Low-Temperature Properties of the Sodium-Ion Electrolytes Based on EC-DEC, EC-DMC, and EC-DME Binary Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-Ruiz, N.; Armstrong, A.R.; Alptekin, H.; Amores, M.A.; Au, H.; Barker, J.; Boston, R.; Brant, W.R.; Brittain, J.M.; Chen, Y.; et al. 2021 roadmap for sodium-ion batteries. J. Phys. Energy 2021, 3, 031503. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Pesaran, A.; Santhanagopalan, S.; Kim, G.H. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications. In Proceedings of the 30th International Battery Seminar, Ft. Lauderdale, FL, USA, 11–14 March 2013. [Google Scholar]
- Luo, H.; Wang, Y.; Feng, Y.-H.; Fan, X.-Y.; Han, X.; Wang, P.-F. Lithium-Ion Batteries under Low-Temperature Environment: Challenges and Prospects. Materials 2022, 15, 8166. [Google Scholar] [CrossRef]
- Rodrigues, M.-T.F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F.N.; Kato, K.; Joyner, J.; Ajayan, P.M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; et al. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources 2015, 300, 29–40. [Google Scholar] [CrossRef]
- Kulova, T.L.; Skundin, A.M. Problems of low-temperature lithium-ion batteries. Electrochem. Energy 2017, 17, 61–88. [Google Scholar]
- Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. Chem. Eur. J. 2021, 27, 15842. [Google Scholar] [CrossRef]
- Hubble, D.; Brown, D.E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B.D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550–578. [Google Scholar] [CrossRef]
- Zhang, N.; Deng, T.; Zhang, S.; Wang, C.; Chen, L.; Wang, C.; Fan, X. Critical Review on Low-Temperature Li-Ion/Metal Batteries. Adv. Mater. 2022, 34, 2107899. [Google Scholar] [CrossRef]
- Laforgue, A.; Yuan, X.Z.; Platt, A.; Brueckner, S.; Perrin-Sarazin, F.; Toupin, M.; Huot, J.-Y.; Mokrini, A. Effects of fast charging at low temperature on a high energy Li-ion battery. J. Electrochem. Soc. 2020, 167, 140521. [Google Scholar] [CrossRef]
- Jow, R.; Zhang, S.S.; Xu, K.; Allen, J. Electrolytes for Low Temperature Operations of Li-Ion Batteries. ECS Trans. 2007, 3, 51. [Google Scholar] [CrossRef]
- Smart, M.C.; Ratnakumar, B.V.; Surampudi, S. Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J. Electrochem. Soc. 1999, 146, 486–492. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef]
- Che, H.; Yang, X.; Yu, Y.; Pan, C.; Wang, H.; Deng, Y.; Li, L.; Ma, Z.F. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy Environ. 2021, 6, 212–219. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, S.; Luo, L.; Ding, M.S.; Zheng, J.; Cartmell, S.S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Wide-temperature electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 18826–18835. [Google Scholar] [CrossRef]
- Lin, Z.; Xia, Q.; Wang, W.; Li, W.; Chou, S. Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries. InfoMat 2019, 1, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, L.; Xie, F.; Li, Y.; Chen, Z.; Lu, Y.; Hu, Y.-S. Part IV Electrolytes.Ester- and Ether-Based Electrolytes for Na-Ion Batteries. In Sodium-Ion Batteries: Materials, Characterization, and Technology, 2 Volumes; Titirici, M.M., Adelhelm, P., Hu, Y.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 333–356. ISBN 978-3-527-34709-4. [Google Scholar]
