Optimal Age at First Calving in Pasture-Based Dairy Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Inclusion Criteria
- -
- Specialized dairy herds were selected based on the availability of productive records of females born between 1990 and 2016. A minimum of five cows with information available per herd was mandatory.
- -
- The breeds included in the study were: Holstein, Jersey, and Holstein × Jersey crosses.
- -
- Only cows with complete follow-up data from birth to culling were included in the study. Cows with incomplete records or those still alive at the time of extracting the information were not included in the study. In addition, the availability of an estimate of total milk production for each of the lactations of all cows was required. This production was estimated from test-day records using the Test Interval Method (TIM) according to the procedure used in VAMPP [28]. The number of daily records available per lactation was highly variable between herds and cows, with an average of 15 records per lactation. Lactation length was also highly variable, since culling could occur at any time during lactation.
- -
- To reduce the effect of extreme values in the statistical analyses, restriction intervals were defined for variables analyzed in the study. These intervals were established based on the observed distribution of these variables in the entire population. Applied restriction intervals were: age at first calving between 18 and 60 months, days open between 30 and 500 days, herd life between 1 and 150 months, and age at culling between 20 and 180 months. In addition, maximum values were also established for cumulative days open (1500 d), lactation length (800 d), milk production per lactation (21,000 kg), and cumulative milk production (100,000 kg).
- -
- Cows culled within 15 days after the first calving were also excluded from the study.
- -
- Cows fulfilling the previous criteria were classified according to their age at first calving into one of the following five classes (in months, after rounding up to the nearest integer): (1) AFC ≤ 24 months, (2) AFC 25 to 27 months, (3) AFC 28 to 30 months, (4) AFC 31 to 33 months, (5) AFC ≥ 34 months.
2.3. Descriptive Statistical Analysis
- -
- Age at First Calving (AFC): months elapsed between birth and first calving.
- -
- Open period after first calving (OPFC): calving-conception interval (in months) after the first calving.
- -
- Cumulative open period (COP): sum (in months) of the calving-conception intervals of all calving registered for each cow.
- -
- Age at Culling (ACU): time elapsed (in months) between birth and culling.
- -
- Herd Life (HLI): time elapsed (in months) between first calving and culling.
- -
- Lactations (LAC): total number of lactations with reported production data.
- -
- Milk production in the first lactation (PRF): total milk production (in kg) during first lactation, estimated from test day records.
- -
- Cumulative milk production (CPR): sum (in kg) of the milk production of all lactations of each cow.
- -
- Milk production per day of life (PRD): obtained by dividing cumulative milk production (CPR, in kg) by the age at culling (ACU, in days).
2.4. Survival Curves by Breed × Age at First Calving Strata
2.5. Inferential Statistical Analysis Using GLMM
- The response variables (Milk production (CPR and PRF), open period (COP and OPFC), herd life (HLI), age at culling (ACU) and production per day of life (PRD)).
- Population mean
- ith fixed effect linked to breed group (three classes: Holstein, Jersey, and Holstein × Jersey crosses).
- jth fixed effect linked to class of age at first calving (five classes: ≤24 m, 25–27 m, 28–30 m, 31–33 m, ≥34 m).
- fixed effect linked to the ijth interaction of breed group by AFC class (3 × 5 = 15 classes).
- random effect linked to the kth herd of origin of each cow (654 herds).
- random effect linked to the lth year of birth (1990–2016).
- random residual error.
