In-Site Growth of Efficient NiFeOOH/NiFe-LDH Electrodes: A Streamlined One-Step Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Synthesis
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results
3.1. Structural and Morphological Characterizations of the Electrocatalysts
3.2. Electrochemical Test Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, M.; Wang, Y.; Mi, W.; Wu, J.; Zou, J.-J.; Zhu, X.-D.; Gao, J.; Zhang, Y.-C. Surface-modified amorphous FeOOH on NiFe LDHs for high efficiency electrocatalytic oxygen evolution. Electrochim. Acta 2023, 458, 142513. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, J.; Liu, D.; Wu, L.; Li, T.; Yan, S.; Fan, Q.; Zhu, K.; Zou, Z. Ultrafast Fenton-like reaction route to FeOOH/NiFe-LDH heterojunction electrode for efficient oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 21785–21791. [Google Scholar] [CrossRef]
- Wan, Z.; Ma, Z.; Yuan, H.; Liu, K.; Wang, X. Sulfur Engineering on NiFe Layered Double Hydroxide at Ambient Temperature for High Current Density Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2022, 5, 4603–4612. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Wu, D.; Huang, C.; Xiao, D.; Chen, H.; Zheng, S.; Chu, P.K. NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 42850–42858. [Google Scholar] [CrossRef]
- Xu, L.; Dong, Y.; Xu, W.; Zhang, W. Ultrafast and Facile Synthesis of (Ni/Fe/Mo)OOH on Ni Foam for Oxygen Evolution Reaction in Seawater Electrolysis. Catalysts 2023, 13, 924. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Dong, Z.-H.; Jiang, Z.; Tang, T.; Yao, Z.-C.; Xue, D.; Niu, S.; Zhang, J.; Hu, J.-S. Rational design of integrated electrodes for advancing high-rate alkaline electrolytic hydrogen production. J. Mater. Chem. A 2022, 10, 12764–12787. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, B.; Min, L.; Xu, W.; Zhang, W. Preparation of NiCo-LDH@NiCoV-LDH interconnected nanosheets as high-performance electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2022, 47, 15583–15592. [Google Scholar] [CrossRef]
- Chen, Y.; Min, L.; Zhang, W.; Xu, L.; Wang, Y. Crown ether as a bifunctional booster in electrochemical water splitting. Int. J. Hydrogen Energy 2024, 51, 1534–1543. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Bao, J.; Li, H. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B Environ. 2020, 272, 118959. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Wang, H.-Y.; Zheng, H.; Zhang, W.; Cao, R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal. 2021, 42, 1253–1268. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Zhong, C.; Zhao, N.; Deng, Y.; Han, X.; Hu, W. Spontaneous Synthesis of Silver-Nanoparticle-Decorated Transition-Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angew. Chem. Int. Ed. Engl. 2020, 59, 7245–7250. [Google Scholar] [CrossRef]
- Chen, Z.; Qu, Q.; Li, X.; Srinivas, K.; Chen, Y.; Zhu, M. Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction. Molecules 2023, 28, 7289. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Lu, X. Construction of NiFe-Layered Double Hydroxides Arrays as Robust Electrocatalyst for Oxygen Evolution Reaction. Catalysts 2023, 13, 586. [Google Scholar] [CrossRef]
