Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented
Abstract
:1. Introduction
2. Rapid Methods for Determining the Thermal Denaturation of Whey Proteins in Milk
2.1. Biosensors, Nanosensors and Microchips
2.2. Electrochemical Sensors
2.3. Spectroscopy
2.3.1. Infrared Spectroscopy (from 780 to 50,000 nm)
2.3.2. UV-Visible Spectroscopy
- Light-scatter
- b.
- Fluorescence spectroscopy
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dupont, D.; Grappin, R.; Pochet, S.; Lefier, D. Milk Proteins|Analytical Methods. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 741–750. [Google Scholar]
- Ng-Kwai-Hang, K.F. Milk Proteins|Heterogeneity, Fractionation, and Isolation. In Encyclopedia of Dairy Science, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 751–764. [Google Scholar]
- Qi, P.X.; Ren, D.; Xiao, Y.; Tomasula, P.M. Effect of Homogenization and Pasteurization on the Structure and Stability of Whey Protein in Milk1. J. Dairy Sci. 2015, 98, 2884–2897. [Google Scholar] [CrossRef] [Green Version]
- Taterka, H.; Castillo, M. Analysis of the Preferential Mechanisms of Denaturation of Whey Protein Variants as a Function of Temperature and PH for the Development of an Optical Sensor. Int. J. Dairy Technol. 2018, 71, 226–235. [Google Scholar] [CrossRef]
- Considine, T.; Patel, H.A.; Anema, S.G.; Singh, H.; Creamer, L.K. Interactions of Milk Proteins during Heat and High Hydrostatic Pressure Treatments—A Review. Innov. Food Sci. Emerg. Technol. 2007, 8, 1–23. [Google Scholar] [CrossRef]
- Raikos, V. Effect of Heat Treatment on Milk Protein Functionality at Emulsion Interfaces. A Review. Food Hydrocoll. 2010, 24, 259–265. [Google Scholar] [CrossRef]
- Lamb, A.; Payne, F.; Xiong, Y.L.; Castillo, M. Optical Backscatter Method for Determining Thermal Denaturation of β-Lactoglobulin and Other Whey Proteins in Milk. J. Dairy Sci. 2013, 96, 1356–1365. [Google Scholar] [CrossRef] [Green Version]
- Lacotte, P.; Gomez, F.; Bardeau, F.; Muller, S.; Acharid, A.; Quervel, X.; Trossat, P.; Birlouez-Aragon, I. Amaltheys: A Fluorescence-Based Analyzer to Assess Cheese Milk Denatured Whey Proteins. J. Dairy Sci. 2015, 98, 6668–6677. [Google Scholar] [CrossRef] [Green Version]
- Sebranek, J.G. Chemical Analysis|Raw Material Composition Analysis. In Encyclopedia of Meat Sciences; Jensen, W.K., Ed.; Elsevier: Oxford, UK, 2004; pp. 173–179. [Google Scholar]
- Dufour, E.; Riaublanc, A. Potentiality of Spectroscopic Methods for the Characterisation of Dairy Products. I. Front-Face Fluorescence Study of Raw, Heated and Homogenised Milks. Lait 1997, 77, 657–670. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y.; Hoang, V.D. Vibrational Spectroscopy Used in Milk Products Analysis: A Review. Food Chem. 2016, 196, 877–884. [Google Scholar] [CrossRef]
- Rasooly, A.; Herold, K.E. Analytical Methods | Biosensors. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 235–247. [Google Scholar]
- Gopinath, S.C.B. Biosensing Applications of Surface Plasmon Resonance-Based Biacore Technology. Sens. Actuators B Chem. 2010, 150, 722–733. [Google Scholar] [CrossRef]
- Dupont, D.; Rolet-Repecaud, O.; Muller-Renaud, S. Determination of the Heat Treatment Undergone by Milk by Following the Denaturation of α-Lactalbumin with a Biosensor. J. Agri. Food Chem. 2004, 52, 677–681. [Google Scholar] [CrossRef]
- Indyk, H.E.; Gill, B.D.; Woollard, D.C. An Optical Biosensor-Based Immunoassay for the Determination of Bovine Serum Albumin in Milk and Milk Products. Int. Dairy J. 2015, 47, 72–78. [Google Scholar] [CrossRef]
- Dupont, D.; Muller-Renaud, S. Quantification of Proteins in Dairy Products Using an Optical Biosensor. J. AOAC Int. 2006, 89, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Kuswandi, B.; Futra, D.; Heng, L.Y. Nanosensors for the Detection of Food Contaminants. In Nanotechnology Applications in Food; Academic Press: London, UK, 2017; pp. 307–333. [Google Scholar]
