The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Biomass
2.2. Chemicals
2.3. Sample Preparation
2.4. Physicochemical Analysis
2.5. Sensory Analysis
2.6. Central Composite Design (CCD)
2.7. ICP-MS Analysis
2.8. Removal Evaluation
2.9. Absorption Isotherm
2.10. Statistical Analysis
3. Results
3.1. The Effect of Initial Metal Concentration
3.2. The Effect of Contact Time
3.3. The Effect of Biomass Concentration
3.4. Physicochemical Evaluation
3.5. Sensory Evaluation
3.6. Isotherm Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weldeslassi, T.; Balwant, H.; Oves, M. Chemical Contaminants in Soil. Air and Aquatic Ecosystem. Mod. Age Environ. Prob. Rem. 2017, 25, 1–22. [Google Scholar]
- Doležalová Weissmannová, H.D.; Mihoˇcová, S.; Chovanec, P.; Pavlovský, J. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava. Czech Republic Int. J. Environ. Res. 2019, 16, 4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwal, R.; Fiz, F.; Iqra, W.; Muhammad, S.; Hamid, A. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2019, 119, 157–184. [Google Scholar]
- Ostroumov, S.A.; Tropin, I.V.; Kiryushin, A.V. Removal of Cadmium and Other Toxic Metals from Water: Thermophiles and New Biotechnologies. Rus. J. Gen. Chem. 2018, 88, 2962–2966. [Google Scholar] [CrossRef]
- Ametaj, B.N. Introducing Dairy: A Transdisciplinary Journal to Advance Understanding of Dairy Nutrition, Health and Productivity, Welfare and Well-Being as Well as Milk Synthesis-Composition and Health Effects of Its Products. Dairy 2018, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). International Standards for Drinking Water, 5th ed.; WHO Press, World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Ayar, A.; Sert, D.; Akın, N. The trace metal levels in milk and dairy products consumed in middle Anatolia-Turkey. Environ. Monitor. Assess. 2015, 152, 1–12. [Google Scholar] [CrossRef]
- Qin, L.; Wang, X.; Li, W.; Tong, X.; Tong, W. The minerals and heavy metals in cow’s milk from China and Japan. J. Health Sci. 2009, 55, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Alani, M.S.; Al-Azzawi, M.N. Assessment of Lead Cadmium and Copper concentrations in Raw Milk Collected from different location in Iraq. Iraq J. Sci. 2016, 56, 350–355. [Google Scholar]
- Nejatolahi, M.; Mehrjo, F.; Sheykhi, A.; Bineshpor, M. Lead Concentrations in Raw Cows’ Milk from Fars Province of Iran. Am. J. Food Nutr. 2014, 2, 92–94. [Google Scholar]
- Najarnezhad, V.; Akbarabadi, M. Heavy metals in raw cow and ewe milk from north-east Iran. Food Add. Contamin. 2013, 12, 2–6. [Google Scholar] [CrossRef]
- Katarzyna, C.; Marcin, M. Green analytical methods of metals determination in biosorption studies. Trends Anal. Chem. 2019, 116, 254–265. [Google Scholar]
- Wang, J.L.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae a review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Massoud, R.; Hadiani, M.R.; Khosravi Darani, K. Bioremediation of heavy metals in food industry Application of Saccharomyces cerevisiae. Electron. J. Biotechnol. 2019, 37, 56–60. [Google Scholar] [CrossRef]
- do Nascimento, J.M.; Oliveira, J.D.; Rizzo, A.C.L.; Leite, S.G.F. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol. Rep. 2018, 20, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Mahzounieh, M. Saccharomyces cerevisiae on Mo and Cd removal. J. Med Microbiol. Infect Dis. 2015, 3, 18–22. [Google Scholar]
