The EmojiGrid as a Tool to Assess Experienced and Perceived Emotions
Abstract
:1. Introduction
2. General Methods
2.1. Participants
2.2. Measures
2.2.1. Demographics
2.2.2. Valence and Arousal: The EmojiGrid
2.3. Procedure
2.4. Data Analysis
3. Experiment I: Experienced Emotions
3.1. Stimuli
3.2. Participants
3.3. Results
4. Experiment II: Perceived Emotions
4.1. Stimuli
4.2. Participants
4.3. Results
5. Discussion, Limitations and Conclusions
5.1. Discussion
5.2. Limitations
5.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mauss, I.B.; Robinson, M.D. Measures of emotion: A review. Cogn. Emot. 2009, 23, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, D.; Toet, A.; Brouwer, A.-M.; Kallen, V.; van Erp, J.B.F. Methods for evaluating emotions evoked by food experiences: A literature review. Front. Psychol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- King, S.C.; Meiselman, H.L. Development of a method to measure consumer emotions associated with foods. Food Qual. Prefer. 2010, 21, 168–177. [Google Scholar] [CrossRef]
- Nestrud, M.A.; Meiselman, H.L.; King, S.C.; Lesher, L.L.; Cardello, A.V. Development of EsSense25, a shorter version of the EsSense Profile. Food Qual. Prefer. 2016, 48, 107–117. [Google Scholar] [CrossRef]
- Spinelli, S.; Masi, C.; Dinnella, C.; Zoboli, G.P.; Monteleone, E. How does it make you feel? A new approach to measuring emotions in food product experience. Food Qual. Prefer. 2014, 37, 109–122. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The Self-Assessment Manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Laurans, G.F.G.; Desmet, P.M.A. Introducing PrEmo2: New directions for the non-verbal measurement of emotion in design. In Proceedings of the 8th International Conference on Design and Emotion, London, UK, 11–14 September 2012; pp. 11–14. [Google Scholar]
- Vastenburg, M.; Romero Herrera, N.; Van Bel, D.; Desmet, P. PMRI: Development of a pictorial mood reporting instrument. In Proceedings of the CHI 11 Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 2155–2160. [Google Scholar]
- Obaid, M.; Dünser, A.; Moltchanova, E.; Cummings, D.; Wagner, J.; Bartneck, C. LEGO Pictorial scales for assessing affective response. In Proceedings of the Human-Computer Interaction—Interact 2015: 15th IFIP TC 13 International Conference, Bamberg, Germany, 14–18 September 2015; pp. 263–280. [Google Scholar]
- Huisman, G.; van Hout, M.; van Dijk, E.; van der Geest, T.; Heylen, D. LEMtool: Measuring emotions in visual interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 351–360. [Google Scholar]
- Broekens, J.; Brinkman, W.P. AffectButton: A method for reliable and valid affective self-report. Int. J. Hum. Comput. Stud. 2013, 71, 641–667. [Google Scholar] [CrossRef]
- Prescott, J. Some considerations in the measurement of emotions in sensory and consumer research. Food Qual. Prefer. 2017, 62, 360–368. [Google Scholar] [CrossRef]
- Köster, E.P.; Mojet, J. From mood to food and from food to mood: A psychological perspective on the measurement of food-related emotions in consumer research. Food Res. Int. 2015, 76, 180–191. [Google Scholar] [CrossRef]
- Gutjar, S.; de Graaf, C.; Kooijman, V.; de Wijk, R.A.; Nys, A.; ter Horst, G.J.; Jager, G. The role of emotions in food choice and liking. Food Res. Int. 2015, 76 Pt 2, 216–223. [Google Scholar] [CrossRef]
- Curia, A.V.; Hough, G.; Martínez, M.C.; Margalef, M.I. How Argentine consumers understand the Spanish translation of the 9-point hedonic scale. Food Qual. Prefer. 2001, 12, 217–221. [Google Scholar] [CrossRef]
- van Zyl, H.; Meiselman, H.L. The roles of culture and language in designing emotion lists: Comparing the same language in different English and Spanish speaking countries. Food Qual. Prefer. 2015, 41, 201–213. [Google Scholar] [CrossRef]
- Wierzbicka, A. Emotions across Languages and Cultures: Diversity and Universals; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Boster, J.S. Emotion Categories Across Languages A2-Cohen, Henri. In Handbook of Categorization in Cognitive Science, 2nd ed.; Lefebvre, C., Ed.; Elsevier: San Diego, CA, USA, 2005; pp. 313–352. [Google Scholar]
- Toet, A.; Kaneko, D.; Ushiama, S.; Hoving, S.; de Kruijf, I.; Brouwer, A.-M.; Kallen, V.; van Erp, J.B.F. EmojiGrid: A 2D pictorial scale for the assessment of food elicited emotions. Front. Psychol. 2018, 9, 2396. [Google Scholar] [CrossRef] [PubMed]
- Zentner, M.; Eerola, T. Self-report measures and models. In Handbook of Music and Emotion: Theory, Research, Applications; Oxford University Press: Oxford, UK, 2010; pp. 187–221. [Google Scholar]
- Windhager, S.; Slice, D.; Schaefer, K.; Oberzaucher, E.; Thorstensen, T.; Grammer, K. Face to face: The perception of automotive designs. Hum. Nat. 2008, 19, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Aronoff, J.; Barclay, A.M.; Stevenson, L.A. The recognition of threatening facial stimuli. J. Personal. Soc. Psychol. 1988, 54, 647–655. [Google Scholar] [CrossRef]
- Larson, C.; Aronoff, J.; Steuer, E. Simple geometric shapes are implicitly associated with affective value. Motiv. Emot. 2012, 36, 404–413. [Google Scholar] [CrossRef]
- Watson, D.G.; Blagrove, E.; Evans, C.; Moore, L. Negative triangles: Simple geometric shapes convey emotional valence. Emotion 2012, 12, 18–22. [Google Scholar] [CrossRef]
- Lundqvist, D.; Esteves, F.; Öhman, A. The face of wrath: The role of features and configurations in conveying social threat. Cogn. Emot. 2004, 18, 161–182. [Google Scholar] [CrossRef]
- Weymar, M.; Löw, A.; Öhman, A.; Hamm, A.O. The face is more than its parts—Brain dynamics of enhanced spatial attention to schematic threat. Neuroimage 2011, 58, 946–954. [Google Scholar] [CrossRef]
- Tipples, J.; Atkinson, A.P.; Young, A.W. The eyebrow frown: A salient social signal. Emotion 2002, 2, 288–296. [Google Scholar] [CrossRef]
- Ekman, P. Strong evidence for universals in facial expressions: A reply to Russell’s mistaken critique. Psychol. Bull. 1994, 115, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Dalenberg, J.R.; Gutjar, S.; ter Horst, G.J.; de Graaf, K.; Renken, R.J.; Jager, G. Evoked emotions predict food choice. PLoS ONE 2014, 9, e115388. [Google Scholar] [CrossRef] [PubMed]
- Frühholz, S.; Jellinghaus, A.; Herrmann, M. Time course of implicit processing and explicit processing of emotional faces and emotional words. Biol. Psychol. 2011, 87, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rellecke, J.; Palazova, M.; Sommer, W.; Schacht, A. On the automaticity of emotion processing in words and faces: Event-related brain potentials evidence from a superficial task. Brain Cogn. 2011, 77, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Schacht, A.; Sommer, W. Emotions in word and face processing: Early and late cortical responses. Brain Cogn. 2009, 69, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Kaye, L.K.; Malone, S.A.; Wall, H.J. Emojis: Insights, affordances, and possibilities for psychological science. Trends Cogn. Sci. 2017, 21, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Steiner, C.M.; Conlan, O. Design and development of an empirical smiley-based affective instrument. In Proceedings of the 21st Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, 10–14 June 2013; pp. 41–52. [Google Scholar]
- Alismail, S.; Zhang, H. The use of emoji in electronic user experience questionnaire: An exploratory case study. In Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018; pp. 3366–3375. [Google Scholar]
- Schouteten, J.J.; Verwaeren, J.; Lagast, S.; Gellynck, X.; De Steur, H. Emoji as a tool for measuring children’s emotions when tasting food. Food Qual. Prefer. 2018, 68, 322–331. [Google Scholar] [CrossRef]
- Gallo, K.E.; Swaney-Stueve, M.; Chambers, D.H. A focus group approach to understanding food-related emotions with children using words and emojis. J. Sens. Stud. 2017, 32, e12264. [Google Scholar] [CrossRef]
- Swaney-Stueve, M.; Jepsen, T.; Deubler, G. The emoji scale: A facial scale for the 21st century. Food Qual. Prefer. 2018, 68, 183–190. [Google Scholar] [CrossRef]
- Vandeghinste, V.; Sevens, L.; Schuurman, I. E-Including the illiterate. IEEE Potentials 2017, 36, 29–33. [Google Scholar] [CrossRef]
- Zhou, R.; Hentschel, J.; Kumar, N. Goodbye text, hello emoji: Mobile communication on WeChat in China. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 748–759. [Google Scholar]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Hayashi, E.C.S.; Gutiérrez Posada, J.E.; Maike, V.R.M.L.; Baranauskas, M.C.C. Exploring new formats of the Self-Assessment Manikin in the design with children. In Proceedings of the 15th Brazilian Symposium on Human Factors in Computer Systems, São Paulo, Brazil, 4–7 October 2016; pp. 1–10. [Google Scholar]
- Yusoff, Y.M.; Ruthven, I.; Landoni, M. Measuring emotion: A new evaluation tool for very young children. In Proceedings of the 4th International Conference on Computing and Informatics (ICOCI 2013), Kuching, Sarawak, Malaysia, 28–30 August 2013; pp. 358–363. [Google Scholar]
- Betella, A.; Verschure, P.F.M.J. The Affective Slider: A digital self-assessment scale for the measurement of human emotions. PLoS ONE 2016, 11, e0148037. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Q.; Lv, Q.; Qian, N.; Ma, L. Comparing measurements for emotion evoked by oral care products. Int. J. Ind. Ergon. 2018, 66, 119–129. [Google Scholar] [CrossRef]
- Danesi, M. The Semiotics of Emoji: The Rise of Visual Language in the Age of the Internet; Bloomsbury Publishing: London, UK; New York, NY, USA, 2016. [Google Scholar]
- dos Reis, J.C.; Bonacin, R.; Hornung, H.H.; Baranauskas, M.C.C. Intenticons: Participatory selection of emoticons for communication of intentions. Comput. Hum. Behav. 2018, 85, 146–162. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Jaeger, S.R. Use of emoticon and emoji in tweets for food-related emotional expression. Food Qual. Prefer. 2016, 49, 119–128. [Google Scholar] [CrossRef]
- Miller, H.; Thebault-Spieker, J.; Chang, S.; Johnson, I.; Terveen, L.; Hecht, B. Blissfully happy” or “ready to fight”: Varying Interpretations of Emoji. In Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016), Cologne, Germany, 17–20 May 2016; pp. 259–268. [Google Scholar]
- Tigwell, G.W.; Flatla, D.R. Oh that’s what you meant!: Reducing emoji misunderstanding. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, Florence, Italy, 6–9 September 2016; pp. 859–866. [Google Scholar]
- Jaeger, S.R.; Ares, G. Dominant meanings of facial emoji: Insights from Chinese consumers and comparison with meanings from internet resources. Food Qual. Prefer. 2017, 62, 275–283. [Google Scholar] [CrossRef]
- Kralj Novak, P.; Smailović, J.; Sluban, B.; Mozetič, I. Sentiment of emojis. PLoS ONE 2015, 10, e0144296. [Google Scholar] [CrossRef]
- Aluja, A.; Balada, F.; Blanco, E.; Lucas, I.; Blanch, A. Startle reflex modulation by affective face “Emoji” pictographs. Psychol. Res. 2018, 1–8. [Google Scholar] [CrossRef]
- Kaneko, D.; Toet, A.; Ushiama, S.; Brouwer, A.M.; Kallen, V.; van Erp, J.B.F. EmojiGrid: A 2D pictorial scale for cross-cultural emotion assessment of negatively and positively valenced food. Food Res. Int. 2018, 115, 541–551. [Google Scholar] [CrossRef]
- Kuppens, P.; Tuerlinckx, F.; Russell, J.A.; Barrett, L.F. The relation between valence and arousal in subjective experience. Psychol. Bull. 2013, 139, 917–940. [Google Scholar] [CrossRef] [PubMed]
- Mattek, A.M.; Wolford, G.L.; Whalen, P.J. A mathematical model captures the structure of subjective affect. Perspect. Psychol. Sci. 2017, 12, 508–526. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Muszynski, M.; Lai, C.; Moore, J.D.; Kostoulas, T.; Lombardo, P.; Pun, T.; Chanel, G. Recognizing induced emotions of movie audiences: Are induced and perceived emotions the same? In Proceedings of the Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; pp. 28–35. [Google Scholar]
- World Medical Association. World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Russell, J.A.; Weiss, A.; Mendelson, G.A. Affect grid: A single-item scale of pleasure and arousal. J. Personal. Soc. Psychol. 1989, 57, 493–502. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues; Malor Books: Cambridge, MA, USA, 2003. [Google Scholar]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Marchewka, A.; Żurawski, Ł.; Jednoróg, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 2014, 46, 596–610. [Google Scholar] [CrossRef]
- Riegel, M.; Żurawski, Ł.; Wierzba, M.; Moslehi, A.; Klocek, Ł.; Horvat, M.; Grabowska, A.; Michałowski, J.; Jednoróg, K.; Marchewka, A. Characterization of the Nencki Affective Picture System by discrete emotional categories (NAPS BE). Behav. Res. Methods 2016, 48, 600–612. [Google Scholar] [CrossRef]
- Riegel, M.; Moslehi, A.; Michałowski, J.M.; Żurawski, Ł.; Horvat, M.; Wypych, M.; Jednoróg, K.; Marchewka, A. Nencki Affective Picture System: Cross-cultural study in Europe and Iran. Front. Psychol. 2017, 8, 274. [Google Scholar] [CrossRef]
- Teh, E.J.; Yap, M.J.; Liow, S.J.R. PiSCES: Pictures with social context and emotional scenes with norms for emotional valence, intensity, and social engagement. Behav. Res. Methods 2017. [Google Scholar] [CrossRef]
- Flohr, E.L.R.; Erwin, E.; Croy, I.; Hummel, T. Sad man’s nose: Emotion induction and olfactory perception. Emotion 2017, 17, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Schreder, T.; Kleemann, A.; Schöpf, V.; Kopietz, R.; Anzinger, A.; Demmel, M.; Linn, J.; Kettenmann, B.; Wiesmann, M. Olfactory detection thresholds and pleasantness of a food-related and a non-food odour in hunger and satiety. Rhinology 2009, 47, 160–165. [Google Scholar] [PubMed]
- Sorokowski, P.; Karwowski, M.; Misiak, M.; Marczak, M.K.; Dziekan, M.; Hummel, T.; Sorokowska, A. Sex differences in human olfaction: A meta-analysis. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Venstrom, D.; Amoore, J.E. Olfactory threshold, in relation to age, sex or smoking. J. Food Sci. 1968, 33, 264–265. [Google Scholar] [CrossRef]
- Rouby, C.; Pouliot, S.; Bensafi, M. Odor hedonics and their modulators. Food Qual. Prefer. 2009, 20, 545–549. [Google Scholar] [CrossRef]
- Ayabe-Kanamura, S.; Schicker, I.; Laska, M.; Hudson, R.; Distel, H.; Kobayakawa, T. Differences in perception of everyday odors: A Japanese-German cross-cultural study. Chem. Senses 1998, 23, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kuppens, P.; Tuerlinckx, F.; Yik, M.; Koval, P.; Coosemans, J.; Zeng, K.J.; Russell, J.A. The relation between valence and arousal in subjective experience varies with personality and culture. J. Personal. 2017, 85, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Gosling, S.D.; Vazire, S.; Srivastava, S.; John, O.P. Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. Am. Psychol. 2004, 59, 93–104. [Google Scholar] [CrossRef]
- Majima, Y.; Nishiyama, K.; Nishihara, A.; Hata, R. Conducting online behavioral research using crowdsourcing services in Japan. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef]
- Woods, A.T.; Velasco, C.; Levitan, C.A.; Wan, X.; Spence, C. Conducting perception research over the internet: A tutorial review. PeerJ 2015, 3, e1058. [Google Scholar] [CrossRef]
- Nishimura, Y. A sociolinguistic analysis of emoticon usage in Japanese blogs: Variation by age, gender, and topic. In Proceedings of the 16th Annual Meeting of the Association of Internet Researchers, Phoenix, AZ, USA, 21–24 October 2015. [Google Scholar]
- Jaeger, S.R.; Xia, Y.; Lee, P.-Y.; Hunter, D.C.; Beresford, M.K.; Ares, G. Emoji questionnaires can be used with a range of population segments: Findings relating to age, gender and frequency of emoji/emoticon use. Food Qual. Prefer. 2018, 68, 397–410. [Google Scholar] [CrossRef]
- Yuki, M.; Maddux, W.W.; Masuda, T. Are the windows to the soul the same in the East and West? Cultural differences in using the eyes and mouth as cues to recognize emotions in Japan and the United States. J. Exp. Soc. Psychol. 2007, 43, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Torrico, D.S.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Gunaratne, N.M.; Gunaratne, T.M.; Dunshea, F.R. Images and chocolate stimuli affect physiological and affective responses of consumers: A cross-cultural study. Food Qual. Prefer. 2018, 65, 60–71. [Google Scholar] [CrossRef]
- Takahashi, K.; Oishi, T.; Shimada, M. Is ☺ smiling? Cross-cultural study on recognition of emoticon’s emotion. J. Cross-Cult. Psychol. 2017, 48, 1578–1586. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toet, A.; van Erp, J.B.F. The EmojiGrid as a Tool to Assess Experienced and Perceived Emotions. Psych 2019, 1, 469-481. https://doi.org/10.3390/psych1010036
Toet A, van Erp JBF. The EmojiGrid as a Tool to Assess Experienced and Perceived Emotions. Psych. 2019; 1(1):469-481. https://doi.org/10.3390/psych1010036
Chicago/Turabian StyleToet, Alexander, and Jan B.F. van Erp. 2019. "The EmojiGrid as a Tool to Assess Experienced and Perceived Emotions" Psych 1, no. 1: 469-481. https://doi.org/10.3390/psych1010036