Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of 2,4,6-Trispropargyloxy-1,3,5-triazine (3)
2.3. Synthesis of 2-Hydrazino-4,6-dipropargyloxy-1,3,5-triazine (4)
2.4. Synthesis of 2,4-Dihydrazino-6-propargyloxy-1,3,5-triazine (5)
2.5. Synthesis of 2-Azido-4,6-dipropargyloxy-1,3,5-triazine (1)
2.6. Synthesis of 2,4-Diazido-6-propargyloxy-1,3,5-triazine (2)
2.7. Synthesis of Hyperbranched Polymers in Bulk
2.8. Determination of Compound’s Solubility in Nutrient Media
2.9. Antibacterial Activity of Polymer Films
2.10. Antibacterial Activity by the Disk Diffusion Method (DDM)
2.11. Cytotoxicity Test by the MTT Test
3. Results and Discussion
3.1. Optimization of the Method for the Synthesis of Azido-Propargyloxy Monomers
3.2. Preparation of HBPs
3.3. Preparation Compounds for the Biological Tests
Antibacterial Activity
3.4. Cytotoxic Effect of Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, S.S.; Hashem, A.H.; Sal-lam, A.-A.M.; Doghish, A.S.; Al-Askar, A.A.; Arishi, A.A.; Shehabeldine, A.M. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers 2022, 14, 3352. [Google Scholar] [CrossRef] [PubMed]
- Alhakamy, N.A.; Ahmed, O.A.A.; Fahmy, U.A.; Md, S. Development and In Vitro Evaluation of 2-Methoxyestradiol Loaded Polymeric Micelles for Enhancing Anticancer Activities in Prostate Cancer. Polymers 2021, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.; Uthaman, S.; Park, I.-K. Utilization of Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-Cancer Therapy. Molecules 2020, 25, 4377. [Google Scholar] [CrossRef] [PubMed]
- Morozkina, S.N.; Nhung Vu, T.H.; Generalova, Y.E.; Snetkov, P.P.; Uspenskaya, M.V. Mangiferin as a New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems—A Novel Re-search Direction. Biomolecules 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Kurmaz, S.V.; Ig-natiev, V.M.; Emel’yanova, N.S.; Kurmaz, V.A.; Konev, D.V.; Balakina, A.A.; Terentyev, A.A. New Nanosized Systems Doxorubicin—Amphiphilic Copolymers of N-Vinylpyrrolidone and (Di)Methacrylates with Antitumor Activity. Pharmaceutics 2022, 14, 2572. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Fouda, A.; Elgammal, W.E.; Eid, A.M.; Elsenety, M.M.; Mohamed, A.E.; Hassan, S.M. New Thiadiazole Modified Chitosan Derivative to Control the Growth of Human Pathogenic Microbes and Cancer Cell Lines. Sci. Rep. 2022, 12, 21423. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023, 15, 2222. [Google Scholar] [CrossRef]
- Zotti, A.; Zuppolini, S.; Borriello, A.; Zarrelli, M. Thermal Properties and Fracture Toughness of Epoxy Nanocomposites Loaded with Hyperbranched-Polymers-Based Core/Shell Nanoparticles. Nanomaterials 2019, 9, 418. [Google Scholar] [CrossRef]
- Indumathy, B.; Sathiyanathan, P.; Prasad, G.; Reza, M.S.; Prabu, A.A.; Kim, H. A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers 2023, 15, 2517. [Google Scholar] [CrossRef]
- Kavand, A.; Anton, N.; Vandamme, T.; Serra, C.A.; Chan-Seng, D. Synthesis and Functionalization of Hyperbranched Polymers for Targeted Drug Delivery. J. Control. Release 2020, 321, 285–311. [Google Scholar] [CrossRef]
- Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and Hyperbranched Structures for Biomedical Applications. Eur. Polym. J. 2019, 119, 61–73. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched Polymers: Advances from Synthesis to Applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Sun, A.C.F.; Jikei, M.; Kakimoto, M. Synthesis of Hyperbranched Aromatic Polyamides Starting from Dendrons as AB x Monomers: Effect of Monomer Multiplicity on the Degree of Branching. Macromolecules 2000, 33, 2832–2838. [Google Scholar] [CrossRef]
- Tobita, H. Universal Relationships in Hyperbranched Polymer Architecture for Batch and Continuous Step Growth Polymerization of AB2-Type Monomers. Processes 2019, 7, 220. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, L.; Li, J.; Ma, Q. Hyperbranched Polycarbosiloxanes: Synthesis by Piers-Rubinsztajn Reaction and Application as Precursors to Magnetoceramics. Polymers 2020, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ye, C.; Yu, G.; Liu, Y.; Qin, J.; Li, Z. New Hyperbranched Polytriazoles Containing Isolation Chromophore Moieties Derived from AB 4 Monomers through Click Chemistry under Copper(I) Catalysis: Improved Optical Transparency and Enhanced NLO Effects. Chem. A Eur. J. 2012, 18, 4426–4434. [Google Scholar] [CrossRef] [PubMed]
- Krigbaum, W.R.; Flory, P.J. Molecular Weight Dependence of the Intrinsic Viscosity of Polymer Solutions. II. J. Polym. Sci. 1953, 11, 37–51. [Google Scholar] [CrossRef]
- Hanselmann, R.; Hölter, D.; Frey, H. Hyperbranched Polymers Prepared via the Core-Dilution/Slow Addition Technique: Computer Simulation of Molecular Weight Distribution and Degree of Branching. Macromolecules 1998, 31, 3790–3801. [Google Scholar] [CrossRef]
- Ishiwari, F.; Kawahara, S.; Kajitani, T.; Fukushima, T. Structure-Preserving Solid-State Thermal Huisgen Cycloaddition Polymerization of a Self-Assembled Triptycene-Based AB 3-Type Monomer. Chem. Lett. 2021, 50, 2006–2010. [Google Scholar] [CrossRef]
- Pacini, A.; Nitti, A.; Vitale, M.; Pasini, D. Polylactic-Containing Hyperbranched Polymers through the CuAAC Polymerization of Aromatic AB2 Monomers. IJMS 2023, 24, 7620. [Google Scholar] [CrossRef]
- Petrov, A.O.; Malkov, G.V.; Karpov, S.V.; Shastin, A.V.; Bakeshko, A.V. Kinetic Study of the Polyaddition of Azide-Alkyne AB2 Monomers in Non-isothermic Conditions. KEM 2019, 816, 151–156. [Google Scholar] [CrossRef]
- Malkov, G.V.; Shastin, A.V.; Estrin, Y.I.; Badamshina, E.R.; Mikhailov, Y.M. New Polynitrogen Hyperbranched Polymers. Russ. Chem. Bull. 2011, 60, 1940–1943. [Google Scholar] [CrossRef]
- Tavakoli, J.; Shrestha, J.; Bazaz, S.R.; Rad, M.A.; Warkiani, M.E.; Raston, C.L.; Tipper, J.L.; Tang, Y. Developing Novel Fabrication and Optimization Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022, 27, 1002. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.; Siddiqui, N.N.; Abdullah, M.; Saifullah, S.; Jahan, H.; Shah, M.R. Synthesis of AB2 Type Hyperbranched Polymer by CuAAC Based 1,3-Dipolar Cycloaddition and Its Application in Delivering Curcumin to Cancer Cell Cultures in-Vitro. J. Mol. Struct. 2023, 1290, 135878. [Google Scholar] [CrossRef]
