Addition of a Perfluoroalkyl Acetyl Group to the C-Vertex of a Carborane Anion to Enhance Its Solubility in Fluorinated Ether Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Materials
2.3. Experimental Procedures
2.3.1. General Procedure for the Perfluoroalkyl Acylation of C-Vertex of Carborane Anion
Compound: [Cs+][1-(CO(CF2)2CF3)–CB11H11‒] (Cs·3a)
Compound: [Cs+][1-(CO(CF2)4CF3)–CB11H11‒] (Cs·3b)
Compound: [Cs+][1-(CO(CF2)8CF3)–CB11H11‒] (Cs·3c)
Compound: [Cs+][1-(CO(CF2)10CF3)–CB11H11‒] (Cs·3d)
Compound: [Cs+][1-(CO(CH2)4CH3)–CB11H11‒] (Cs·3e)
2.3.2. Synthesis of Tri-n-octylammonium Salt of [1-(CO(CF2)2CF3)–CB11H11‒] (3b)
Compound: [Ag+][1-(CO(CF2)4CF3)–CB11H11‒] (Ag·3b)
Compound: [HN(octyl)3+][1-(CO(CF2)4CF3)–CB11H11‒] (HN(octyl)3·3b)
2.3.3. Solubility of Cesium Salts in Fluorinated Solvents
3. Results
3.1. Synthesis
3.2. Solubility of Cesium Salts of 3 in Fluorinated Solvents
3.3. Coordinating Ability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douvris, C.; Michl, J. Update 1 of: Chemistry of the Carba-closo-dodecaborate (−) Anion, CB11H12‒. Chem. Rev. 2013, 113, PR179–PR233. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.P.; Tomich, A.W.; Guo, J.; Lavallo, V. Teaching an Old Dog New Tricks: New Directions in Fundamental and Applied closo-Carborane Anion Chemistry. Chem. Commun. 2019, 55, 1684–1701. [Google Scholar] [CrossRef]
- Fisher, S.P.; Tomich, A.W.; Lovera, S.O.; Kleinsasser, J.F.; Guo, J.; Asay, M.J.; Nelson, H.M.; Lavallo, V. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem. Rev. 2019, 119, 8262–8290. [Google Scholar] [CrossRef]
- Kanazawa, J.; Kitazawa, Y.; Uchiyama, M. Recent Progress in the Synthesis of the Monocarba-closo-dodecaborate (−) Anions. Chem. Eur. J. 2019, 25, 9123–9132. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, Y.; Duttwyler, S.; Lin, F.; Zhang, Y. Chemistry of Three-Dimensional Icosahedral Boron Clusters Anions: Closo-Dodecaborate (2-) [B12H12]2‒ and Carba-closo-Dodecaborate (-) [CB11H12]-. Coord. Chem. Rev. 2024, 516, 215974. [Google Scholar] [CrossRef]
- Jelinek, T.; Baldwin, P.; Scheidt, W.R.; Reed, C.A. New Weakly Coordinating Anions. 2. Derivatization of the Carborane Anion CB11H12−. Inorg. Chem. 1993, 32, 1982–1990. [Google Scholar] [CrossRef]
- Reed, C.A. Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids. Acc. Chem. Res. 1998, 31, 133–139. [Google Scholar] [CrossRef]
- Krossing, I.; Raabe, I. Noncoordinating Anions—Fact or Fiction? A Survey of Likely Candidates. Angew. Chem. Int. Ed. 2004, 43, 2066–2090. [Google Scholar] [CrossRef]
- Engesser, T.A.; Lichtenthaler, M.R.; Schleep, M.; Krossing, I. Reactive P-Block Cations Stabilized by Weakly Coordinating Anions. Chem. Soc. Rev. 2016, 45, 789–899. [Google Scholar] [CrossRef]
- Riddlestone, I.M.; Kraft, A.; Schaefer, J.; Krossing, I. Taming the Cationic Beast: Novel Developments in the Synthesis and Application of Weakly Coordinating Anions. Angew. Chem. Int. Ed. 2018, 57, 13982–14024. [Google Scholar] [CrossRef]