- Guo, D.; Chi, J.; Yu, H.; Jiang, G.; Shao, Z. Self-Supporting NiFe Layered Double Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water Electrolyzer. Energies 2022, 15, 4645. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Tan, L.; Liu, X.; Wen, Y.; Hou, W.; Zhan, T. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Xie, D.; Gu, Y.; Zhang, H.; Wang, G.; Zhang, Y.; Zhao, H.; Wong, P.K. NiFe-Layered Double Hydroxide Nanosheet Arrays Supported on Carbon Cloth for Highly Sensitive Detection of Nitrite. ACS Appl. Mater. Interfaces 2018, 10, 6541–6551. [Google Scholar] [CrossRef]
- Lai, D.; Kang, Q.; Gao, F.; Lu, Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 2021, 9, 17913–17922. [Google Scholar] [CrossRef]
- Zhao, C.-X.; Li, B.-Q.; Zhao, M.; Liu, J.-N.; Zhao, L.-D.; Chen, X.; Zhang, Q. Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy Environ. Sci. 2020, 13, 1711–1716. [Google Scholar] [CrossRef]
- Zhou, T.; Bai, J.; Gao, Y.; Zhao, L.; Jing, X.; Gong, Y. Selenide-based 3D folded polymetallic nanosheets for a highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 2022, 615, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585. [Google Scholar] [CrossRef]
- Bodhankar, P.M.; Sarawade, P.B.; Singh, G.; Vinu, A.; Dhawale, D.S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208. [Google Scholar] [CrossRef]
- Ding, P.; Meng, C.; Liang, J.; Li, T.; Wang, Y.; Liu, Q.; Luo, Y.; Cui, G.; Asiri, A.M.; Lu, S.; et al. NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. Inorg. Chem. 2021, 60, 12703–12708. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hung, S.F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H.B.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Adv. Mater. 2019, 31, e1903909. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S.L.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Lin, Z.; Bu, P.; Xiao, Y.; Gao, Q.; Diao, P. β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: An electrochemical activation energy aspect. J. Mater. Chem. A 2022, 10, 20847–20855. [Google Scholar] [CrossRef]
- Wang, M.; Cao, K.; Tian, Z.; Sheng, P. Increased charge and mass transfer derived-sheet-like Fe0.67Ni0.33OOH-Fe2O3@NF array for robust oxygen evolution reaction. Appl. Surf. Sci. 2019, 493, 351–358. [Google Scholar] [CrossRef]
- Dang, Y.; Li, X.; Chen, Z.; Zhao, X.; Ma, B.; Chen, Y. Hierarchical MoN@NiFe-LDH Heterostructure Nanowire Array for Highly Efficient Electrocatalytic Hydrogen Evolution. Small 2023, 19, e2303932. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Yuan, M.; Hao, H.; Lv, Z.; Xu, L.; Wei, B. Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Appl. Catal. B Environ. 2022, 318, 121825. [Google Scholar] [CrossRef]
- Durr, R.N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarstrom, L.; Edvinsson, T. From NiMoO(4) to gamma-NiOOH: Detecting the Active Catalyst Phase by Time Resolved in Situ and Operando Raman Spectroscopy. ACS Nano 2021, 15, 13504–13515. [Google Scholar] [CrossRef]
- Yan, P.; Liu, Q.; Zhang, H.; Qiu, L.; Wu, H.B.; Yu, X.-Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, C.; Li, Y.; Shevlin, S.A.; Han, X.; Qiu, K.; Cheng, Y.; Guo, Z.; Huang, W.; Tang, J. Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 2021–2028. [Google Scholar] [CrossRef]
- Chemelewski, W.D.; Lee, H.C.; Lin, J.F.; Bard, A.J.; Mullins, C.B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843–2850. [Google Scholar] [CrossRef]
- Wang, F.-L.; Yu Zhang, X.; Zhou, J.-C.; Shi, Z.-N.; Dong, B.; Xie, J.-Y.; Dong, Y.-W.; Yu, J.-F.; Chai, Y.-M. Amorphous–crystalline FeNi2S4@NiFe–LDH nanograsses with molten salt as an industrially promising electrocatalyst for oxygen evolution. Inorg. Chem. Front. 2022, 9, 2068–2080. [Google Scholar] [CrossRef]