3. Results
3.1. Descriptive Parameters
3.2. Kaplan Meier Survival Curves
3.3. Effect of the AFC on Performance Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo-Badilla, G.; Vargas-Leitón, B.; Hueckmann-Voss, F.; Romero-Zúñiga, J. Factores que afectan la producción en primera lactancia de vacas lecheras de Costa Rica. Agron. Mesoam. 2019, 30, 209–227. [Google Scholar] [CrossRef]
- Cooke, J.S.; Cheng, Z.; Bourne, N.E.; Wathes, D.C. Association between growth rates, age at first calving and subsequent fertility, milk production and survival in Holstein-Friesian heifers. Open J. Anim. Sci. 2013, 3, 1–12. [Google Scholar] [CrossRef]
- Meyer, M.J.; Everett, R.W.; van Amburgh, M.E. Reduced age at first calving: Effects on lifetime production, longevity, and profitability. Kans. Agric. Exp. Stn. Res. Rep. 2004, 0, 42–52. [Google Scholar] [CrossRef]
- Do, C.; Wasana, N.; Cho, K.; Choi, Y.; Choi, T.; Park, B.; Lee, D. The effect of age at first calving and calving interval on productive life and lifetime profit in Korean Holsteins. Asian-australas. J. Anim. Sci. 2013, 26, 1511–1517. [Google Scholar] [CrossRef]
- Le-Cozler, Y.; Lollivier, V.; Lacasse, P.; Disenhaus, C. Rearing strategy and optimizing first-calving targets in dairy heifers: A review. Animals 2008, 2, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A.; Siatka, K.; Krężel-Czopek, S. Effect of age at first calving on first lactation milk yield, lifetime milk production, and longevity of cows. Ann. Anim. Sci. 2019, 19, 189–200. [Google Scholar] [CrossRef]
- Krpálková, L.; Cabrera, V.E.; Kvapilík, J.; Burdych, J.; Crump, P. Associations between age at first calving, rearing average daily weight gain, herd milk yield and herd dairy production, reproduction, and profitability. J. Dairy Sci. 2014, 97, 6573–6582. [Google Scholar] [CrossRef]
- Atashi, H.; Asaadi, A.; Hostens, E. Association between age at first calving and lactation performance, lactation curve, calving interval, calf birth weight, and dystocia in Holstein dairy cows. PLoS ONE 2021, 16, e0244825. [Google Scholar] [CrossRef]
- Eastham, N.T.; Coates, A.; Cripps, P.; Richardson, H.; Smith, R.; Oikonomou, G. Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows. PLoS ONE 2018, 13, e0197764. [Google Scholar] [CrossRef]
- Hare, E.; Norman, H.D.; Wright, J.R. Trends in calving ages and calving intervals for dairy cattle breeds in the United States. J. Dairy Sci. 2006, 89, 365–370. [Google Scholar] [CrossRef]
- Mohd-Nor, N.; Steeneveld, W.; van Werven, T.; Mourits, M.C.M.; Hogeveen, H. First-calving age and first-lactation milk production on Dutch dairy farms. J. Dairy Sci. 2013, 96, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Pirlo, G.; Miglior, F.; Speroni, M. Effect of age at first calving on production traits and on difference between milk yield returns and rearing costs in Italian Holsteins. J. Dairy Sci. 2000, 83, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Leitón, B. Mejoramiento genético: Herramienta para incrementar la productividad del hato lechero. UTN-Inf. 2013, 66, 6–14. Available online: https://www.utn.ac.cr/sites/default/files/attachments/revista%2066.pdf (accessed on 20 January 2022).