- Carter, T.J.; Mohtadi, R.; Arthur, T.S.; Mizuno, F.; Zhang, R.; Shirai, S.; Kampf, J.W. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes. Angew. Chem. Int. Ed. 2014, 53, 3173–3177. [Google Scholar] [CrossRef] [PubMed]
- McArthur, S.G.; Geng, L.; Guo, J.; Lavallo, V. Cation Reduction and Comproportionation as Novel Strategies to Produce High Voltage, Halide Free, Carborane Based Electrolytes for Rechargeable Mg Batteries. Inorg. Chem. Front. 2015, 2, 1101–1104. [Google Scholar] [CrossRef]
- Tutusaus, O.; Mohtadi, R.; Arthur, T.S.; Mizuno, F.; Nelson, E.G.; Sevryugina, Y.V. An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. Angew. Chem. Int. Ed. 2015, 54, 7900–7904. [Google Scholar] [CrossRef] [PubMed]
- McArthur, S.G.; Jay, R.; Geng, L.; Guo, J.; Lavallo, V. Below the 12-Vertex: 10-Vertex Carborane Anions as Non-Corrosive, Halide Free, Electrolytes for Rechargeable Mg Batteries. Chem. Commun. 2017, 53, 4453–4456. [Google Scholar] [CrossRef]
- Hahn, N.T.; Seguin, T.J.; Lau, K.-C.; Liao, C.; Ingram, B.J.; Persson, K.A.; Zavadil, K.R. Enhanced Stability of the Carba-closo-Dodecaborate Anion for High-Voltage Battery Electrolytes through Rational Design. J. Am. Chem. Soc. 2018, 140, 11076–11084. [Google Scholar] [CrossRef]
- Jay, R.; Tomich, A.W.; Zhang, J.; Zhao, Y.; De Gorostiza, A.; Lavallo, V.; Guo, J. Comparative Study of Mg(CB11H12)2 and Mg(TFSI)2 at the Magnesium/Electrolyte Interface. ACS Appl. Mater. Interfaces 2019, 11, 11414–11420. [Google Scholar] [CrossRef]
- Watanabe, M.; Kanazawa, J.; Hamamura, T.; Shimokawa, T.; Miyamoto, K.; Hibino, M.; Nakura, K.; Inatomi, Y.; Kitazawa, Y.; Uchiyama, M. Boron-Vertex Modification of Carba-closo-Dodecaborate for High-Performance Magnesium-Ion Battery Electrolyte. Mater. Adv. 2021, 2, 937–941. [Google Scholar] [CrossRef]
- Kisu, K.; Kim, S.; Shinohara, T.; Zhao, K.; Züttel, A.; Orimo, S. Monocarborane Cluster as a Stable Fluorine-Free Calcium Battery Electrolyte. Sci. Rep. 2021, 11, 7563. [Google Scholar] [CrossRef]
- Tomich, A.; Park, J.; Son, S.-B.; Kamphaus, E.; Lyu, X.; Dogan, F.; Carta, V.; Gim, J.; Li, T.; Cheng, L.; et al. A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine-Free” SEI. Angew. Chem. Int. Ed. 2022, 61, e202208158. [Google Scholar] [CrossRef]
- Tomich, A.W.; Chen, J.; Carta, V.; Guo, J.; Lavallo, V. Electrolyte Engineering with Carboranes for Next-Generation Mg Batteries. ACS Cent. Sci. 2024, 10, 264–271. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; et al. Non-Flammable Electrolyte Enables Li-Metal Batteries with Aggressive Cathode Chemistries. Nat. Nanotechnol. 2018, 13, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jia, H.; Xu, W.; Zhang, J.-G. Review—Localized High-Concentration Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2021, 168, 010522. [Google Scholar] [CrossRef]