- de Paula Rezende, J.; Ferreira, G.M.D.; Ferreira, G.M.D.; da Silva, L.H.M.; do Carmo Hepanhol da Silva, M.; Pinto, M.S.; dos Pires, A.C.S. Polydiacetylene/Triblock Copolymer Nanosensor for the Detection of Native and Free Bovine Serum Albumin. Mater. Sci. Eng. C 2017, 70, 535–543. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Tiwari, K.R.; Raghavan, S.R. Biopolymer Capsules Bearing Polydiacetylenic Vesicles as Colorimetric Sensors of PH and Temperature. Soft Matter 2011, 7, 3273–3276. [Google Scholar] [CrossRef]
- Oliveira, C.P.D.; Soares, N.D.F.F.; Fontes, E.A.F.; Oliveira, T.V.D.; Filho, A.M.M. Behaviour of Polydiacetylene Vesicles under Different Conditions of Temperature, PH and Chemical Components of Milk. Food Chem. 2012, 135, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, P. Electrophoretic Separation of Proteins. In Introduction to Protein Electrophoresis; Springer: New York, NY, USA, 2009; pp. 23–30. [Google Scholar]
- Bütikofer, U.; Meyer, J.; Rehberger, B. Determination of the Percentage of Alpha-Lactalbumin and Beta-Lactoglobulin of Total Milk Protein in Raw and Heat Treated Skim Milk. Milchwissenschaft 2006, 61, 263–266. [Google Scholar]
- Buffoni, J.N.; Bonizzi, I.; Pauciullo, A.; Ramunno, L.; Feligini, M. Characterization of the Major Whey Proteins from Milk of Mediterranean Water Buffalo (Bubalus Bubalis). Food Chem. 2011, 127, 1515–1520. [Google Scholar] [CrossRef]
- Anema, S.G. The Use of “Lab-on-a-Chip” Microfluidic SDS Electrophoresis Technology for the Separation and Quantification of Milk Proteins. Int. Dairy J. 2009, 19, 198–204. [Google Scholar] [CrossRef]
- Pravda, M. Analytical Methods|Electrochemical Analysis. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 193–197. [Google Scholar]
- Otles, S.; Ozyurt, V. Instrumental Food Analysis. In Handbook of Food Chemistry; Cheung, P., Mehta, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 165–187. [Google Scholar]
- Li, X. Electrical Conductivity as an Indicator of Milk Spoilage for Use in Biosensor Technology. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2016. [Google Scholar]
- Cosio, M.S.; Mannino, S.; Buratti, S. Electrochemical Sensor Detecting Free Sulfhydryl Groups: Evaluation of Milk Heat Treatment. J. Dairy Sci. 2000, 83, 1933–1938. [Google Scholar] [CrossRef]
- Park, B.K.; Yi, N.; Park, J.; Kim, D. Monitoring Protein Denaturation Using Thermal Conductivity Probe. Int. J. Biol. Macromol. 2013, 52, 353–357. [Google Scholar] [CrossRef]
- Park, B.K.; Yi, N.; Park, J.; Choi, T.Y.; Young Lee, J.; Busnaina, A.; Kim, D. Thermal Conductivity of Bovine Serum Albumin: A Tool to Probe Denaturation of Protein. Appl. Phys. Lett. 2011, 99, 1–3. [Google Scholar]
- McLaughlin, R.; Glennon, J.D. Spectroscopy, Overview. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 109–114. [Google Scholar]
- Subramanian, A.; Prabhakar, V.; Rodriguez-Saona, L. Analytical Methods|Infrared Spectroscopy in Dairy Analysis. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 115–124. ISBN 978-0-12-374407-4. [Google Scholar]
- Huang, H.; Yu, H.; Xu, H.; Ying, Y. Near Infrared Spectroscopy for on/in-Line Monitoring of Quality in Foods and Beverages: A Review. J. Food Eng. 2008, 87, 303–313. [Google Scholar] [CrossRef]
- Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R.P. Recent Advances on Determination of Milk Adulterants. Food Chem. 2017, 221, 1232–1244. [Google Scholar] [CrossRef]
- Poonia, A.; Jha, A.; Sharma, R.; Singh, H.B.; Rai, A.K.; Sharma, N. Detection of Adulteration in Milk: A Review. Int. J. Dairy Technol. 2017, 70, 23–42. [Google Scholar] [CrossRef]
- Pouliot, M.; Paquin, P.; Martel, R.; Gauthier, S.F.; Pouliot, Y. Whey Changes during Processing Determined by near Infrared Spectroscopy. J. Food Sci. 1997, 62, 475–479. [Google Scholar] [CrossRef]
- Patel, H.A.; Anema, S.G.; Holroyd, S.E.; Singh, H.; Creamer, L.K. Original Article Methods to Determine Denaturation and Aggregation of Proteins in Low-, Medium- and High-Heat Skim Milk Powders. Le Lait 2007, 87, 251–268. [Google Scholar] [CrossRef]