- Berry, D.P.; Cromie, A.R. Associations between age at first calving and subsequent performance in Irish spring calving Holstein–Friesian dairy cows. Livest. Sci. 2009, 123, 44–54. [Google Scholar] [CrossRef]
- Castillo-Badilla, G.; Salazar-Carranza, M.; Murillo-Herrera, J.; Romero-Zúñiga, J. Efecto de la edad al primer parto sobre parámetros productivos en vacas Jersey de Costa Rica. Agron. Mesoam. 2013, 24, 177–187. [Google Scholar] [CrossRef]
- Steele, M. Age at first calving in dairy cows: Which months do you aim for to maximize productivity? Vet. Evid. 2020, 5. [Google Scholar] [CrossRef]
- Sawa, A.; Bogucki, M. Effect of some factors on cow longevity. Arch. Tierzucht. 2010, 53, 403–414. [Google Scholar] [CrossRef]
- Zavadilová, L.; Stípková, M. Effect of age at first calving on longevity and fertility traits for Holstein cattle. Czech J. Anim. Sci. 2013, 58, 47–57. [Google Scholar] [CrossRef]
- Adamczyk, K.; Makulska, J.; Jagusiak, W.; Węglarz, A. Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein-Friesian cows. Animal 2016, 11, 327–334. [Google Scholar] [CrossRef]
- Castillo-Badilla, G.; Salazar-Carranza, M.; Murillo-Herrera, J.; Hueckmann-Voss, F.; Romero-Zúñiga, J. Efecto de la edad al primer parto sobre parámetros reproductivos en la primera lactancia de vacas Holstein y Jersey de Costa Rica. Rev. Cienc. Vet. 2015, 33, 33–45. [Google Scholar] [CrossRef]
- Vargas-Leitón, B.; Ulloa-Cruz, J. Relación entre curvas de crecimiento y parámetros reproductivos en grupos raciales lecheros de distintas zonas agroecológicas de Costa Rica. Livest. Res. Rural Dev. 2008, 20, 103. Available online: http://www.lrrd.org/lrrd20/7/varg20103.htm (accessed on 20 January 2022).
- Vargas-Leitón, B.; Solís-Guzmán, O.; Saénz-Segura, F.; León-Hidalgo, H. Caracterización y clasificación de hatos lecheros en Costa Rica mediante análisis multivariado. Agron. Mesoam. 2013, 24, 257–275. [Google Scholar] [CrossRef]
- CRIPAS-Centro Regional de Informática para la Producción Animal Sostenible. Resultados de Encuesta Diagnóstico. Proyecto de Evaluación de la Genética Neozelandesa Basada en Pasturas. Cámara Nacional de Productores de Leche, Ministerio de Agricultura y Ganadería, Livestock Improvement Corporation, Centro Regional de Informática para la Producción Animal Sostenible. 2020. Available online: http://www.egcrc.rf.gd/invest/NZLResultados_encuesta_Marzo2020.pdf (accessed on 20 January 2022).
- Iñamagua-Uyaguari, J.P.; Jenet, A.; Alarcón-Guerra, L.G.; Vílchez-Mendoza, S.J.; Casasola-Coto, F.; Wattiaux, M.A. Impactos económicos y ambientales de las estrategias de alimentación en lecherías de Costa Rica. Agron. Mesoam. 2016, 27, 1–17. [Google Scholar] [CrossRef]
- Vargas-Leitón, B.; Romero-Zúñiga, J. Efectos genéticos aditivos y no aditivos en cruces rotacionales entre razas lecheras. Agron. Mesoam. 2010, 21, 223–234. [Google Scholar] [CrossRef]
- Vargas-Leitón, B. Aspectos Genéticos de la Fertilidad en Bovinos Lecheros. In Congreso Nacional Lechero, 1ra. Edición Virtual, San José, Costa Rica, 06/10/2020. 2020. Available online: https://www.youtube.com/watch?v=ssjt7BB664I&list=UU3SPT3-p8cWX5aiOyP8cKoA (accessed on 20 January 2022).
- Sánchez-Hernández, Z.; Galina-Hidalgo, C.S.; Vargas-Leitón, B.; Rojas Campos, J.; Estrada-König, S. Herd management information systems to support cattle population research: The VAMPP® case. Agron. Mesoam. 2020, 31, 141–156. [Google Scholar] [CrossRef]
- Noordhuizen, J.P.; Buurman, J. VAMPP: A veterinary automated management and production control program for dairy farms (the application of MUMPS for data processing). Vet. Quart. 1984, 6, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Daniel, W.W.; Cross, C.L. Biostatistics. A Foundation for Analysis in the Health Sciences, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- SAS Institute Inc. SAS/STAT® User’s Guide; SAS Institute Inc.: Singapore, 2022; Available online: https://documentation.sas.com/doc/es/pgmsascdc/v_023/statug/titlepage.htm (accessed on 20 January 2022).
