Effect of Storage of Skim Milk Powder, Nonfat Dry Milk and Milk Protein Concentrate on Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Storage of Powders
2.3. Chemical Analyses of Powders
2.4. Functional Properties of Powders
2.4.1. Solubility
2.4.2. Emulsification Ability Index
2.4.3. Foaming Properties
Foam Overrun
Foam Drainage
2.4.4. Surface Hydrophobicity Index
2.5. Statistical Analyses
3. Results and Discussion
3.1. Chemical Analyses of Powders
3.2. Functional Properties of Powders
3.2.1. Solubility
3.2.2. Emulsifying Ability Index
3.2.3. Foam Overrun and Foam Drainage
Foam Overrun
Foam Drainage
3.2.4. Surface Hydrophobicity Index
3.2.5. Seasonal Comparison of SMP and NDM Functional Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salunke, P.; Marella, C.; Metzger, L.E. Microfiltration and Ultrafiltration Process to Produce Micellar Casein and Milk Protein Concentrates with 80% Crude Protein Content: Partitioning of Various Protein Fractions and Constituents. Dairy 2021, 2, 29. [Google Scholar] [CrossRef]
- El-Samragy, Y.A.; Hansen, C.L.; McMahon, D.J. Production of Ultrafiltered Skim Milk Retentate Powder. 2. Functional Properties. J. Dairy Sci. 1993, 76, 2886–2890. [Google Scholar] [CrossRef]
- Havea, P. Protein interactions in milk protein concentrate powders. Int. Dairy J. 2006, 16, 415–422. [Google Scholar] [CrossRef]
- Mistry, V.V.; Hassan, H.N. Delactosed, High Milk Protein Powder. 1. Manufacture and Composition. J. Dairy Sci. 1991, 74, 1163–1169. [Google Scholar] [CrossRef]
- Guzmán-González, M.; Morais, F.; Ramos, M.; Amigo, L. Influence of skimmed milk concentrate replacement by dry dairy products in a low-fat set-type yoghurt model system. I: Use of whey protein concentrates, milk protein concentrates, and skimmed milk powder. J. Sci. Food Agric. 1999, 79, 1117–1122. [Google Scholar] [CrossRef]
- Modler, H.W.; Kalab, M. Microstructure of Yogurt Stabilized with Milk Proteins. J. Dairy Sci. 1983, 66, 430–437. [Google Scholar] [CrossRef]
- Rohm, H. Influence of dry matter fortification of flow properties of yogurt. II: Time-dependent behavior. Milchwissenschaft 1993, 48, 614–617. [Google Scholar]
- Tamime, A.Y.; Robinson, R.K. Tamime and Robinson’s Yoghurt: Science and Technology, 3rd ed.; Elsevier: Boca Raton, FL, USA, 2007. [Google Scholar]
- Mistry, V.V.; Hassan, H.N. Manufacture of Nonfat Yogurt from a High Milk Protein Powder. J. Dairy Sci. 1992, 75, 947–957. [Google Scholar] [CrossRef]
- Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial Yogurt Manufacture: Monitoring of Fermentation Process and Improvement of Final Product Quality. J. Dairy Sci. 2007, 90, 2641–2654. [Google Scholar] [CrossRef]
- Anema, S.G.; Pinder, D.N.; Hunter, R.J.; Hemar, Y. Effects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocoll. 2006, 20, 386–393. [Google Scholar] [CrossRef]
- Le, T.T.; Bhandari, B.; Deeth, H.C. Chemical and Physical Changes in Milk Protein Concentrate (MPC80) Powder during Storage. J. Agric. Food Chem. 2011, 59, 5465–5473. [Google Scholar] [CrossRef]
- McKenna, A.B. Effect of Processing and Storage on the Reconstitution Properties of Whole Milk and Ultrafiltered Skim Milk Powders: Thesis Presented in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Food Technology. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2000. [Google Scholar]