- O’Loughlin, I.B.; Kelly, P.M.; Murray, B.A.; FitzGerald, R.J.; Brodkorb, A. Concentrated Whey Protein Ingredients: A Fourier Transformed Infrared Spectroscopy Investigation of Thermally Induced Denaturation. Int. J. Dairy Technol. 2015, 68, 349–356. [Google Scholar] [CrossRef]
- Pabari, R.; Togashi, D.; Cama Moncunill, R.; El Arnaout, T.; Hicham, R.; Cruise, P.; Cullen, P.J.; Sullivan, C. Multipoint Near Infrared Spectrometry for Real-Time Monitoring of Protein Conformational Stability in Powdered Infant Formula. J. Food Sci. Technol. 2015, 66, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, P.A.; Emond, C.; Gomaa, A.; Remondetto, G.E.; Subirade, M. Predictive Response Surface Model for Heat-Induced Rheological Changes and Aggregation of Whey Protein Concentrate. J. Food Sci. 2015, 80, E326–E333. [Google Scholar] [CrossRef]
- Santos, P.M.; Pereira-Filho, E.R.; Rodriguez-Saona, L.E. Application of Hand-Held and Portable Infrared Spectrometers in Bovine Milk Analysis. J. Agric. Food Chem. 2013, 61, 1205–1211. [Google Scholar] [CrossRef]
- Taterka, H.; Castillo, M. The Effect of Whey Protein Denaturation on Light Backscatter and Particle Size of the Casein Micelle as a Function of PH and Heat-Treatment Temperature. Int. Dairy J. 2015, 48, 53–59. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Monitoring of Mild Heat Treatment of Camel Milk by Front-Face Fluorescence Spectroscopy. LWT-Food Sci. Technol. 2017, 79, 586–593. [Google Scholar] [CrossRef]
- Murillo Pulgarín, J.A.; Molina, A.A.; Pardo, M.T.A. Fluorescence Characteristics of Several Whey Samples Subjected to Different Treatments and Conditions. Anal. Chim. Acta 2005, 536, 153–158. [Google Scholar] [CrossRef]
- Birlouez-Aragon, I.; Nicolas, M.; Metais, A.; Marchond, N.; Grenier, J.; Calvo, D. A Rapid Fluorimetric Method to Estimate the Heat Treatment of Liquid Milk. Int. Dairy J. 1998, 8, 771–777. [Google Scholar] [CrossRef]
- Birlouez-Aragon, I.; Sabat, P.; Gouti, N. A New Method for Discriminating Milk Heat Treatment. Int. Dairy J. 2002, 12, 59–67. [Google Scholar] [CrossRef]
- Diez, R.; Ortiz, M.C.; Sarabia, L.; Birlouez-Aragon, I. Potential of Front Face Fluorescence Associated to PLS Regression to Predict Nutritional Parameters in Heat Treated Infant Formula Models. Anal. Chim. Acta 2008, 606, 151–158. [Google Scholar] [CrossRef]
- Kulmyrzaev, A.A.; Levieux, D.; Dufour, É. Front-Face Fluorescence Spectroscopy Allows the Characterization of Mild Heat Treatments Applied to Milk. Relations with the Denaturation of Milk Proteins. J. Agric. Food Chem. 2005, 53, 502–507. [Google Scholar] [CrossRef]
- Hougaard, A.B.; Lawaetz, A.J.; Ipsen, R.H. Front Face Fluorescence Spectroscopy and Multi-Way Data Analysis for Characterization of Milk Pasteurized Using Instant Infusion. LWT-Food Sci. Technol. 2013, 53, 331–337. [Google Scholar] [CrossRef]
- Ayala, N.; Zamora, A.; Rinnan, A.A.; Saldo, J.; Castillo, M. The Effect of Heat Treatment on the Front-Face Fluorescence Spectrum of Tryptophan in Skim Milk. J. Food Compos. Anal. 2020, 92, 103569. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, P.; Zambrano, A.; Zamora, A.; Castillo, M. Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented. Dairy 2022, 3, 500-512. https://doi.org/10.3390/dairy3030036
Freire P, Zambrano A, Zamora A, Castillo M. Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented. Dairy. 2022; 3(3):500-512. https://doi.org/10.3390/dairy3030036
Chicago/Turabian StyleFreire, Paulina, Allison Zambrano, Anna Zamora, and Manuel Castillo. 2022. "Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented" Dairy 3, no. 3: 500-512. https://doi.org/10.3390/dairy3030036
APA StyleFreire, P., Zambrano, A., Zamora, A., & Castillo, M. (2022). Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented. Dairy, 3(3), 500-512. https://doi.org/10.3390/dairy3030036