- Gbur, E.E.; Stroup, W.W.; McCarter, K.S.; Durham, S.; Young, L.J.; Christman, M.; West, M.; Kramer, M. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences; American Society of Agronomy, Soil Science Society of America, Crop Science Society of America: Madison, WI, USA, 2012. [Google Scholar] [CrossRef]
- Roche, J.R.; Dennis, N.A.; MacDonald, K.A.; Phyn, C.V.C.; Amer, P.R.; White, R.R.; Drackley, J.K. Growth targets and rearing strategies for replacement heifers in pasture-based systems: A review. Anim. Prod. Sci. 2015, 55, 902–915. [Google Scholar] [CrossRef]
- Norman, H.D.; Guinan, F.L.; Megonigal, J.H.; Dürr, J.W. State and National Standardized Lactation Averages by Breed for Cows Calving in 2020. CDCB Research Report K2-20,2-22. 2020. Available online: https://queries.uscdcb.com/publish/dhi/current/lax.html (accessed on 1 October 2023).
- LIC-Dairy NZ. New Zealand Dairy Statistics 2021–2022. 2022. Available online: https://www.dairynz.co.nz/media/uzeekwgr/nz-dairy-statistics-2021-22-web.pdf (accessed on 1 October 2023).
- Norman, H.D.; Guinan, F.L.; Megonigal, J.H.; Dürr, J.W. Reproductive Status of Cows in Dairy Herd Improvement Programs and Bred Using Artificial Insemination. 2020. Available online: https://queries.uscdcb.com/publish/dhi/current/reproall.html (accessed on 1 October 2023).
- De Vries, A.; Marcondes, M.I. Review: Overview of factors affecting productive lifespan of dairy cows. Animal 2020, 14, 155–164. [Google Scholar] [CrossRef]
- Elizondo-Salazar, J.; Solís-Chaves, H. Costo de criar una ternera lechera de reemplazo desde el nacimiento al parto. Agron. Mesoam. 2018, 29, 547–555. [Google Scholar] [CrossRef]
- León-Hidalgo, H. Alternativas para la reducción de los principales costos de producción de leche en Costa Rica: Alimentación y mano de obra. In Proceedings of the XXI Congreso Nacional Lechero, Heredia, Costa Rica, 20–21 October 2015; Available online: http://proleche.com/recursos/documentos/congreso2015/produccion/Charla2.pdf (accessed on 20 January 2022).
- Cedeño-Quevedo, D. Análisis de vida productiva y optimización de políticas de descarte en vacas lecheras de Costa Rica. Tesis Maestría, Producción Animal Sostenible, Posgrado Regional en Ciencias Veterinarias Tropicales Universidad Nacional, Lagunilla, Costa Rica, 2003. Available online: https://repositorio.una.ac.cr/handle/11056/22003 (accessed on 1 October 2023).
