Synthesis and NEXAFS and XPS Characterization of Pyrochlore-Type Bi1.865Co1/2Fe1/2Ta2O9+Δ
Abstract
:1. Introduction
2. Experimental Part
3. Results and Discussion
3.1. Synthesis and Microstructure
3.2. XPS and NEXAFS Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giampaoli, G.; Siritanon, T.; Day, B.; Li, J.; Subramanian, M.A. Temperature in-dependent low loss dielectrics based on quaternary pyrochlore oxides. Prog. Solid State Chem. 2018, 50, 16–23. [Google Scholar] [CrossRef]
- Du, H.; Yao, X. Structural trends and dielectric properties of Bi-based pyrochlores. J. Mater. Sci. Mater. Electron. 2004, 15, 613–616. [Google Scholar]
- Subramanian, M.A.; Aravamudan, G.; Rao Subba, G.V. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Vanderah, T.A.; Pazos, I.M.; Levin, I.; Roth, R.S.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5. J. Solid State Chem. 2006, 179, 3900–3910. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Lufaso, M.W.; Adler, A.U.; Levin, I.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5. J. Solid State Chem. 2006, 179, 3467–3477. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Noren, L.; Liu, Y.; Withers, R.L.; Wei, X.R.; Elcombe, M.M. The disordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi2O3-MO-Nb2O5 (M = Mg, Ni) systems. J. Solid State Chem. 2007, 180, 2558–2565. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Siegrist, T.; Lufaso, M.W.; Yeager, M.C.; Roth, R.S.; Nino, J.C.; Yates, S. Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5. Eur. J. Inorgan. Chem. 2006, 2006, 4908–4914. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Sekushin, N.A.; Krzhizhanovskaya, M.G.; Kharton, V.V. Multiple relaxation, reversible electrical breakdown and bipolar conductivity of pyrochlore–type Bi2Cu0.5Zn0.5Ta2O9 ceramics. Solid State Ion. 2022, 377, 115868. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Sekushin, N.A.; Sivkov, D.V.; Abdurakhmanov, I.E. Crystal structure, dielectric and thermal properties of cobalt doped bismuth tantalate pyrochlore. J. Mater. Res. Technol. 2023, 22, 1791–1799. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J. Novel pyrochlores in the Bi2O3-Fe2O3-Ta2O5 (BFT) ternary system: Synthesis, structural and electrical properties. J. Mater. Res. Techn. 2020, 9, 11022–11034. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Reveguk, A.A.; Sivkov, D.V.; Nekipelov, S.V. Thermal expansion, crystal structure, XPS and NEXAFS spectra of Fe-doped bismuth tantalate pyrochlore. Ceram. Intern. 2022, 48, 14849–14855. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Ellert, O.G.; Maksimov, Y.V.; Volodin, V.D.; Efimov, N.N.; Novotortsev, V.M. Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi2O3–Fe2O3–Sb2Ox system. J. Alloys Compd. 2013, 579, 311–314. [Google Scholar] [CrossRef]
- Matsuda, C.K.; Barco, R.; Sharma, P.; Biondo, V.; Paesano, A.; da Cunha, J.B.M.; Hallouche, B. Iron-containing pyrochlores: Structural and magnetic characterization. Hyperfine Interact. 2007, 175, 55–61. [Google Scholar] [CrossRef]
- Filoti, G.; Rosenberg, M.; Kuncser, V.; Seling, B.; Fries, T.; Spies, A.; KemmlerSack, S. Magnetic properties and cation distribution in iron containing pyrochlores. J. Alloys Comp. 1998, 268, 16–21. [Google Scholar] [CrossRef]
