Phenolic Constituents from Hypericum aucheri Jaub et. Spach—Isolation, Identification, and Preliminary Evaluation for hMAO-A/B and Neuroprotective Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Acid Hydrolysis of Compounds (4–6)
2.5. Spectral Data of the New Compounds (4–6)
2.5.1. Aucheroside A (4)
2.5.2. Aucheroside B (5)
2.5.3. Aucheroside C (6)
2.6. Determination of Human Recombinant MAO-A and MAO-B Enzyme Activity
2.7. In Vitro Neuroprotection Activity
2.7.1. Animals
2.7.2. Preparation, Isolation, and Incubation of Rat Brain Synaptosomes and Mitochondria
2.7.3. In Vitro Dopamine Model of Neurotoxicity
2.7.4. MTT Assay to Assess the Viability of Synaptosomes
2.7.5. Determination of Reduced Glutathione (GSH) in Isolated Brain Synaptosomes
2.7.6. Tert-Butyl Hydroperoxide-Induced Oxidative Stress
2.7.7. Determination of Malondialdehyde (MDA) Production in Brain Mitochondria
2.7.8. Determination of GSH Level in Brain Mitochondria
2.7.9. Isolation of Brain Microsomes
2.7.10. Iron/Ascorbate-Induced Lipid Peroxidation (LPO)
2.7.11. Determination of MDA in Brain Microsomes
2.8. Statistical Methods
3. Results and Discussion
3.1. Identification of the Isolated Compounds
3.2. Effects of the Compounds 2, 4–6, 8–11 on Human Recombinant MAO-A/MAO-B Enzyme (hMAO-A/hMAO-B)
3.3. Neuroprotective Effects of the Compounds 2, 4–6, 8, 9–11 on Isolated Rat Brain Synaptosomes, Mitochondria, and Microsomes
3.3.1. Effects of the Compounds 2, 4–6, 8, 9–11 on Isolated Rat Brain Synaptosomes
3.3.2. Effects of the Compounds 2, 4–6, 8–11 on Isolated Rat Brain Mitochondria
3.3.3. Effects of the Compounds 2, 4–6, and 8–11 on Isolated Rat Brain Microsomes
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robson, N.K.B. Studies in the Genus Hypericum L. (Hypericaceae) 5(1). Sections 10. Olympia to 15/16. Crossophyllum. Phytotaxa 2010, 4, 5–126. [Google Scholar] [CrossRef]
- Kitanov, G.M.; Blinova, K.F.; Akhtardzhiev, K.; Rumenin, V. Flavonoids of Hypericum aucherii. Chem. Nat. Compd. 1979, 15, 760–761. [Google Scholar] [CrossRef]
- Kitanov, G.M. Biflavone, Flavonol, and Xanthone Glycosides from Hypericum aucheri. Chem. Nat. Compd. 1988, 24, 390–391. [Google Scholar] [CrossRef]
- Nedialkov, P.T.; Ilieva, Y.; Zheleva-Dimitrova, D.; Kokanova-Nedialkova, Z.; Momekov, G. Three New Prenyloxy Chromanones from Aerial Parts of Hypericum aucheri. Fitoterapia 2019, 139, 104421. [Google Scholar] [CrossRef]
- Marinov, T.; Kokanova-Nedialkova, Z.; Nedialkov, P. UHPLC-HRMS-Based Profiling and Simultaneous Quantification of the Hydrophilic Phenolic Compounds from the Aerial Parts of Hypericum aucheri Jaub. & Spach (Hypericaceae). Pharmacia 2024, 71, 1–11. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical Scavenging and Antioxidant Activities of Methanolic Extracts from Hypericum Species Growing in Bulgaria. Pharmacogn. Mag. 2010, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Marinov, T.; Kokanova-Nedialkova, Z.; Nedialkov, P.T. Naturally Occurring Simple Oxygenated Benzophenones: Structural Diversity, Distribution, and Biological Properties. Diversity 2023, 15, 1030. [Google Scholar] [CrossRef]