- Zhai, Y.; Ren, X.; Sun, Y.; Li, D.; Wang, B.; Liu, S. Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts. Appl. Catal. B Environ. 2023, 323, 122091. [Google Scholar] [CrossRef]
- Suliman, M.; Al Ghamdi, A.; Baroud, T.; Drmosh, Q.; Rafatullah, M.; Yamani, Z.; Qamar, M. Growth of ultrathin nanosheets of nickel iron layered double hydroxide for the oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 23498–23507. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.-J.; Yang, Y.-B.; Guo, P.-F.; Zhu, B.; Wang, K.; Wang, W.-T.; He, Z.-H.; Liu, Z.-T. Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. J. Electrochem. Soc. 2022, 169, 024503. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Wang, G.; Zhao, K.; Cai, R.; Tao, K.; Zhang, C.; Sun, M.; Hu, J.; et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606. [Google Scholar] [CrossRef]
- Wu, B.; Gong, S.; Lin, Y.; Li, T.; Chen, A.; Zhao, M.; Zhang, Q.; Chen, L. A Unique NiOOH@FeOOH Heteroarchitecture for Enhanced Oxygen Evolution in Saline Water. Adv. Mater. 2022, 34, e2108619. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M.T.; Hong, M.; Yan, X.; Qian, G.; et al. A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Mater. 2017, 29, 1700017. [Google Scholar] [CrossRef]
- Liu, G.; Gao, X.; Wang, K.; He, D.; Li, J. Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2016, 41, 17976–17986. [Google Scholar] [CrossRef]
- Qin, Q.; Jang, H.; Li, P.; Yuan, B.; Liu, X.; Cho, J. A Tannic Acid-Derived N-, P-Codoped Carbon-Supported Iron-Based Nanocomposite as an Advanced Trifunctional Electrocatalyst for the Overall Water Splitting Cells and Zinc-Air Batteries. Adv. Energy Mater. 2019, 9, 1803312. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, Y.; Edvinsson, T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 2019, 66, 104118. [Google Scholar] [CrossRef]
- An, L.; Feng, J.; Zhang, Y.; Wang, R.; Liu, H.; Wang, G.-C.; Cheng, F.; Xi, P. Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. Adv. Funct. Mater. 2019, 29, 1805298. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, W.-T.; Li, X.-P.; Ouyang, T.; Liu, Z.-Q. Strong hydrophilicity NiS2/Fe7S8 heterojunctions encapsulated in N-doped carbon nanotubes for enhanced oxygen evolution reaction. Chem. Commun. 2020, 56, 1489–1492. [Google Scholar] [CrossRef]
- Che, Q.; Li, Q.; Chen, X.; Tan, Y.; Xu, X. Assembling amorphous (Fe-Ni)Co -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl. Catal. B Environ. 2020, 263, 118338. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeong, J.-Y.; Jang, M.J.; Kwon, C.-Y.; Kim, G.H.; Jeong, J.; Lee, J.-H.; Lee, J.; Choi, S.M. Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. J. Energy Chem. 2022, 75, 127–134. [Google Scholar] [CrossRef]
- Liu, S.; Wan, R.; Lin, Z.; Liu, Z.; Liu, Y.; Tian, Y.; Qin, D.-D.; Tang, Z. Probing the Co role in promoting the OER and Zn–air battery performance of NiFe-LDH: A combined experimental and theoretical study. J. Mater. Chem. A 2022, 10, 5244–5254. [Google Scholar] [CrossRef]
- Guo, P.-F.; Yang, Y.; Wang, W.-J.; Zhu, B.; Wang, W.-T.; Wang, Z.-Y.; Wang, J.-L.; Wang, K.; He, Z.-H.; Liu, Z.-T. Stable and active NiFeW layered double hydroxide for enhanced electrocatalytic oxygen evolution reaction. Chem. Eng. J. 2021, 426, 130768. [Google Scholar] [CrossRef]