- Whitaker, M.J.; Marco, J.F.; Berry, F.J.; Raith, C.; Blackburn, E.; Greaves, C. Structural and magnetic characterisation of the pyrochlores Bi2−xFex(FeSb)O7, (x = 0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7. J. Solid State Chem. 2013, 198, 316–322. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Lebedev, A.M.; Chumakov, R.G.; Makeev, B.A.; Kharton, V.V.; et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore. Solid State Sci. 2022, 125, 106820. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Makeev, B.A.; Koroleva, A.V.; Nekipelov, S.V.; Petrova, O.V. NEXAFS and XPS Studies of Co Doped Bismuth Magnesium Tantalate Pyrochlores. Chemistry 2024, 6, 323–332. [Google Scholar] [CrossRef]
- Piir, I.V.; Prikhodko, D.A.; Ignatchenko, S.V.; Schukariov, A.V. Preparation and structural investigations of the mixed bismuth niobates, containing transition metals. Solid State Ion. 1997, 101–103, 1141–1146. [Google Scholar] [CrossRef]
- Smolenskii, G.A.; Isupov, V.A.; Golovshchifova, G.I.; Tutov, A.G. New compounds with pyrochlore-type structure and their dielectric properties. Izv. Akad. Nauk. SSSR Neorg. Mater. 1976, 12, 255–258. [Google Scholar]
- Rylchenko, E.P.; Makeev, B.A.; Sivkov, D.V.; Korolev, R.I.; Zhuk, N.A. Features of phase formation of pyrochlore-type Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ. Lett. Mater. 2022, 12, 486–492. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Makeev, B.A.; Krzhizhanovskaya, M.G.; Nekipelov, S.V.; Sivkov, D.V.; Badanina, K.A. Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore. Crystals 2023, 13, 1202. [Google Scholar] [CrossRef]
- Parshukova, K.N.; Sekushin, N.A.; Makeev, B.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Zhuk, N.A. Synthesis and dielectric properties, XPS spectroscopy study of high-entropy pyrochlore. Lett. Mater. 2022, 12, 469–474. [Google Scholar] [CrossRef]
- Sukhanov, K.S.; Gilev, A.R.; Kiselev, E.A.; Cherepanov, V.A. Functional properties and structure-size factor in La1.4A0.6Ni0.6Fe0.4O4+δ (A = Ca, Sr, Ba). J. Alloys Comp. 2024, 990, 174369. [Google Scholar] [CrossRef]
- Aksenova, T.V.; Mysik, D.K.; Cherepanov, V.A. Crystal Structure and Properties of Gd1−xSrxCo1-yFeyO3-δ Oxides as Promising Materials for Catalytic and SOFC Application. Catalysts 2022, 12, 1344. [Google Scholar] [CrossRef]
- Gilev, A.R.; Kiselev, E.A.; Sukhanov, K.S.; Korona, D.V.; Cherepanov, V.A. Evaluation of La2−x(Ca/Sr)xNi1-yFeyO4+δ (x = 0.5, 0.6; y = 0.4, 0.5) as cathodes for proton-conducting SOFC based on lanthanum tungstate. Electrochim. Acta 2022, 421, 140479. [Google Scholar] [CrossRef]
- Shevchenko, V.A.; Komayko, A.I.; Sivenkova, E.V.; Samigullin, R.R.; Skvortsova, I.A.; Abakumov, A.M.; Nikitina, V.A.; Drozhzhin, O.A.; Antipov, E.V. Effect of Ni/Fe/Mn ratio on electrochemical properties of the O3–NaNi1-x-yFexMnyO2 (0.25 ≤ x, y ≤ 0.75) cathode materials for Na-ion batteries. J. Power Sources 2024, 596, 234092. [Google Scholar] [CrossRef]
- Sun, S.H.; Xue, Y.; Yang, D.; Pei, Z.; Fang, L.; Xia, Y.; Ti, R.; Wang, C.; Liu, C.; Xiong, B.; et al. Bismuth pyrochlores with varying Fe/Co ratio for efficient Multi-Functional Catalysis: Structure evolution versus Photo- and Electro-catalytic activities. Chem. Eng. J. 2022, 448, 137580. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, D.G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Akselrud, L.G.; Grin, Y.N.; Zavalij, Y.P. CSD-universal program package for single crystal or powder structure data treatment. In Proceedings of the 12th European Crystallographic Meeting, Moscow, Russia, 20–29 August 1989; p. 155. [Google Scholar]
- Bruker, A.X.S. Topas, V.5.0 Software. General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS: Karlsruhe, Germany, 2014.