- Demirkiran, O. Three New Benzophenone Glycosides with MAO-A Inhibitory Activity from Hypericum thasium Griseb. Phytochem. Lett. 2012, 5, 700–704. [Google Scholar] [CrossRef]
- Kaya, D.; Jäger, A.K.; Yalçın, F.N.; Ersöz, T. MAO-A Inhibition Profiles of Some Benzophenone Glucosides from Gentiana verna Subsp. Pontica. Nat. Prod. Commun. 2014, 9, 505–506. [Google Scholar] [CrossRef] [PubMed]
- Duarte, P.; Cuadrado, A.; León, R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. In Reactive Oxygen Species: Network Pharmacology and Therapeutic Applications; Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 229–259. ISBN 978-3-030-68510-2. [Google Scholar]
- Santin, Y.; Resta, J.; Parini, A.; Mialet-Perez, J. Monoamine Oxidases in Age-Associated Diseases: New Perspectives for Old Enzymes. Ageing Res. Rev. 2021, 66, 101256. [Google Scholar] [CrossRef] [PubMed]
- Riederer, P.; Lachenmayer, L.; Laux, G. Clinical Applications of MAO-Inhibitors. Curr. Med. Chem. 2004, 11, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, L. Reducing the Burden of Difficult-to-Treat Major Depressive Disorder: Revisiting Monoamine Oxidase Inhibitor Therapy. Prim. Care Companion CNS Disord. 2013, 15, 27220. [Google Scholar] [CrossRef]
- Thase, M.E. MAOIs and Depression Treatment Guidelines. J. Clin. Psychiatry 2012, 73, e24. [Google Scholar] [CrossRef]
- Carradori, S.; Secci, D.; Petzer, J.P. MAO Inhibitors and Their Wider Applications: A Patent Review. Expert Opin. Ther. Patents 2018, 28, 211–226. [Google Scholar] [CrossRef]
- Sayre, L.M.; Smith, M.A.; Perry, G. Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. Curr. Med. Chem. 2001, 8, 721–738. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Dexter, D.T.; Carter, C.J.; Wells, F.R.; Javoy-Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C.D. Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson’s Disease. J. Neurochem. 1989, 52, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Grünblatt, E.; Riederer, P.; Gerlach, M.; Levites, Y.; Youdim, M.B.H. Neuroprotective Strategies in Parkinson’s Disease. CNS Drugs 2003, 17, 729–762. [Google Scholar] [CrossRef]
- Salamon, A.; Zádori, D.; Szpisjak, L.; Klivényi, P.; Vécsei, L. Neuroprotection in Parkinson’s Disease: Facts and Hopes. J. Neural Transm. 2020, 127, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; et al. Design, Synthesis, Pharmacological Evaluation, QSAR Analysis, Molecular Modeling and ADMET of Novel Donepezil–Indolyl Hybrids as Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Potential Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2014, 75, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Shkondrov, A.; Kondeva-Burdina, M.; Stambolov, I.; Krasteva, I. Activity of an Oleanane-Type Tritrepenoid Saponin from A. glycyphyllos on Human Recombinant MAO Enzymes. Pharmacia 2024, 71, 1–6. [Google Scholar] [CrossRef]
- Taupin, P.; Zini, S.; Cesselin, F.; Ben-Ari, Y.; Roisin, M.-P. Subcellular Fractionation on Percoll Gradient of Mossy Fiber Synaptosomes: Morphological and Biochemical Characterization in Control and Degranulated Rat Hippocampus. J. Neurochem. 1994, 62, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Stokes, A.H.; Freeman, W.M.; Mitchell, S.G.; Burnette, T.A.; Hellmann, G.M.; Vrana, K.E. Induction of GADD45 and GADD153 in Neuroblastoma Cells by Dopamine-Induced Toxicity. NeuroToxicology 2002, 23, 675–684. [Google Scholar] [CrossRef]