- Singh, H. Interactions of milk proteins during the manufacture of milk powders. Lait 2007, 87, 413–423. [Google Scholar] [CrossRef]
- De Castro-Morel, M.; Harper, W.J. Basic functionality of commercial milk protein concentrates. Milchwissenschaft 2002, 57, 367–370. [Google Scholar]
- Gaiani, C.; Schuck, P.; Scher, J.; Desobry, S.; Bañón, S. Dairy Powder Rehydration: Influence of Protein State, Incorporation Mode, and Agglomeration. J. Dairy Sci. 2007, 90, 570–581. [Google Scholar] [CrossRef]
- Haque, E.; Bhandari, B.R.; Gidley, M.J.; Deeth, H.C.; Whittaker, A.K. Ageing-induced solubility loss in milk protein concentrate powder: Effect of protein conformational modifications and interactions with water: Ageing-induced solubility loss in milk protein concentrate powder. J. Sci. Food Agric. 2011, 91, 2576–2581. [Google Scholar] [CrossRef]
- Mimouni, A.; Deeth, H.; Whittaker, A.; Gidley, M.; Bhandari, B. Investigation of the microstructure of milk protein concentrate powders during rehydration: Alterations during storage. J. Dairy Sci. 2010, 93, 463–472. [Google Scholar] [CrossRef]
- Mimouni, A.; Deeth, H.C.; Whittaker, A.K.; Gidley, M.J.; Bhandari, B. Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocoll. 2009, 23, 1958–1965. [Google Scholar] [CrossRef]
- Fyfe, K.N.; Kravchuk, O.; Le, T.; Deeth, H.C.; Nguyen, A.V.; Bhandari, B. Storage induced changes to high protein powders: Influence on surface properties and solubility. J. Sci. Food Agric. 2011, 91, 2566–2575. [Google Scholar] [CrossRef]
- ADPI. Standards for Grades of Dry Milks. Bulletin no. 916, 2nd ed.; American Dairy Products Institute: Elmhurst, IL, USA, 2002. [Google Scholar]
- Hooi, R.; Barbano, D.M.; Bradley, R.L.; Budde, D.; Bulthaus, M.; Chettiar, M.; Lynch, J. Chemical and physical methods. In Standard Methods for the Examination of Dairy Products; American Public Health Association: Washington, DC, USA, 2004; pp. 363–536. [Google Scholar]
- Casper, J.L.; Wendorff, W.L.; Thomas, D.L. Functional Properties of Whey Protein Concentrates from Caprine and Ovine Specialty Cheese Wheys. J. Dairy Sci. 1999, 82, 265–271. [Google Scholar] [CrossRef]
- Phillips, L.G.; Haque, Z.; Kinsella, J.E. A Method for the Measurement of Foam Formation and Stability. J. Food Sci. 1987, 52, 1074–1077. [Google Scholar] [CrossRef]
- Lee, W.; Clark, S.; Swanson, B. Functional properties of high hydrostatic pressure-treated whey protein. J. Food Process. Preserv. 2006, 30, 488–501. [Google Scholar] [CrossRef]
- SAS Institute. SAS User’s Guide: Statistics, 9.2 ed.; SAS Inst. Inc.: Cary, NC, USA, 1990. [Google Scholar]
- Kinsella, J.E.; Morr, C.V. Milk proteins: Physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nutr. 1984, 21, 197–262. [Google Scholar] [CrossRef]
- Augustin, M. Mineral Salts and Their Effect on Milk Functionality. Aust. J. Dairy Technol. 2000, 55, 61–64. [Google Scholar]
- Alexander, M.; Nieh, M.-P.; Ferrer, M.A.; Corredig, M. Changes in the calcium cluster distribution of ultrafiltered and diafiltered fresh skim milk as observed by Small Angle Neutron Scattering. J. Dairy Res. 2011, 78, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.A.; Alexander, M.; Corredig, M. Does ultrafiltration have a lasting effect on the physico-chemical properties of the casein micelles? Dairy Sci. Technol. 2011, 91, 151–170. [Google Scholar] [CrossRef]