- Cole, J.B.; VanRaden, P.M. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018, 101, 3686–3701. [Google Scholar] [CrossRef]
AFC Class by Breed | Cows (n) | Age at First Calving (mo) | Age at Culling (mo) | Herd Life (mo) | Number of Lactations (n) | Cumulative Milk Production (kg) | Milk Production per Day of Life (kg) | Cumulative Open Period (mo) |
---|---|---|---|---|---|---|---|---|
Holstein | 33,207 | 29.5 (0.03) | 65.4 (0.15) | 35.9 (0.15) | 3.0 (0.01) | 19354 (94.1) | 8.2 (0.03) | 14.3 (0.06) |
≤24 | 3726 | 22.8 (0.02) | 59.2 (0.46) | 36.4 (0.46) | 3.1 (0.03) | 21848 (309.6) | 10.1 (0.09) | 13.8 (0.17) |
25–27 | 9432 | 25.6 (0.01) | 63.5 (0.29) | 37.9 (0.29) | 3.2 (0.02) | 21928 (189.8) | 9.5 (0.05) | 14.5 (0.11) |
28–30 | 8220 | 28.4 (0.01) | 65.3 (0.31) | 36.8 (0.31) | 3.1 (0.02) | 19720 (186.3) | 8.3 (0.05) | 14.5 (0.12) |
31–33 | 5060 | 31.4 (0.01) | 66.1 (0.38) | 34.7 (0.38) | 2.9 (0.03) | 17544 (218.2) | 7.3 (0.06) | 14.2 (0.15) |
≥34 | 6769 | 38.4 (0.07) | 71.0 (0.33) | 32.4 (0.33) | 2.7 (0.02) | 15304 (178.6) | 5.9 (0.05) | 13.8 (0.13) |
Holstein × Jersey | 17,307 | 29.1 (0.04) | 64.4 (0.22) | 35.2 (0.22) | 3.0 (0.02) | 14371 (102.8) | 6.1 (0.03) | 13.3 (0.08) |
≤24 | 2214 | 22.5 (0.03) | 58.6 (0.62) | 36.1 (0.61) | 3.2 (0.05) | 15587 (302.0) | 7.2 (0.09) | 12.6 (0.21) |
25–27 | 4916 | 25.6 (0.01) | 62.4 (0.41) | 36.8 (0.41) | 3.2 (0.03) | 15974 (204.6) | 7.0 (0.06) | 13.4 (0.15) |
28–30 | 4310 | 28.5 (0.01) | 65.0 (0.44) | 36.5 (0.44) | 3.1 (0.03) | 14939 (206.9) | 6.3 (0.06) | 13.8 (0.16) |
31–33 | 2678 | 31.4 (0.02) | 66.4 (0.57) | 35.0 (0.57) | 3.0 (0.04) | 13106 (240.8) | 5.3 (0.07) | 13.4 (0.21) |
≥34 | 3189 | 38.1 (0.09) | 69.0 (0.49) | 30.6 (0.48) | 2.7 (0.04) | 11350 (210.1) | 4.4 (0.06) | 12.7 (0.19) |
Jersey | 26,797 | 28.0 (0.03) | 65.6 (0.17) | 37.5 (0.17) | 3.3 (0.01) | 15826 (83.7) | 6.7 (0.02) | 12.6 (0.06) |
≤24 | 4510 | 22.9 (0.02) | 61.2 (0.43) | 38.3 (0.42) | 3.4 (0.03) | 17711 (224.3) | 7.9 (0.06) | 12.3 (0.13) |
25–27 | 9825 | 25.5 (0.01) | 64.6 (0.29) | 39.1 (0.29) | 3.4 (0.02) | 17391 (145.6) | 7.4 (0.04) | 12.9 (0.10) |
28–30 | 6002 | 28.4 (0.01) | 65.7 (0.36) | 37.3 (0.36) | 3.2 (0.03) | 14867 (165.7) | 6.3 (0.05) | 12.6 (0.12) |
31–33 | 3117 | 31.4 (0.02) | 68.3 (0.50) | 36.9 (0.50) | 3.1 (0.04) | 13981 (217.4) | 5.7 (0.06) | 13.0 (0.18) |
≥34 | 3343 | 38.1 (0.10) | 71.7 (0.48) | 33.0 (0.46) | 2.9 (0.03) | 12123 (192.2) | 4.7 (0.05) | 12.1 (0.17) |
Overall | 77,311 | 28.9 (0.02) | 65.2 (0.10) | 36.3 (0.10) | 3.1 (0.01) | 17016 (55.4) | 7.2 (0.02) | 13.5 (0.04) |