- Mungarro-Menchaca, X.; Ferrera, P.; Morán, J.; Arias, C. β-Amyloid Peptide Induces Ultrastructural Changes in Synaptosomes and Potentiates Mitochondrial Dysfunction in the Presence of Ryanodine. J. Neurosci. Res. 2002, 68, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Robyt, J.F.; Ackerman, R.J.; Chittenden, C.G. Reaction of Protein Disulfide Groups with Ellman’s Reagent: A Case Study of the Number of Sulfhydryl and Disulfide Groups in Aspergillus Oryzae α-Amylase, Papain, and Lysozyme. Arch. Biochem. Biophys. 1971, 147, 262–269. [Google Scholar] [CrossRef]
- Karlsson, J.; Emgard, M.; Brundin, P.; Burkitt, M.J. Trans-Resveratrol Protects Embryonic Mesencephalic Cells from Tert-Butyl Hydroperoxide. J. Neurochem. 2000, 75, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Shirani, M.; Alizadeh, S.; Mahdavinia, M.; Dehghani, M.A. The Ameliorative Effect of Quercetin on Bisphenol A-Induced Toxicity in Mitochondria Isolated from Rats. Environ. Sci. Pollut. Res. 2019, 26, 7688–7696. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, V.; Anandatheerthavarada, H.K. Preparation of Brain Microsomes with Cytochrome P450 Activity Using Calcium Aggregation Method. Anal. Biochem. 1990, 187, 310–313. [Google Scholar] [CrossRef]
- Mansuy, D.; Sassi, A.; Dansette, P.M.; Plat, M. A New Potent Inhibitor of Lipid Peroxidation in Vitro and in Vivo, the Hepatoprotective Drug Anisyldithiolthione. Biochem. Biophys. Res. Commun. 1986, 135, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, M.; Wang, D.; Yang, C.-R.; Zhang, Y.-J. Phenolic Compounds from the Whole Plants of Gentiana rhodantha (Gentianaceae). Chem. Biodivers. 2011, 8, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Yalçın, F.N.; Bedir, E.; Çalış, İ.; Steinhauser, L.; Albert, K.; Ersöz, T. New Benzophenone Glucosides from the Aerial Parts of Gentiana verna L. Subsp. Pontica (Soltok.) Hayek. Phytochem. Lett. 2011, 4, 459–461. [Google Scholar] [CrossRef]
- An, R.B.; Jeong, G.S.; Beom, J.-S.; Sohn, D.H.; Kim, Y.C. Chromone Glycosides and Hepatoprotective Constituents of Hypericum erectum. Arch. Pharm. Res. 2009, 32, 1393–1397. [Google Scholar] [CrossRef]
- Berardini, N.; Carle, R.; Schieber, A. Characterization of Gallotannins and Benzophenone Derivatives from Mango (Mangifera indica L. Cv. ‘Tommy Atkins’) Peels, Pulp and Kernels by High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Drahota, Z.; Kriváková, P.; Cervinková, Z.; Kmonickova, E.; Lotkova, H.; Kucera, O.; Houstek, J. Tert-Butyl Hydroperoxide Selectively Inhibits Mitochondrial Respiratory-Chain Enzymes in Isolated Rat Hepatocytes. Physiol. Res. 2005, 54, 67–72. [Google Scholar] [CrossRef]
- Kondeva-Burdina, M.; Voynova, M.; Shkondrov, A.; Aluani, D.; Tzankova, V.; Krasteva, I. Effects of Amanita Muscaria Extract on Different in Vitro Neurotoxicity Models at Sub-Cellular and Cellular Levels. Food Chem. Toxicol. 2019, 132, 110687. [Google Scholar] [CrossRef]
Carbon No. | δC, Mult | ||
---|---|---|---|
4 | 5 | 6 | |