- Kadhim, A.; McKenzie, L.K.; Bryant, H.E.; Twyman, L.J. Synthesis and Aggregation of a Porphyrin-Cored Hyperbranched Polyglycidol and Its Application as a Macromolecular Photosensitizer for Photodynamic Therapy. Mol. Pharm. 2019, 16, 1132–1139. [Google Scholar] [CrossRef]
- Morcuende-Ventura, V.; Hermoso-Durán, S.; Abian-Franco, N.; Pazo-Cid, R.; Ojeda, J.L.; Vega, S.; Sanchez-Gracia, O.; Velazquez-Campoy, A.; Sierra, T.; Abian, O. Fluorescence Liquid Biopsy for Cancer Detection Is Improved by Using Cationic Dendronized Hyperbranched Polymer. IJMS 2021, 22, 6501. [Google Scholar] [CrossRef]
- Neerman, M.F.; Zhang, W.; Parrish, A.R.; Simanek, E.E. In Vitro and in Vivo Evaluation of a Melamine Dendrimer as a Vehicle for Drug Delivery. Int. J. Pharm. 2004, 281, 129–132. [Google Scholar] [CrossRef]
- Aslani, R.; Namazi, H. Synthesis of a New Polymer from Arginine for the Preparation of Antioxidant, pH-Sensitive, and Photoluminescence Nanocomposite as a Cancer Drugs Carrier. J. Ind. Eng. Chem. 2022, 112, 335–347. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Turrin, C.-O. Dendrimers for Drug Delivery. J. Mater. Chem. B 2014, 2, 4055–4066. [Google Scholar] [CrossRef]
- Kharwade, R.; More, S.; Warokar, A.; Agrawal, P.; Mahajan, N. Starburst Pamam Dendrimers: Synthetic Approaches, Surface Modifications, and Biomedical Applications. Arab. J. Chem. 2020, 13, 6009–6039. [Google Scholar] [CrossRef]
- Pennetta, C.; Bono, N.; Ponti, F.; Bellucci, M.C.; Viani, F.; Candiani, G.; Volonterio, A. Multifunctional Neomycin-Triazine-Based Cationic Lipids for Gene Delivery with Antibacterial Properties. Bioconjugate Chem. 2021, 32, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Simanek, E.E. Two Decades of Triazine Dendrimers. Molecules 2021, 26, 4774. [Google Scholar] [CrossRef] [PubMed]
- Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed. 2005, 44, 5188–5240. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xiao, G.; Qian, X.; An, X. Alkyne Functionalized Cellulose Fibers: A Versatile “Clickable” Platform for Antibacterial Materials. Carbohydr. Polym. 2019, 207, 68–78. [Google Scholar] [CrossRef]
- Acik, G.; Altinkok, C.; Olmez, H.; Tasdelen, M.A. Antibacterial Film from Chlorinated Polypropylene via CuAAC Click Chemistry. Progress. Org. Coat. 2018, 125, 73–78. [Google Scholar] [CrossRef]
- Kritchenkov, A.S.; Egorov, A.R.; Kurasova, M.N.; Volkova, O.V.; Meledina, T.V.; Lipkan, N.A.; Tskhovrebov, A.G.; Kurliuk, A.V.; Shakola, T.V.; Dysin, A.P.; et al. Novel Non-Toxic High Efficient Antibacterial Azido Chitosan Derivatives with Potential Application in Food Coatings. Food Chem. 2019, 301, 125247. [Google Scholar] [CrossRef]