- Pecyna, J.; Rončević, I.; Michl, J. Insertion of Carbenes into Deprotonated Nido-Undecaborane, B11H13(2-). Molecules 2019, 24, 3779. [Google Scholar] [CrossRef] [PubMed]
- King, B.T.; Körbe, S.; Schreiber, P.J.; Clayton, J.; Němcová, A.; Havlas, Z.; Vyakaranam, K.; Fete, M.G.; Zharov, I.; Ceremuga, J.; et al. The Sixteen CB11HnMe12-n‒ Anions with Fivefold Substitution Symmetry: Anodic Oxidation and Electronic Structure. J. Am. Chem. Soc. 2007, 129, 12960–12980. [Google Scholar] [CrossRef]
- Ivanov, S.V.; Rockwell, J.J.; Polyakov, O.G.; Gaudinski, C.M.; Anderson, O.P.; Solntsev, K.A.; Strauss, S.H. Highly Fluorinated Weakly Coordinating Monocarborane Anions. 1-H-CB11F11‒, 1-CH3-CB11F11‒, and the Structure of [N(n-Bu)4]2[CuCl(CB11F11)]. J. Am. Chem. Soc. 1998, 120, 4224–4225. [Google Scholar] [CrossRef]
- Kitazawa, Y.; Watanabe, M.; Masumoto, Y.; Otsuka, M.; Miyamoto, K.; Muranaka, A.; Hashizume, D.; Takita, R.; Uchiyama, M. “Dumbbell”- and “Clackers”-Shaped Dimeric Derivatives of Monocarba-closo-Dodecaborate. Angew. Chem. Int. Ed. 2018, 130, 1517–1520. [Google Scholar] [CrossRef]
- Dontha, R.; Zhu, T.-C.; Shen, Y.; Wörle, M.; Hong, X.; Duttwyler, S. A 3D Analogue of Phenyllithium: Solution-Phase, Solid-State, and Computational Study of the Lithiacarborane [Li−CB11H11]−. Angew. Chem. Int. Ed. 2019, 58, 19007–19013. [Google Scholar] [CrossRef]
- Stoyanov, E.S.; Kim, K.-C.; Reed, C.A. An Infrared νNH Scale for Weakly Basic Anions. Implications for Single-Molecule Acidity and Superacidity. J. Am. Chem. Soc. 2006, 128, 8500–8508. [Google Scholar] [CrossRef]
Compound/Position | B12 | B7–B11 | B2–B6 |
---|---|---|---|
1 | –6.9 | –13.3 | –16.2 |
3a | –3.1 | –12.3 | –13.9 |
3b | –3.1 | –12.3 | –13.7 |
3c | –2.9 | –12.3 | –13.7 |
3d | –3.1 | –12.3 | –14.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwashita, S.; Kimura, M.; Kitazawa, Y. Addition of a Perfluoroalkyl Acetyl Group to the C-Vertex of a Carborane Anion to Enhance Its Solubility in Fluorinated Ether Solvents. Chemistry 2024, 6, 1449-1457. https://doi.org/10.3390/chemistry6060087
Iwashita S, Kimura M, Kitazawa Y. Addition of a Perfluoroalkyl Acetyl Group to the C-Vertex of a Carborane Anion to Enhance Its Solubility in Fluorinated Ether Solvents. Chemistry. 2024; 6(6):1449-1457. https://doi.org/10.3390/chemistry6060087
Chicago/Turabian StyleIwashita, Sota, Mutsumi Kimura, and Yu Kitazawa. 2024. "Addition of a Perfluoroalkyl Acetyl Group to the C-Vertex of a Carborane Anion to Enhance Its Solubility in Fluorinated Ether Solvents" Chemistry 6, no. 6: 1449-1457. https://doi.org/10.3390/chemistry6060087
APA StyleIwashita, S., Kimura, M., & Kitazawa, Y. (2024). Addition of a Perfluoroalkyl Acetyl Group to the C-Vertex of a Carborane Anion to Enhance Its Solubility in Fluorinated Ether Solvents. Chemistry, 6(6), 1449-1457. https://doi.org/10.3390/chemistry6060087