Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. General Procedure for the Synthesis of Hydrochloride Salts of Sulfenyl-Imidazole Derivatives (3a-k)
2.3. General Procedure for the Synthesis of Sulfenyl-Imidazole Derivatives (4a,i)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beaupre, D.M.; Weiss, R.G. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021, 26, 3332. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, A.R.; Beltz, J.; King, E.; Ercal, N. Medicinal Thiols: Current Status and New Perspectives. Mini-Rev. Med. Chem. 2020, 20, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des. Dev. Ther. 2021, 15, 3289–3312. [Google Scholar] [CrossRef] [PubMed]
- Tolomeu, H.V.; Fraga, C.A.M. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules 2023, 28, 838. [Google Scholar] [CrossRef]
- Ye, S.; Zhuang, S.; Pan, B.; Guo, R.; Wang, L. Imidazole Derivatives for Efficient Organic Light-Emitting Diodes. J. Inf. Disp. 2020, 21, 173–196. [Google Scholar] [CrossRef]
- Goa, K.L.; Wagstaff, A.J. Losartan Potassium. Drugs 1996, 51, 820–845. [Google Scholar] [CrossRef]
- Sawyer, P.R.; Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G.S. Clotrimazole. Drugs 1975, 9, 424–447. [Google Scholar] [CrossRef]
- Sawyer, P.R.; Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G.S. Tinidazole. Drugs 1976, 11, 423–440. [Google Scholar] [CrossRef]
- Gillis, J.C.; Wiseman, L.R. Secnidazole. Drugs 1996, 51, 621–638. [Google Scholar] [CrossRef]
- Iradyan, M.A.; Iradyan, N.S.; Stepanyan, G.M.; Arsenyan, F.G.; Garibdzhanyan, B.T. Antitumor Activity of Imidazole Derivatives: Dacarbazine and the New Alkylating Agent Imidazene (Review). Pharm. Chem. J. 2010, 44, 175–182. [Google Scholar] [CrossRef]
- Evans, J.C.; Murugesan, D.; Post, J.M.; Mendes, V.; Wang, Z.; Nahiyaan, N.; Lynch, S.L.; Thompson, S.; Green, S.R.; Ray, P.C.; et al. Targeting Mycobacterium Tuberculosis CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- l -Cysteine Synthetase (CoaB) Activity. ACS Infect. Dis. 2021, 7, 1666–1679. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Sato, A.; El-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.; Kodama, M.; Wu, Y.; Chen, L.B.; Harada, H.; et al. S-1153 Inhibits Replication of Known Drug-Resistant Strains of Human Immunodeficiency Virus Type 1. Antimicrob. Agents Chemother. 1998, 42, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Beshay, B.Y.; Abdellatef, A.A.; Loksha, Y.M.; Fahmy, S.M.; Habib, N.S.; Bekhit, A.E.-D.A.; Georghiou, P.E.; Hayakawa, Y.; Bekhit, A.A. Design and Synthesis of 2-Substituted-4-Benzyl-5-Methylimidazoles as New Potential Anti-Breast Cancer Agents to Inhibit Oncogenic STAT3 Functions. Bioorg. Chem. 2021, 113, 105033. [Google Scholar] [CrossRef]
- La Regina, G.; Edler, M.C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J.F.; et al. Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structure−Activity Relationships and Molecular Modeling Studies. J. Med. Chem. 2007, 50, 2865–2874. [Google Scholar] [CrossRef]
- Maltzman, J.S.; Koretzky, G.A. Azathioprine: Old Drug, New Actions. J. Clin. Investig. 2003, 111, 1122–1124. [Google Scholar] [CrossRef]
- Saroha, M.; Bartwal, G.; Khurana, J.M. Transition Metal Free K2CO3 Mediated Thioarylation, Selenoarylation and Arylation of 2-Aminomaleimides at Ambient Temperature. Tetrahedron 2019, 75, 130486. [Google Scholar] [CrossRef]
- Lv, F.; Tang, B.; Hao, E.; Liu, Q.; Wang, H.; Jiao, L. Transition-Metal-Free Regioselective Cross-Coupling of BODIPYs with Thiols. Chem. Commun. 2019, 55, 1639–1642. [Google Scholar] [CrossRef]
- Dodds, A.C.; Sutherland, A. Regioselective C–H Thioarylation of Electron-Rich Arenes by Iron(III) Triflimide Catalysis. J. Org. Chem. 2021, 86, 5922–5932. [Google Scholar] [CrossRef]