- Amirnia, S.; Ray, M.B.; Margaritis, A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem. Eng. J. 2015, 264, 863–872. [Google Scholar] [CrossRef]
- Infante, C.; Arco, D.; Angulo, E. Removal of lead mercury and nickel using the yeast Saccharomyces cerevisiae. Rev. MVZ Cordoba. 2014, 19, 4141–4149. [Google Scholar] [CrossRef] [Green Version]
- Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Assessment of Mercury biosorption by Saccharomyces Cerevisiae Response surface methodology for optimization of low Hg (II) concentrations. J. Environ. Chem. Eng. 2018, 6, 4980–4987. [Google Scholar] [CrossRef]
- Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocat. Agri. Biotechnol. 2018, 15, 25–34. [Google Scholar] [CrossRef]
- Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H. Lead Bioremoval from Milk by Saccharomyces cerevisiae. Biocat. Agri. Biotechnol. 2019, 22, 11–20. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- WHO (World Health Organization). ISO 22935-2:2009 (IDF 99-2:2009). Recommended methods for sensory evaluation. In Milk and Milk Products—SENSORY Analysis—Part 2; WHO Press, World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Khan, N.; Jeong, S.; Hwang, M.; Kim, J.; Choi, S.H.; Yeong, E.; Yeon Choi, J.; Park, K.S.; Kim, K.S. Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass sperometry (ICP-MS). Food Chem. 2014, 147, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Goksungur, Y.; Uren, S.; Guvenc, U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour. Technol. 2005, 96, 103–109. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. The adsorption in solutions. Chemistry 2000, 57, 385–470. [Google Scholar]
- Zheng, X.; Wang, X.; Shen, Y.; Lu, X.; Wang, T. Biosorption and biomineralization of uranium (VI) by Saccharomyces cerevisiae—Crystal formation of chernikovite. Chemosphere 2017, 175, 161–169. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Fertu, D.; Chelaru, C.; Sandu, I.; Tavares, T. Bioremediation of Cr (VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. Int. J. Environ. Res. 2013, 7, 581–594. [Google Scholar]
- Fadel, M.; Hassanein, N.M.; Elshafei, M.; Mostafa, A.H.; Ahmed, M.; Khater, H.M. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J. 2017, 13, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Gohari, M.; Hosseini, S.; Sharifnia, S.; Khatami, M. Enhancement of metal ion adsorption capacity of Saccharomyces cerevisiae’s cells by using disruption method. J. Tai. Ins. Chem. Eng. 2013, 44, 637–645. [Google Scholar] [CrossRef]
- Parvathi, K.; Nagendran, R. Biosorption of chromium from effluent generated in chrome electroplating unit using Saccharomyces cerevisiae. Sep. Sci. Technol. 2007, 42, 625–638. [Google Scholar] [CrossRef]
- Hatami Fard, G.; Mehrnia, M.R. Investigation of mercury removal by Micro-Algae dynamic membrane bioreactor from simulated waste water. J. Environ. Chem. Eng. 2016, 10, 25–33. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Gazi, M. Removal of mercury (II) from aqueous solution usingchitosan-graft-Polyacrylamide Semi-IPN hydrogels. Sep. Sci. Technol. 2013, 48, 1382–1390. [Google Scholar] [CrossRef]
- Prasanna Kumar, Y.; King, P.; Prasad, V.S. Adsorption of zinc from aqueous solution using marine green algae—Ulva fasciata sp. Chem. Eng. J. 2007, 129, 161–166. [Google Scholar] [CrossRef]