- Stabili, L.; Acquaviva, M.I.; Angilè, F.; Cavallo, R.A.; Cecere, E.; Del Coco, L.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha Linum Lipidic Extract as a New Potential Source of Bioactive Compounds. Mar. Drugs 2019, 17, 313. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Malkov, G.V.; Shastin, A.V.; Estrin, Y.I.; Badamshina, E.R.; Mikhailov, Y.M. Synthesis and Characterization of the Nitrogen-Rich Hyperbranched Polymers—Poly([1,2,3]-Triazole-[1,3,5]-Triazine)s. Propellants Explos. Pyrotech. 2008, 33, 431–436. [Google Scholar] [CrossRef]
- Thurston, J.T.; Dudley, J.R.; Kaiser, D.W.; Hechenbleikner, I.; Schaefer, F.C.; Holm-Hansen, D. Cyanuric Chloride Derivatives. I. Aminochloro-S-Triazines. J. Am. Chem. Soc. 1951, 73, 2981–2983. [Google Scholar] [CrossRef]
- Mur, V.I. 2,4,6-Trichloro-1,3,5-Triazine (Cyanuryl chloride) and its future applications. Russ. Chem. Rev. 1964, 33, 92–103. [Google Scholar] [CrossRef]
- Petrov, A.O.; Karpov, S.V.; Malkov, G.V.; Shastin, A.V.; Badamshina, E.R. New Non-Symmetric Azido-Diacetylenic s-Triazine Monomer for Polycycloaddition. Mendeleev Commun. 2022, 32, 464–466. [Google Scholar] [CrossRef]
- Nedel’ko, V.V.; Shastin, A.V.; Korsunskii, B.L.; Chukanov, N.V.; Larikova, T.S.; Kazakov, A.I. Synthesis and Thermal Decomposition of Ditetrazol-5-Ylamine. Russ. Chem. Bull. 2005, 54, 1710–1714. [Google Scholar] [CrossRef]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties—An Overview. Complement Med. Res. 2009, 16, 79–90. [Google Scholar] [CrossRef]
№ | Sample | Mass of Sample at the Filter, mg |
---|---|---|
1 | HBP-2 | 2.5 |
2 | HBP-2 | 1.5 |
3 | HBP-2 | 0.9 |
4 | HBP-2 | 0.3 |
5 | HBP-1 | 1.7 |
Sample | Mass of Sample at the Filter, mg | Diameter of Growth Inhibition Zone, mm |
---|---|---|
ampicillin | 1 × 10−2 | 20–22 |
5 × 10−3 | 14–17 | |
2.5 × 10−3 | 12–15 | |
1.25 × 10−3 | 13–15 | |
1 | 1.6 | <1 |
2 | 2.5 | 10–12 |
1.6 | 9–11 | |
0.6 | 9–11 | |
0.2 | 8–10 | |
3 | 1.6 | <1 |
Compound | IC50, µM | ||
---|---|---|---|
M-HeLa | Vero | FetMSC | |
1 | 99 ± 18 | >250 | 150 ± 36 |
2 | 90 ± 23 | 164 ± 48 | 83 ± 15 |
3 | >280 | >280 | 280 ± 21 |
HBP-1 | >145 | >145 | >145 |
HBP-2 | 108 ± 20 | >126 | >125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsyganova, A.V.; Petrov, A.O.; Shastin, A.V.; Filatova, N.V.; Mumyatova, V.A.; Tarasov, A.E.; Lolaeva, A.V.; Malkov, G.V. Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers. Chemistry 2024, 6, 1-12. https://doi.org/10.3390/chemistry6010001
Tsyganova AV, Petrov AO, Shastin AV, Filatova NV, Mumyatova VA, Tarasov AE, Lolaeva AV, Malkov GV. Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers. Chemistry. 2024; 6(1):1-12. https://doi.org/10.3390/chemistry6010001
Chicago/Turabian StyleTsyganova, Anna V., Artem O. Petrov, Alexey V. Shastin, Natalia V. Filatova, Victoria A. Mumyatova, Alexander E. Tarasov, Alina V. Lolaeva, and Georgiy V. Malkov. 2024. "Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers" Chemistry 6, no. 1: 1-12. https://doi.org/10.3390/chemistry6010001
APA StyleTsyganova, A. V., Petrov, A. O., Shastin, A. V., Filatova, N. V., Mumyatova, V. A., Tarasov, A. E., Lolaeva, A. V., & Malkov, G. V. (2024). Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers. Chemistry, 6(1), 1-12. https://doi.org/10.3390/chemistry6010001