- St-Gelais, D.; Haché, S.; Gros-Louis, M. Combined Effects of Temperature, Acidification, and Diafiltration on Composition of Skim Milk Retentate and Permeate. J. Dairy Sci. 1992, 75, 1167–1172. [Google Scholar] [CrossRef]
- Mulvihill, D.M.; Murphy, P. Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int. Dairy J. 1991, 1, 13–37. [Google Scholar] [CrossRef]
- Ye, A. Functional properties of milk protein concentrates: Emulsifying properties, adsorption, and stability of emulsions. Int. Dairy J. 2011, 21, 14–20. [Google Scholar] [CrossRef]
- Fligner, K.L.; Mangino, M.E. Relationship of Composition to Protein Functionality. In Interactions of Food Proteins; ACS Symp. Series; American Chemical Society: Washington, DC, USA, 1991; Volume 454, pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.M.; Burgess, K.J. Foaming Properties of Milk Protein Concentrate Prepared by Ultrafiltration. Ir. J. Food Sci. Technol. 1978, 2, 93–104. [Google Scholar]
- Haskard, C.A.; Li-Chan, E.C.Y. Hydrophobicity of Bovine Serum Albumin and Ovalbumin Determined Using Uncharged (PRODAN) and Anionic (ANS-) Fluorescent Probes. J. Agric. Food Chem. 1998, 46, 2671–2677. [Google Scholar] [CrossRef]
- Delger, M. Effect of Seasonality and Processing on Physicochemical Characteristics of Goat and Sheep Milk. Thesis Presented in Partial Fulfillment of the Requirement for the Degree of Master of Food Technology. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2021. [Google Scholar]
- Li, S.; Ye, A.; Singh, H. Effect of seasonal variations on the acid gelation of milk. J. Dairy Sci. 2020, 103, 4965–4974. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, A.; Singh, H. Effects of seasonal variations on the quality of set yogurt, stirred yogurt, and Greek-style yogurt. J. Dairy Sci. 2021, 104, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Underwood, J.E.; Augustin, M.A. Seasonal variation in the rheological properties of acid and heat-induced gels made from reconstituted concentrated milk. Aust. J. Dairy Technol. 1997, 52, 83. [Google Scholar]
- Augustin, M.A.; Clarke, P.T. Skim milk powders with enhanced foaming and steam-frothing properties. Dairy Sci. Technol. 2008, 88, 149–161. [Google Scholar] [CrossRef]
Powder Types | Protein, % | Total Solids, % |
---|---|---|
SMP | 32.3 ± 0.21 | 96.3 ± 0.03 |
NDM | 33.5 ± 0.25 | 96.2 ± 0.25 |
MPC40 | 39.8 ± 0.03 | 96.1 ± 0.05 |
MPC70 | 68.6 ± 0.62 | 95.4 ± 0.61 |
Factors | df | Solubility | EAI | FO | FD | SHI |
---|---|---|---|---|---|---|
Powder Type | 3 | 2113 * (<0.0001) | 0.019 * <0.0001) | 33,525 * (<0.0001) | 4.29 * (<0.0001) | 13,047 * (<0.0001) |
Replicates | 2 | 0.111 (0.92) | 0.0002 * (0.44) | 3741 * (0.0004) | 0.513 * (0.0112) | 4.36 * (0.97) |
Time | 2 | 48.09 * (<0.0001) | 0.0009 (0.06) | 4682 * (0.0001) | 0.511 * (0.0113) | 150.69 (0.43) |
Powder Type * Replicates | 6 | 0.60 (0.85) | 0.0005 (0.16) | 3323 * (<0.0001) | 0.187 (0.0965) | 793 * (0.006) |
Time * Powder Type | 6 | 46.80 * (<0.0001) | 0.0002 (0.50) | 390 (0.27) | 0.205 (0.0740) | 57.54 (0.91) |