- Ghorbani, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A. Application of Response Surface Methodology for Optimization of Cadmium Biosorption in an Aqueous Solution by Saccharomyces cerevisiae. Chem. Eng. J. 2008, 145, 267–275. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of Copper (II) by Immobilizing Saccharomyces cerevisiae on the Surface of Chitosan-Coated Magnetic Nanoparticle from Aqueous Solution. J. Hazard. Mat. 2010, 177, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Younesi, H. Biosorption of Cd (II), Ni (II) and Pb (II) from Aqueous Solution by Dried Biomass of Aspergillus niger, Application of Response Surface Methodology to the Optimization of Process Parameters. Clean Soil Air Water J. 2009, 37, 776–786. [Google Scholar] [CrossRef]
Main Variable | Range and Level | ||||
---|---|---|---|---|---|
−α (−1.6) | −1 | 0 | +1 | +α (+1.6) | |
S. cerevisiae biomass dosage (×108 CFU) | 10 | 20 | 30 | 40 | 50 |
Initial Cd concentration) μg/L) | 40 | 50 | 60 | 70 | 80 |
Contact time (day) | 0 | 1 | 2 | 3 | 4 |
Storage Time (Day) | |||
---|---|---|---|
1 | 4 | 8 | |
S. cerevisiae biomass (CFU/mL) | 108 | 108 | 109 |
Total count (CFU/mL) | 1012 | 1012 | 1015 |
Cd bioremoval (%) | 45.51 a | 70.10 b | 70.21 b |
Storage Time (Day) | S. cerevisiae Biomass Concentration (CFU/mL) | |||||
---|---|---|---|---|---|---|
Control | 10 × 108 | 50 × 108 | ||||
1 | 4 | 1 | 4 | 1 | 4 | |
Physicochemical properties | ||||||
pH | 6.70 ± 0.01 a | 6.67 ± 0.05 a | 6.78 ± 0.01 a | 6.67 ± 0.07 a | 6.80 ± 0.07 a | 6.71 ± 0.07 a |
Acidity (% lactic acid) | 0.14 ± 0.01 a | 0.15 ± 0.05 a | 0.14 ± 0.07 a | 0.15 ± 0.07 a | 0.14 ± 0.07 a | 0.16 ± 0.07 a |
Density (g/cm3) | 1.01 ± 0.01 a | 1.01 ± 0.05 a | 1.02 ± 0.01 a | 1.03 ± 0.05 a | 1.02 ± 0.07 a | 1.02 ± 0.05 a |
Sensory property | ||||||
Color | 7.99 ± 0.07 a | 7.97 ± 0.05 a | 7.97 ± 0.07 a | 7.89 ± 0.07 a | 7.90 ± 0.05 a | 7.85 ± 0.05 a |
Smell | 7.99 ± 0.05 a | 7.96 ± 0.05 a | 7.95 ± 0.05 a | 7.66 ± 0.05 a | 7.95 ± 0.07 a | 7.52 ± 0.05 a |
Consistency | 7.98 ± 0.05 a | 7.98 ± 0.07 a | 7.97 ± 0.05 a | 7.94 ± 0.07 a | 7.90 ± 0.05 a | 7.88 ± 0.05 a |
Overall acceptance | 7.98 ± 0.07 a | 7.95 ± 0.05 a | 7.98 ± 0.07 a | 7.95 ± 0.05 a | 7.98 ± 0.07 a | 7.90 ± 0.07 a |
Cd initial Concentration (µg/L) | Langmuir Model † | Freundlich Model § | |||
---|---|---|---|---|---|
Ce | Qe | Ce/Qe | Ln Qe | Ln Ce | |
20 | 13.4 | 6.6 | 2.033 | 1.887 | 2.595 |
40 | 23.2 | 16.8 | 1.381 | 2.821 | 3.144 |
60 | 27 | 33 | 0.818 | 3.256 | 3.269 |
80 | 28 | 51 | 0.522 | 3.889 | 3.263 |
100 | 28 | 70 | 0.389 | 4.254 | 3.321 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H.; Younesi, H. The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk. Dairy 2020, 1, 169-176. https://doi.org/10.3390/dairy1020011
Massoud R, Khosravi-Darani K, Sharifan A, Asadi GH, Younesi H. The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk. Dairy. 2020; 1(2):169-176. https://doi.org/10.3390/dairy1020011
Chicago/Turabian StyleMassoud, Ramona, Kianoush Khosravi-Darani, Anousheh Sharifan, Gholam Hassan Asadi, and Habibollah Younesi. 2020. "The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk" Dairy 1, no. 2: 169-176. https://doi.org/10.3390/dairy1020011
APA StyleMassoud, R., Khosravi-Darani, K., Sharifan, A., Asadi, G. H., & Younesi, H. (2020). The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk. Dairy, 1(2), 169-176. https://doi.org/10.3390/dairy1020011