.6 ± 0.3 d | 5.1 ± 0.3 c | 0.027 |
β-casein (%) | 36.6 ± 0.9 be | 37.3 ± 1.0 ad | 35.5 ± 0.9 cf | 38.4 ± 1.0 abc | 38.6 ± 1.0 abc | 37.7 ± 1.0 def | 0.066 |
κ-casein (%) | 15.5 ± 0.4 a | 15.2 ± 0.4 b | 15.6 ± 0.4 a | 13.3 ± 0.4 c | 12.9 ± 0.4 d | 13.0 ± 0.4 d | 0.020 |
Glycosylated κ-casein (% of total κ-CN) | 43.1 ± 1.7 cdf | 46.4 ± 1.8 be | 51.0 ± 1.7 a | 38.5 ± 1.8 f | 40.7 ± 1.8 de | 43.8 ± 1.8 bc | 0.039 |
Whey protein (%) | 18.9 ± 1.6 abc | 18.9 ± 1.7 abc | 20.7 ± 1.7 def | 19.9 ± 1.8 ad | 20.5 ± 1.8 be | 21.9 ± 1.8 cf | 0.359 |
β-lactoglobulin (%) | 15.7 ± 1.7 adf | 15.9 ± 1.7 adf | 18.0 ± 1.7 bce | 16.6 ± 1.8 ef | 17.3 ± 1.8 cd | 19.0 ± 1.8 ab | 0.623 |
α-lactalbumin (%) | 3.2 ± 0.1 a | 2.9 ± 0.1 b | 2.7 ± 0.1 c | 3.3 ± 0.1 a | 3.3 ± 0.1 a | 2.9 ± 0.1 b | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Zeijden, M.; Ellis, A.; Lopez-Villalobos, N.; Li, S.; Roy, N.C.; McNabb, W. The Protein Composition of Bovine Milk from Once-a-Day and Twice-a-Day Milking Production Systems in New Zealand. Dairy 2023, 4, 689-703. https://doi.org/10.3390/dairy4040047
van der Zeijden M, Ellis A, Lopez-Villalobos N, Li S, Roy NC, McNabb W. The Protein Composition of Bovine Milk from Once-a-Day and Twice-a-Day Milking Production Systems in New Zealand. Dairy. 2023; 4(4):689-703. https://doi.org/10.3390/dairy4040047
Chicago/Turabian Stylevan der Zeijden, Marit, Ashling Ellis, Nicolas Lopez-Villalobos, Siqi Li, Nicole C. Roy, and Warren McNabb. 2023. "The Protein Composition of Bovine Milk from Once-a-Day and Twice-a-Day Milking Production Systems in New Zealand" Dairy 4, no. 4: 689-703. https://doi.org/10.3390/dairy4040047
APA Stylevan der Zeijden, M., Ellis, A., Lopez-Villalobos, N., Li, S., Roy, N. C., & McNabb, W. (2023). The Protein Composition of Bovine Milk from Once-a-Day and Twice-a-Day Milking Production Systems in New Zealand. Dairy, 4(4), 689-703. https://doi.org/10.3390/dairy4040047