Aglycone unit | |||
1 | 110.8, C | 110.5, C | 110.8, C |
2 | 159.7, C | 159.8, C | 159.7, C |
3 | 98.4, CH | 98.2, CH | 98.4, CH |
4 | 162.4, C | 162.5, C | 162.4, C |
5 | 96.1, CH | 95.9, CH | 96.0, CH |
6 | 158.6, C | 158.6, C | 158.6, C |
1′ | 132.8, C | 132.9, C | 132.8, C |
2′ | 117.9, CH | 117.7, CH | 118.0, CH |
3′ | 146.1, C | 146.0, C | 146.0, C |
4′ | 152.2, C | 152.0, C | 152.1, C |
5′ | 115.8, CH | 115.7, CH | 115.8, CH |
6′ | 125.1, CH | 125.0, CH | 125.0, CH |
C=O | 197.7, C | 197.8, C | 197.7, C |
d-glucopyranose | |||
1″ | 102.3, CH | 101.8, CH | 102.2, CH |
2″ | 75.0, CH | 74.7, CH | 73.2, CH |
3″ | 75.8, CH | 77.9, CH | 79.5, CH |
4″ | 72.7, CH | 71.8, CH | 69.4, CH |
5″ | 76.3, CH | 75.7, CH | 78.2, CH |
6″ | 62.3, CH2 | 65.6, CH2 | 62.3, CH2 |
Benzoyl unit | |||
1′″ | 131.3, C | 131.3, C | 131.8, C |
2′″ and 6′″ | 130.9, CH | 130.9, CH | 130.9, CH |
3′″ and 5′″ | 129.7, CH | 129.8, CH | 129.6, CH |
4′″ | 134.6, CH | 134.4, CH | 134.3, CH |
C=O | 167.4, C | 168.2, C | 168.0, C |
Position | δH (J in Hz) | ||
---|---|---|---|
4 | 5 | 6 | |
3 | 6.09 d (2.0) | 6.08 d (2.0) | 6.08 d (2.0) |
5 | 6.29 d (2.0) | 6.28 d (2.0) | 6.28 d (2.0) |
2′ | 7.31 d (2.1) | 7.27 d (2.0) | 7.28 d (2.1) |
5′ | 6.79 d (8.3) | 6.73 d (8.3) | 6.78 d (8.3) |
6′ | 7.25 dd (2.1, 8.3) | 7.19 dd (8.3, 2.0) | 7.22 dd (2.1, 8.3) |
1″ | 4.97 d (7.8) | 4.91 d (7.7) | 5.02 d (7.7) |
2″ | 3.27 dd (7.8, 9.3) | 3.14 dd (8.9, 7.7) | 3.40 dd (9.5, 7.7) |
3″ | 3.75 t (9.3) | 3.42 dd (9.0, 8.9) | 5.21 dd (9.5, 9.4) |
4″ | 5.03 dd (9.2, 9.6) | 3.35 dd (9.0, 8.9) | 3.64 dd (9.7, 9.4) |
5″ | 3.72 m | 3.72 m | 3.52 m |
6″ | 3.67 dd (2.4, 12.3); 3.58 dd (5.5, 12.3) | 4.68 dd (11.8, 2.0); 4.33 dd (11.8, 7.3) | 3.89 dd (12, 2); 3.74 dd (12, 5) |
2′″ + 6′″ | 8.05 m | 8.04 m | 8.05 m |
3′″ + 5′″ | 7.48 m | 7.47 m | 7.47 m |
4′″ | 7.62 m | 7.60 m | 7.59 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinov, T.; Kondeva-Burdina, M.; Kokanova-Nedialkova, Z.; Nedialkov, P.T. Phenolic Constituents from Hypericum aucheri Jaub et. Spach—Isolation, Identification, and Preliminary Evaluation for hMAO-A/B and Neuroprotective Activity. Chemistry 2024, 6, 1535-1551. https://doi.org/10.3390/chemistry6060093
Marinov T, Kondeva-Burdina M, Kokanova-Nedialkova Z, Nedialkov PT. Phenolic Constituents from Hypericum aucheri Jaub et. Spach—Isolation, Identification, and Preliminary Evaluation for hMAO-A/B and Neuroprotective Activity. Chemistry. 2024; 6(6):1535-1551. https://doi.org/10.3390/chemistry6060093
Chicago/Turabian StyleMarinov, Teodor, Magdalena Kondeva-Burdina, Zlatina Kokanova-Nedialkova, and Paraskev T. Nedialkov. 2024. "Phenolic Constituents from Hypericum aucheri Jaub et. Spach—Isolation, Identification, and Preliminary Evaluation for hMAO-A/B and Neuroprotective Activity" Chemistry 6, no. 6: 1535-1551. https://doi.org/10.3390/chemistry6060093
APA StyleMarinov, T., Kondeva-Burdina, M., Kokanova-Nedialkova, Z., & Nedialkov, P. T. (2024). Phenolic Constituents from Hypericum aucheri Jaub et. Spach—Isolation, Identification, and Preliminary Evaluation for hMAO-A/B and Neuroprotective Activity. Chemistry, 6(6), 1535-1551. https://doi.org/10.3390/chemistry6060093