- Shakourian-Fard, M.; Kamath, G.; Smith, K.; Xiong, H.; Sankaranarayanan, S.K. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: Insights from first-principles calculations. J. Phys. Chem. C 2015, 119, 22747–22759. [Google Scholar] [CrossRef]
- Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M.R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22–42. [Google Scholar] [CrossRef]
- Vidal-Abarca, C.; Lavela, P.; Tirado, J.L.; Chadwick, A.V.; Alfredsson, M.; Kelder, E. Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. J. Power Sources 2012, 197, 314–318. [Google Scholar] [CrossRef]
- Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.M.; Palacin, M.R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583. [Google Scholar] [CrossRef]
- Lakienko, G.P.; Bobyleva, Z.V.; Apostolova, M.O.; Sultanova, Y.V.; Dyakonov, A.K.; Zakharkin, M.V.; Sobolev, N.A.; Alekseeva, A.M.; Drozhzhin, O.A.; Abakumov, A.M.; et al. Sosnowskyi Hogweed-Based Hard Carbons For Sodium-Ion Batteries. Batteries 2022, 8, 131. [Google Scholar] [CrossRef]
- Ding, M.S. Liquid-solid phase diagrams of ternary and quaternary organic carbonates. J. Electrochem. Soc. 2004, 151, A731–A738. [Google Scholar] [CrossRef]
- Ding, M.S. Liquid− solid phase equilibria and thermodynamic modeling for binary organic carbonates. J. Chem. Eng. Dat. 2004, 49, 276–282. [Google Scholar] [CrossRef]
- Bülow, M.; Ascani, M.; Held, C. ePC-SAFT advanced-Part I: Physical meaning of including a concentration-dependent dielectric constant in the born term and in the Debye-Hückel theory. Fluid Ph. Equilibria 2021, 535, 112967. [Google Scholar] [CrossRef]
- Ding, S.P.; Xu, K.; Zhang, S.S.; Jow, T.R.; Amine, K.; Henriksen, G.L. Diminution of supercooling of electrolytes by carbon particles. J. Electrochem. Soc. 1999, 146, 3974–3980. [Google Scholar] [CrossRef]
- Weingarth, D.; Drumm, R.; Foelske-Schmitz, A.; Kötz, R.; Presser, V. An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores. Phys. Chem. Chem. Phys. 2014, 16, 21219–21224. [Google Scholar] [CrossRef] [Green Version]
- Tatara, R.; Nishimura, S.; Okamoto, Y.; Ueno, K.; Watanabe, M.; Dokko, K. Structures and electrochemistry of γ-butyrolactone solvates of Na salts. J. Phys. Chem. C 2020, 124, 15800–15811. [Google Scholar] [CrossRef]
- Ding, M.S.; Xu, K.; Jow, T.R. Phase Diagram of EC–DMC Binary System and Enthalpic Determination of Its Eutectic Composition. J. Therm. Anal. 2000, 62, 177–186. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, X.; Tu, Z.; Hu, X.; Wu, Y. Novel Deep Eutectic Electrolyte Induced by Na⋯N Interactions for Sodium Batteries. Ind. Eng. Chem. Res. 2023, 62, 51–61. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J. Power Sources 2006, 160, 1403. [Google Scholar] [CrossRef]
- Nikitina, V.A.; Zakharkin, M.V.; Vassiliev, S.Y.; Yashina, L.V.; Antipov, E.V.; Stevenson, K.J. Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn2O4 Cathode Materials. Langmuir 2017, 33, 9378–9389. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Shevchenko, V.A.; Bobyleva, Z.V.; Alekseeva, A.M.; Antipov, E.V. Rational Screening of High-Voltage Electrolytes and Additives for Use in LiNi0.5Mn1.5O4-Based Li-Ion Batteries. Molecules 2022, 27, 3596. [Google Scholar] [CrossRef]