AFC Class by Breed | Age at Culling (log Month) * | Herd Life (log Month) * | First Lactation Milk Yield (kg) * | Cumulative Milk Production (log-kg) * | Open Period First Calving (log Month) * | Cumulative Open Period (log Month) * |
---|---|---|---|---|---|---|
Holstein | ||||||
≤24 | 3.90 (0.03) a | 2.96 (0.08) a | 3848 (122) a | 8.74 (0.09) a | 4.77 (0.02) a | 5.59 (0.06) a |
25–27 | 3.95 (0.03) b | 2.95 (0.08) a | 4156 (119) b | 8.77 (0.09) ab | 4.82 (0.01) b | 5.60 (0.06) a |
28–30 | 3.97 (0.03) bc | 2.88 (0.08) b | 4271 (119) c | 8.70 (0.09) b | 4.82 (0.01) b | 5.55 (0.06) b |
31–33 | 4.00 (0.03) c | 2.81 (0.08) c | 4277 (120) c | 8.63 (0.09) c | 4.84 (0.01) b | 5.54 (0.06) c |
≥34 | 4.06 (0.03) d | 2.71 (0.08) d | 4255 (119) c | 8.53 (0.09) d | 4.81 (0.01) b | 5.48 (0.06) d |
Holstein × Jersey | ||||||
≤24 | 3.92 (0.03) a | 2.99 (0.09) a | 3245 (126) a | 8.70 (0.09) a | 4.59 (0.02) a | 5.53 (0.06) a |
25–27 | 3.98 (0.03) b | 3.00 (0.08) a | 3518 (120) b | 8.74 (0.09) a | 4.63 (0.01) b | 5.53 (0.06) a |
28–30 | 4.01 (0.03) c | 2.95 (0.08) b | 3676 (121) c | 8.70 (0.09) a | 4.65 (0.01) b | 5.50 (0.06) b |
31–33 | 4.03 (0.03) c | 2.89 (0.08) c | 3699 (124) c | 8.64 (0.09) a | 4.64 (0.02) b | 5.47 (0.06) c |
≥34 | 4.10 (0.03) d | 2.77 (0.08) d | 3748 (123) c | 8.53 (0.09) b | 4.69 (0.02) c | 5.45 (0.06) d |
Jersey | ||||||
≤24 | 3.93 (0.03) a | 3.03 (0.08) a | 2813 (122) a | 8.63 (0.09) a | 4.59 (0.02) a | 5.52 (0.06) a |
25–27 | 3.98 (0.03) b | 3.01 (0.08) a | 3006 (119) b | 8.65 (0.09) a | 4.61 (0.01) ab | 5.51 (0.06) a |
28–30 | 4.00 (0.03) c | 2.96 (0.08) b | 3158 (120) c | 8.59 (0.09) a | 4.63 (0.01) b | 5.45 (0.06) b |
31–33 | 4.04 (0.03) d | 2.93 (0.08) b | 3318 (123) d | 8.59 (0.09) a | 4.65 (0.02) b | 5.48 (0.06) b |
≥34 | 4.10 (0.03) e | 2.82 (0.08) c | 3388 (122) d | 8.47 (0.09) b | 4.64 (0.02) b | 5.40 (0.06) c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Leitón, B.; Romero-Zúñiga, J.J.; Castillo-Badilla, G.; Saborío-Montero, A. Optimal Age at First Calving in Pasture-Based Dairy Systems. Dairy 2023, 4, 581-593. https://doi.org/10.3390/dairy4040040
Vargas-Leitón B, Romero-Zúñiga JJ, Castillo-Badilla G, Saborío-Montero A. Optimal Age at First Calving in Pasture-Based Dairy Systems. Dairy. 2023; 4(4):581-593. https://doi.org/10.3390/dairy4040040
Chicago/Turabian StyleVargas-Leitón, Bernardo, Juan José Romero-Zúñiga, Gloriana Castillo-Badilla, and Alejandro Saborío-Montero. 2023. "Optimal Age at First Calving in Pasture-Based Dairy Systems" Dairy 4, no. 4: 581-593. https://doi.org/10.3390/dairy4040040
APA StyleVargas-Leitón, B., Romero-Zúñiga, J. J., Castillo-Badilla, G., & Saborío-Montero, A. (2023). Optimal Age at First Calving in Pasture-Based Dairy Systems. Dairy, 4(4), 581-593. https://doi.org/10.3390/dairy4040040