Error | 16 | 1.4062 | 0.0002 | 278 | 0.085 | 195 |
Storage Time | SMP | NDM | MPC40 | MPC70 |
---|---|---|---|---|
Solubility, % | ||||
3 months | 99.83 ± 0.75 aA | 99.17 ± 0.75 aA | 99.50 ± 0.84 aA | 76.00 ± 1.55 bA |
9 months | 99.67 ± 1.03 aA | 99.50 ± 0.55 aA | 99.33 ± 0.82 aA | 70.20 ± 1.17 bB |
15 months | 99.67 ± 0.52 aA | 99.67 ± 0.52 aA | 99.00 ± 0.89 aA | 60.30 ± 2.66 bC |
EAI | ||||
3 months | 0.3867 ± 0.032 b | 0.3862 ± 0.011 b | 0.3936 ± 0.022 b | 0.4696 ± 0.031 a |
9 months | 0.3906 ± 0.011 b | 0.4015 ± 0.028 b | 0.4039 ± 0.010 b | 0.5068 ± 0.029 a |
15 months | 0.3726 ± 0.037 c | 0.3948 ± 0.016 bc | 0.4042 ± 0.004 b | 0.4741 ± 0.025 a |
FO, % | ||||
3 months | 500.0 ± 9.9 cA | 583.0 ± 32.9 bA | 625.8 ± 18.2 aA | 624.0 ± 50.1 aA |
9 months | 461.7 ± 11.9 bB | 583.5± 32.0 aA | 611.7 ± 8.6 aAB | 606.8 ± 75.9 aAB |
15 months | 464.2 ± 17.9 cB | 557.2 ± 18.6 bA | 588.2 ± 16.0 aB | 565.7 ± 40.6 aC |
FD, g | ||||
3 months | 2.53 ± 0.36 aA | 1.77 ± 0.33 bA | 1.68 ± 0.26 bA | 1.37 ± 0.33 bAB |
9 months | 3.32 ± 0.23 aB | 1.78 ± 0.47 bA | 1.88 ± 0.44 bA | 0.97 ± 0.27 cA |
15 months | 3.07 ± 0.63 aB | 2.25 ± 0.45 bA | 2.05 ± 0.25 bcA | 1.62 ± 0.50 cB |
SHI | ||||
3 months | 353.0 ± 15.3 b | 408.5 ± 14.5 a | 351.3 ± 16.5 b | 325.3 ± 34.5 c |
9 months | 344.7 ± 19.0 b | 412.0 ± 20.9 a | 343.5 ± 31.8 b | 316.2 ± 5.6 c |
15 months | 342.8 ± 22.2 b | 409.3 ± 22.3 a | 336.7 ± 19.6 b | 322.3 ± 15.4 b |
SMP | NDM | |||
---|---|---|---|---|
Storage Time | Summer | Winter | Summer | Winter |
Solubility, % | ||||
3 months | 100 | 99 | 99 | 100 |
9 months | 101 | 100 | 100 | 100 |
15 months | 100 | 100 | 100 | 99 |
EAI | ||||
3 months | 0.3867 a | 0.3826 a | 0.3862 a | 0.4046 a |
9 months | 0.3906 ab | 0.3736 b | 0.4015 ab | 0.4045 a |
15 months | 0.3726 a | 0.3719 a | 0.3948 a | 0.4002 a |
FO, % | ||||
3 months | 500 b | 483 a | 583 a | 577 a |
9 months | 462 b | 483 b | 584 a | 570 a |
15 months | 464 b | 476 b | 557 a | 564 a |
FD, g | ||||
3 months | 2.53 a | 2.77 a | 1.77 b | 1.47 b |
9 months | 3.32 a | 2.92 a | 1.78 b | 1.57 b |
15 months | 3.07 a | 2.98 a | 2.25 b | 1.72 c |
SHI | ||||
3 months | 353 b | 355 b | 409 a | 423 a |
9 months | 345 b | 337 b | 412 a | 402 a |
15 months | 343 b | 325 b | 410 a | 403 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.; Salunke, P.; Metzger, L. Effect of Storage of Skim Milk Powder, Nonfat Dry Milk and Milk Protein Concentrate on Functional Properties. Dairy 2022, 3, 565-576. https://doi.org/10.3390/dairy3030040
Shah K, Salunke P, Metzger L. Effect of Storage of Skim Milk Powder, Nonfat Dry Milk and Milk Protein Concentrate on Functional Properties. Dairy. 2022; 3(3):565-576. https://doi.org/10.3390/dairy3030040
Chicago/Turabian StyleShah, Kartik, Prafulla Salunke, and Lloyd Metzger. 2022. "Effect of Storage of Skim Milk Powder, Nonfat Dry Milk and Milk Protein Concentrate on Functional Properties" Dairy 3, no. 3: 565-576. https://doi.org/10.3390/dairy3030040
APA StyleShah, K., Salunke, P., & Metzger, L. (2022). Effect of Storage of Skim Milk Powder, Nonfat Dry Milk and Milk Protein Concentrate on Functional Properties. Dairy, 3(3), 565-576. https://doi.org/10.3390/dairy3030040