- Xu, K.; von Wald Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 2012, 27, 2327–2341. [Google Scholar] [CrossRef]
- Xu, K.; von Cresce, A.; Lee, U. Differentiating Contributions to “Ion Transfer” Barrier from Interphasial Resistance and Li+ Desolvation at Electrolyte/Graphite Interface. Langmuir 2010, 26, 11538–11543. [Google Scholar] [CrossRef]
- Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. J. Electrochem. Soc. 2004, 151, A1120–A1123. [Google Scholar] [CrossRef]
- Li, Q.; Lu, D.; Zheng, J.; Jiao, S.; Luo, L.; Wang, C.M.; Xu, K.; Zhang, J.G.; Xu, W. Li+−Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances. ACS Appl. Mater. Interfaces 2017, 9, 42761–42768. [Google Scholar] [CrossRef]
Solvent | Structural Formula | Tm, °C | Tb, °C | Viscosity, mPa·s (25 °C) | Dielectric Constant (25 °C) | Density, g/cm3 (25 °C) |
---|---|---|---|---|---|---|
EC | 36.4 | 248.0 | 1.90 (40 °C) | 89.780 | 1.321 | |
DEC | −74.3 | 126.0 | 0.75 | 2.800 | 0.969 | |
DMC | 4.6 | 91.0 | 0.59 (20 °C) | 3.107 | 1.063 | |
DME | −58.0 | 84.0 | 0.46 | 7.200 | 0.860 |
Solvent Mixture | C(NaPF6), M | T, °C |
---|---|---|
EC:DEC (V1:V2 = 1:1) | 0.0 | 3.3 ± 1 |
0.5 | −5.2 ± 1 | |
1.0 | −7.8 ± 1 | |
EC:DME (V1:V2 = 1:1) | 0.0 | 14.0 ± 1 |
0.5 | −11.9 ± 1 | |
1.0 | −13.1 ± 1 | |
EC:DMC (V1:V2 = 1:1) | 0.0 | −2.7 ± 1 |
0.5 | −17.1 ± 1 | |
1.0 | −21.2 ± 1 |
T, °C | Rs, Ohm | Rct, Ohm | ||||
---|---|---|---|---|---|---|
In EC:DEC | In EC:DME | In EC:DMC | In EC:DEC | In EC:DME | In EC:DMC | |
+20 | 2.8 | 1.9 | 2.1 | 101.7 | 107.0 | 66.9 |
+10 | 3.1 | 2.3 | 2.4 | 110.6 | 119.0 | 72.5 |
0 | 3.1 | 7.2 | 2.9 | 131.3 | 171.8 | 81.0 |
−10 | 3.7 | 17.5 | 3.6 | 148.3 | 229.8 | 92.5 |
−20 | 8.7 | 47.6 | 9.0 | 197.4 | 396.0 | 141.9 |
−30 | 16.0 | 864.4 | 67.0 | 231.7 | 9707.0 | 398.2 |
−40 | 38.8 | 7244.0 | 1002.0 | 329.1 | 179,666.0 | 5150.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutsenko, D.S.; Belova, E.V.; Zakharkin, M.V.; Drozhzhin, O.A.; Antipov, E.V. Low-Temperature Properties of the Sodium-Ion Electrolytes Based on EC-DEC, EC-DMC, and EC-DME Binary Solvents. Chemistry 2023, 5, 1588-1598. https://doi.org/10.3390/chemistry5030109
Lutsenko DS, Belova EV, Zakharkin MV, Drozhzhin OA, Antipov EV. Low-Temperature Properties of the Sodium-Ion Electrolytes Based on EC-DEC, EC-DMC, and EC-DME Binary Solvents. Chemistry. 2023; 5(3):1588-1598. https://doi.org/10.3390/chemistry5030109
Chicago/Turabian StyleLutsenko, Denis S., Ekaterina V. Belova, Maxim V. Zakharkin, Oleg A. Drozhzhin, and Evgeny V. Antipov. 2023. "Low-Temperature Properties of the Sodium-Ion Electrolytes Based on EC-DEC, EC-DMC, and EC-DME Binary Solvents" Chemistry 5, no. 3: 1588-1598. https://doi.org/10.3390/chemistry5030109
APA StyleLutsenko, D. S., Belova, E. V., Zakharkin, M. V., Drozhzhin, O. A., & Antipov, E. V. (2023). Low-Temperature Properties of the Sodium-Ion Electrolytes Based on EC-DEC, EC-DMC, and EC-DME Binary Solvents. Chemistry, 5(3), 1588-1598. https://doi.org/10.3390/chemistry5030109