- Dodds, A.C.; Puddu, S.; Sutherland, A. Thioarylation of Anilines Using Dual Catalysis: Two-Step Synthesis of Phenothiazines. Org. Biomol. Chem. 2022, 20, 5602–5614. [Google Scholar] [CrossRef] [PubMed]
- Vara, B.A.; Li, X.; Berritt, S.; Walters, C.R.; Petersson, E.J.; Molander, G.A. Scalable Thioarylation of Unprotected Peptides and Biomolecules under Ni/Photoredox Catalysis. Chem. Sci. 2018, 9, 336–344. [Google Scholar] [CrossRef]
- Sharma, P.; Jain, N. S-Aryl Arenesulfonothioate and Copper Acetate Mediated Arylthiolation of 2-Arylpyridines and Heteroarenes. J. Org. Chem. 2019, 84, 13045–13052. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yang, H.; Zhu, C.; Fu, H. Arylthiolation of Arylamine Derivatives with (Arylthio)- Pyrrolidine-2,5-Diones. Adv. Synth. Catal. 2015, 357, 481–488. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction. J. Org. Chem. 2016, 81, 2875–2887. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Wojciechowska, N.; Rajkiewicz, A.A.; Kalek, M. Synthesis of Aryl Sulfides by Metal-Free Arylation of Thiols with Diaryliodonium Salts under Basic Conditions. Eur. J. Org. Chem. 2022, 2, e202101408. [Google Scholar] [CrossRef]
- Hirohiko, S.; Fujiwara, T. Imidazole Derivative. WO Patent 1996010019A1, 24 June 1994. [Google Scholar]
- Varaksin, M.; Moseev, T.; Chupakhin, O.; Charushin, V.; Trofimov, B. Metal-Free C–H Functionalization of 2H-Imidazole 1-Oxides with Pyrrolyl Fragments in the Design of Novel Azaheterocyclic Ensembles. Org. Biomol. Chem. 2017, 15, 8280–8284. [Google Scholar] [CrossRef]
- Moseev, T.D.; Nikiforov, E.A.; Varaksin, M.V.; Charushin, V.N.; Chupakhin, O.N. Metal-Free C–H/C–H Coupling of 2H -Imidazole 1-Oxides with Polyphenols toward Imidazole-Linked Polyphenolic Compounds. J. Org. Chem. 2021, 86, 13702–13710. [Google Scholar] [CrossRef]
- Vaccaro, L. Green Shades in Organic Synthesis. Eur. J. Org. Chem. 2020, 2020, 4273–4283. [Google Scholar] [CrossRef]
- De Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of Green Chemistry and Its Multidimensional Impacts: A Review. Saudi Pharm. J. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- Gujral, S.S.; Sheela, M.A.; Khatri, S.; K Singla, R. A Focus & Review on the Advancement of Green Chemistry. Indo Glob. J. Pharm. Sci. 2012, 02, 397–408. [Google Scholar] [CrossRef]
- Dhawa, U.; Kaplaneris, N.; Ackermann, L. Green Strategies for Transition Metal-Catalyzed C–H Activation in Molecular Syntheses. Org. Chem. Front. 2021, 8, 4886–4913. [Google Scholar] [CrossRef]
- Dalton, T.; Faber, T.; Glorius, F. C–H Activation: Toward Sustainability and Applications. ACS Cent. Sci. 2021, 7, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Panja, S.; Sahoo, S.R.; Chatterjee, S.; Maiti, D. Enroute Sustainability: Metal Free C–H Bond Functionalisation. Chem. Soc. Rev. 2023, 52, 2391–2479. [Google Scholar] [CrossRef] [PubMed]
- Charushin, V.N.; Chupakhin, O.N. Nucleophilic C—H Functionalization of Arenes: A Contribution to Green Chemistry. Russ. Chem. Bull. 2019, 68, 453–471. [Google Scholar] [CrossRef]
- Kirilyuk, I.A.; Grigor’ev, I.A.; Volodarskii, L.B. Synthesis of 2H-Imidazole 1-Oxides and Stable Nitroxyl Radicals Based on Them. Bull. Acad. Sci. USSR Div. Chem. Sci. 1991, 40, 1871–1879. [Google Scholar] [CrossRef]
- Varaksin, M.V.; Utepova, I.A.; Chupakhin, O.N.; Charushin, V.N. Palladium(II)-Catalyzed Oxidative C–H/C–H Coupling and Eliminative SNH Reactions in Direct Functionalization of Imidazole Oxides with Indoles. J. Org. Chem. 2012, 77, 9087–9093. [Google Scholar] [CrossRef]
- Smyshliaeva, L.A.; Varaksin, M.V.; Slepukhin, P.A.; Chupakhin, O.N.; Charushin, V.N. Transition Metal-Free Oxidative and Deoxygenative C–H/C–Li Cross-Couplings of 2H-Imidazole 1-Oxides with Carboranyl Lithium as an Efficient Synthetic Approach to Azaheterocyclic Carboranes. Beilstein J. Org. