Metal-Free Synthesis of Benzimidazolinones via Oxidative Cyclization Under Hypervalent Iodine Catalysis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Urea Derivatives
General Procedure for Synthesis of Urea Substrate 1
3.3. Hypervalent Iodine Catalysis
3.3.1. General Procedure for Cyclization of Aryl Urea-1 Using Oxygen-Bridged Hypervalent Iodine Catalyst
3.3.2. 1-Methoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2a
3.3.3. 6-Bromo-1-methoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2b
3.3.4. 6-Chloro-1-methoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2c
3.3.5. 6-Fluoro-1-methoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2d
3.3.6. 1-Methoxy-6-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 2e
3.3.7. 1,6-Dimethoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2f
3.3.8. 1-Methoxy-6-(trifluoromethyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one 2g
3.3.9. 1-Methoxy-4-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 2h
3.3.10. 1-Methoxy-4-phenyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 2i
3.3.11. 1-Methoxy-5,7-dimethyl-1,3-dihydro-2H-benzo[d]imidazol-2-one 2j
3.3.12. 3-Methoxy-1,3-dihydro-2H-naphtho[1,2-d]imidazol-2-one 2k
3.3.13. 1-(Benzyloxy)-1,3-dihydro-2H-benzo[d]imidazol-2-one 2l
3.3.14. 1-Ethoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2m
3.3.15. 1-Butoxy-1,3-dihydro-2H-benzo[d]imidazol-2-one 2n
3.3.16. 1-Methoxy-5-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (2o) and 1-Methoxy-7-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (2o’) (Mixture)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devi, N.; Kumar, S.; Pandey, S.K.; Singh, V. 1(3)-Formyl-β-carbolines: Potential Aldo-X Precursors for the Synthesis of β-Carboline-Based Molecular Architectures. Asian J. Org. Chem. 2018, 7, 6–36. [Google Scholar]
- Marshall, C.M.; Federice, J.G.; Bell, C.N.; Cox, P.B.; Njardarson, J.T. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013–2023). J. Med. Chem. 2024, 67, 11622–11655. [Google Scholar] [PubMed]
- Shearer, J.; Castro, J.L.; Lawson, A.D.G.; MacCoss, M.; Taylor, R.D. Rings in Clinical Trials and Drugs: Present and Future. J. Med. Chem. 2022, 65, 8699–8712. [Google Scholar] [PubMed]
- Zakharychev, V.V.; Martsynkevich, A.M. Development of novel pyridine-based agrochemicals: A review. Adv. Agrochem. 2025, 4, 30–48. [Google Scholar]
- Bellotti, P.; Koy, M.; Hopkinson, M.N.; Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar]
- Awouters, F.; Niemegeers, C.J.E.; Van den Berk, J.; Van Nueten, J.M.; Lenaerts, F.M.; Borgers, M.; Schellekens, K.H.L.; Broeckaert, A.; De Cree, J.; Janssen, P.A.J. Oxatomide, a new orally active drug which inhibits both the release and the effects of allergic mediators. Experientia 1977, 33, 1657–1659. [Google Scholar]
- Kasanami, Y.; Ishikawa, C.; Kino, T.; Chonan, M.; Toyooka, N.; Takashima, Y.; Iba, Y.; Sekiguchi, F.; Tsubota, M.; Ohkubo, T.; et al. Discovery of pimozide derivatives as novel T-type calcium channel inhibitors with little binding affinity to dopamine D2 receptors for treatment of somatic and visceral pain. Eur. J. Med. Chem. 2022, 243, 114716. [Google Scholar]
- Perry, C.M. Azilsartan Medoxomil A Review of its Use in Hypertension. Clin. Drug Investig. 2012, 32, 621–639. [Google Scholar]
- Saïdani, N.; Botté, C.Y.; Deligny, M.; Bonneaud, A.-L.; Reader, J.; Lasselin, R.; Merer, G.; Niepceron, A.; Brossier, F.; Cintrat, J.-C.; et al. Discovery of Compounds Blocking the Proliferation of Toxoplasma gondii and Plasmodium falciparum in a Chemical Space Based on Piperidinyl-Benzimidazolone Analogs. Antimicrob. Agents Chemother. 2014, 58, 2586–2597. [Google Scholar]
- Wu, Q.; Chen, J.; Liu, Z.; Xu, Y. CO Activation Using Nitrogen-Doped Carbon Nanotubes for Reductive Carbonylation of Nitroaromatics to Benzimidazolinone and Phenyl Urea. ACS Appl. Mater. Interfaces 2020, 12, 48700–48711. [Google Scholar]
- Wang, X.; Ling, G.; Xue, Y.; Lu, S. Selenium-Catalyzed Reductive Carbonylation of 2-Nitrophenols to 2-Benzoxazolones. Eur. J. Org. Chem. 2005, 2005, 1675–1679. [Google Scholar]
- Qi, X.; Zhou, R.; Peng, J.-B.; Ying, J.; Wu, X.-F. Selenium-Catalyzed Carbonylative Synthesis of 2-Benzimidazolones from 2-Nitroanilines with TFBen as the CO Source. Eur. J. Org. Chem. 2019, 2019, 5161–5164. [Google Scholar]
- Tsuji, Y.; Takeuchi, R.; Watanabe, Y. Platinum complex catalyzed synthesis of urea derivatives from nitroarenes and amines under carbon monoxide. J. Organomet. Chem. 1985, 290, 249. [Google Scholar]
- English, J.P.; Clapp, R.C.; Cole, Q.P.; Halverstadt, I.F.; Lampen, J.O.; Roblin, R.O., Jr. Studies in Chemotherapy. IX. Ureylenebenzene and Cyclohexane Derivatives as Biotin Antagonist. J. Am. Chem. Soc. 1945, 67, 295–302. [Google Scholar]
- Purandare, A.V.; Gao, A.; Poss, M.A. Solid-phase synthesis of ‘diverse’ heterocycles. Tetrahedron Lett. 2002, 43, 3903–3906. [Google Scholar]
- Acharya, A.N.; Ostresh, J.M.; Houghten, R.A. Solid-phase parallel synthesis of substituted dihydroimidazolyl dihydrobenzimidazol-2-ones. Tetrahedron 2002, 58, 2095–2100. [Google Scholar]
- Nale, D.B.; Bhanage, B.M. Copper-catalyzed efficient synthesis of a 2-benzimidazolone scaffold from 2-nitroaniline and dimethyl carbonate via a hydrosilylation reaction. Green Chem. 2015, 17, 2480. [Google Scholar]
- Cooley, J.H.; Jacobs, P.T. Oxidative Ring Closure of 1-Benzyloxy-3-arylureas to 1-Benzyloxybenzimidazolones. J. Org. Chem. 1975, 40, 552–557. [Google Scholar]
- Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(III)-catalyzed C–N bond forming reaction: Catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun. 2007, 12, 1224–1226. [Google Scholar]
- Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Shiro, M.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun. 2010, 46, 7697–7699. [Google Scholar]
- Dohi, T.; Sasa, H.; Dochi, M.; Yasui, C.; Kita, Y. Oxidative Coupling of N-Methoxyamides and Related Compounds toward Aromatic Hydrocarbons by Designer μ-Oxo Hypervalent Iodine Catalyst. Synthesis 2019, 51, 1185–1195. [Google Scholar] [CrossRef]
- Sasa, H.; Mori, K.; Kikushima, K.; Kita, Y.; Dohi, T. μ-Oxo-Hypervalent-Iodine-Catalyzed Oxidative C-H Amination for Synthesis of Benzolactam Derivatives. Chem. Pharm. Bull. 2022, 70, 106–110. [Google Scholar] [CrossRef]
- Sasa, H.; Hamatani, S.; Hirashima, M.; Takenaga, N.; Hanasaki, T.; Dohi, T. Efficient Metal-Free Oxidative C–H Amination for Accessing Dibenzoxazepinones via μ-Oxo Hypervalent Iodine Catalysis. Chemistry 2023, 5, 2155–2165. [Google Scholar] [CrossRef]
- Miyamoto, N.; Kikushima, K.; Sasa, H.; Katagiri, T.; Takenaga, N.; Kita, Y.; Dohi, T. Transition-metal-free dibenzoxazepinone synthesis by hypervalent iodine-mediated chemoselective arylocyclizations of N-functionalized salicylamides. Chem. Commun. 2025, 61, 1882–1885. [Google Scholar] [CrossRef]
- Zheng, H.; Sang, Y.; Houk, K.N.; Xue, X.-S.; Cheng, J.-P. Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations. J. Am. Chem. Soc. 2019, 141, 16046–16056. [Google Scholar] [CrossRef]
- Wang, Q.; An, J.; Alper, H.; Xiao, W.-J.; Beauchemin, A.M. Catalytic substitution/cyclization sequences of O-substituted Isocyanates: Synthesis of 1-alkoxybenzimidazolones and 1-alkoxy-3,4-dihydroquinazolin-2(1H)-ones. Chem. Commun. 2017, 53, 13055–13058. [Google Scholar] [CrossRef]
Entry | Precatalyst | Acid | Solvent | Isolated Yield of 2a |
---|---|---|---|---|
1 | 3a (5 mol%) | CF3COOH | HFIP | Complex mixture |
2 | 3a (5 mol%) | CF3COOH | CH2Cl2 | Complex mixture |
3 | 3a (5 mol%) | CF3COOH | CHCl3 | Complex mixture |
4 | 3a (5 mol%) | AcOH | HFIP | Complex mixture |
5 | 3a (5 mol%) | AcOH | CH2Cl2 | 51% |
6 | 3a (5 mol%) | AcOH | CHCl3 | 67% |
7 b | 3a (5 mol%) | AcOH | CHCl3 | 42% |
8 | 3b (5 mol%) | AcOH | CHCl3 | 72% |
9 | 3c (5 mol%) | AcOH | CHCl3 | 72% |
10 | PhI (10 mol%) | AcOH | CHCl3 | 55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirashima, M.; Hamatani, S.; Sasa, H.; Takenaga, N.; Hanasaki, T.; Dohi, T. Metal-Free Synthesis of Benzimidazolinones via Oxidative Cyclization Under Hypervalent Iodine Catalysis. Chemistry 2025, 7, 50. https://doi.org/10.3390/chemistry7020050
Hirashima M, Hamatani S, Sasa H, Takenaga N, Hanasaki T, Dohi T. Metal-Free Synthesis of Benzimidazolinones via Oxidative Cyclization Under Hypervalent Iodine Catalysis. Chemistry. 2025; 7(2):50. https://doi.org/10.3390/chemistry7020050
Chicago/Turabian StyleHirashima, Mayu, Syotaro Hamatani, Hirotaka Sasa, Naoko Takenaga, Tomonori Hanasaki, and Toshifumi Dohi. 2025. "Metal-Free Synthesis of Benzimidazolinones via Oxidative Cyclization Under Hypervalent Iodine Catalysis" Chemistry 7, no. 2: 50. https://doi.org/10.3390/chemistry7020050
APA StyleHirashima, M., Hamatani, S., Sasa, H., Takenaga, N., Hanasaki, T., & Dohi, T. (2025). Metal-Free Synthesis of Benzimidazolinones via Oxidative Cyclization Under Hypervalent Iodine Catalysis. Chemistry, 7(2), 50. https://doi.org/10.3390/chemistry7020050