- Xie, X.; Cao, C.; Wei, W.; Zhou, S.; Wu, X.-T.; Zhu, Q.-L. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation. Nanoscale 2020, 12, 5817–5823. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liang, J.; Zhou, J.; Yin, Z.; Zhang, Z.; Liu, X. Synergistic coupling of FeOOH with Mo-incorporated NiCo LDH towards enhancing the oxygen evolution reaction. New J. Chem. 2022, 46, 7999–8009. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, X.; Zhang, J.; Huang, Y. Hierarchical NiFe Hydroxide/Ni3N Nanosheet-on-Nanosheet Heterostructures for Bifunctional Oxygen Evolution and Urea Oxidation Reactions. ACS Sustain. Chem. Eng. 2021, 9, 12584–12590. [Google Scholar] [CrossRef]
- Xu, X.; Wang, T.; Zheng, M.; Li, Y.; Shi, J.; Tian, T.; Jia, R.; Liu, Y. Metal-organic framework assisted formation of Ni-Fe-based porous nanoflowers for enhanced water splitting. J. Alloys Compd. 2021, 875, 159970. [Google Scholar] [CrossRef]
Catalyst | Substrate | Overpotential (mV) | Tafel Slope (mV dec−1) | Stability | Ref. |
---|---|---|---|---|---|
NiFeOOH-NiFe-LDH | a NF | 227@100 mA cm−2 | 35.0 | 120 h@200 mA cm−2 | |
NiFe-LDH-NS | b DG | 210@10 mA cm−2 | 52.0 | 10 h@10 mA cm−2 | [42] |
NiFe-LDH | c GCE | 270@10 mA cm−2 | - | 24 h@10 mA cm−2 | [37] |
Mesoporous NiO/NiFe2O4 | GCE | 302@10 mA cm−2 | 42 | 2 h @20 mA cm−2 | [43] |
FePx/Fe-N-C/NPC | NF | 325@10 mA cm−2 | 79 | 24 h@10 mA cm−2 | [44] |
Fe-NiO/NF | NF | 264, 336@10, 100 mA cm−2 | 65.3 | 12 h@60 mA cm−2 | [45] |
N-NiMoO4/NiS2 | d CF | 267, 335@10, 100 mA cm−2 | - | - | [46] |
N-CNTs@NiS2/Fe7S8 | GCE | 330@50 mA cm−2 | 51.49 | 24 h@50 mA cm−2 | [47] |
Amorphous (Fe-Ni)Cox-OH/Ni3S2 | NF | 280@100 mA cm−2 | 57 | 100 h@200 mA cm−2 | [48] |
NiFeCo-LDH | e RDE | 249@10 mA cm−2 | 46 | 80 h@100 mA cm−2 | [49] |
Co@NiFe-LDH | RDE | 253@10 mA cm−2 | 44 | 50 h@10 mA cm−2 | [50] |
Ni4FeW-LDH | f CP | 248@20 mA cm−2 | 68 | 6 h@10 mA cm−2 | [51] |
Cr/FeNi-LDH | g SS | 202, 242@10, 100 mA cm−2 | 32.5 | 15 h@10 mA cm−2 | [52] |
FeOOH-NiCoMo-LDH | NF | 252@50 mA cm−2 | 59.39 | 50 h@50 mA cm−2 | [53] |
S-NiMoO4@NiFe-LDH | NF | 273@100 mA cm−2 | 90 | 20 h@60 mA cm−2 | [17] |
NiFe(OH)x/Ni3N | NF | 260@10 mA cm−2 | 35 | - | [54] |
NiFeOx-LDH | GEC | 227@10 mA cm−2 | 54 | 20 h@100 mA cm−2 | [55] |
Ru-NiFe-LDH | CC | 246@10 mA cm−2 | 67.2 | 6 h@10 mA cm−2 | [38] |
Samples | Rs (Ω) | Rct (Ω) | CPE.Y0 (F) | CPE.N |
---|---|---|---|---|
NiFeOOH-NiFe-LDH | 0.9088 | 6.3429 | 1.1096 | 0.8192 |
NiFe-LDH | 0.9400 | 8.6666 | 1.8364 | 0.7585 |
IrO2 | 0.8736 | 219.51 | 0.0725 | 0.8728 |
Nickel Foam | 2.7036 | 1321.4 | 0.0120 | 0.9700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Xu, L.; Xu, W.; Li, G.; Zhang, W. In-Site Growth of Efficient NiFeOOH/NiFe-LDH Electrodes: A Streamlined One-Step Methodology. Chemistry 2024, 6, 312-322. https://doi.org/10.3390/chemistry6020017
Ning J, Xu L, Xu W, Li G, Zhang W. In-Site Growth of Efficient NiFeOOH/NiFe-LDH Electrodes: A Streamlined One-Step Methodology. Chemistry. 2024; 6(2):312-322. https://doi.org/10.3390/chemistry6020017
Chicago/Turabian StyleNing, Jing, Li Xu, Wei Xu, Guizhen Li, and Wen Zhang. 2024. "In-Site Growth of Efficient NiFeOOH/NiFe-LDH Electrodes: A Streamlined One-Step Methodology" Chemistry 6, no. 2: 312-322. https://doi.org/10.3390/chemistry6020017
APA StyleNing, J., Xu, L., Xu, W., Li, G., & Zhang, W. (2024). In-Site Growth of Efficient NiFeOOH/NiFe-LDH Electrodes: A Streamlined One-Step Methodology. Chemistry, 6(2), 312-322. https://doi.org/10.3390/chemistry6020017