- Lebedev, A.M.; Menshikov, K.A.; Nazin, V.G.; Stankevich, V.G.; Tsetlin, M.B.; Chumakov, R.G. NanoPES Photoelectron Beamline of the Kurchatov Synchrotron Radiation Source. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 1039–1044. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Sekushin, N.A.; Semenov, V.G.; Fedorova, A.V.; Selyutin, A.A.; Krzhizhanovskaya, M.G.; Lutoev, V.P.; Makeev, B.A.; Kharton, V.V.; Sivkov, D.N.; et al. Dielectric properties, Mössbauer study, ESR spectra of Bi2FeTa2O9.5 with pyrochlore structure. J. Alloys Comps. 2022, 903, 163928. [Google Scholar] [CrossRef]
- Hassel, M.; Freund, H.-J. High Resolution XPS Study of a Thin CoO(111) Film Grown on Co(0001). Surf. Sci. Spectr. 1996, 4, 273–278. [Google Scholar] [CrossRef]
- Regan, T.J.; Ohldag, H.; Stamm, C.; Nolting, F.; Luning, J.; Stöhr, J.; White, R.L. Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy. Phys. Rev. B 2001, 64, 214422. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 4, 2441–2449. [Google Scholar] [CrossRef]
- Stohr, J. NEXAFS Spectroscopy; Springer: Berlin/Heidelberg, Germany, 1992; 662p. [Google Scholar]
Peak | Energy (eV) | Peak | Energy (eV) |
---|---|---|---|
Bi4f7/2 | 158.78 | Co2p3/2 | 780.16 |
Bi4f5/2 | 164.10 | Co2p1/2 | 795.93 |
Bi5d5/2 | 25.84 | Co2p sat | 785.27 |
Bi5d3/2 | 28.84 | Fe2p3/2 | 710.56 |
Ta4f7/2 | 25.41 | Fe2p1/2 | 724.32 |
Ta4f5/2 | 27.31 | Fe2p sat | 718.60 |
Ta5p3/2 | 35.78 | Fe2p sat | 733.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuk, N.A.; Nekipelov, S.V.; Petrova, O.V.; Koroleva, A.V.; Lebedev, A.M.; Makeev, B.A. Synthesis and NEXAFS and XPS Characterization of Pyrochlore-Type Bi1.865Co1/2Fe1/2Ta2O9+Δ. Chemistry 2024, 6, 1078-1088. https://doi.org/10.3390/chemistry6050062
Zhuk NA, Nekipelov SV, Petrova OV, Koroleva AV, Lebedev AM, Makeev BA. Synthesis and NEXAFS and XPS Characterization of Pyrochlore-Type Bi1.865Co1/2Fe1/2Ta2O9+Δ. Chemistry. 2024; 6(5):1078-1088. https://doi.org/10.3390/chemistry6050062
Chicago/Turabian StyleZhuk, Nadezhda A., Sergey V. Nekipelov, Olga V. Petrova, Aleksandra V. Koroleva, Aleksey M. Lebedev, and Boris A. Makeev. 2024. "Synthesis and NEXAFS and XPS Characterization of Pyrochlore-Type Bi1.865Co1/2Fe1/2Ta2O9+Δ" Chemistry 6, no. 5: 1078-1088. https://doi.org/10.3390/chemistry6050062
APA StyleZhuk, N. A., Nekipelov, S. V., Petrova, O. V., Koroleva, A. V., Lebedev, A. M., & Makeev, B. A. (2024). Synthesis and NEXAFS and XPS Characterization of Pyrochlore-Type Bi1.865Co1/2Fe1/2Ta2O9+Δ. Chemistry, 6(5), 1078-1088. https://doi.org/10.3390/chemistry6050062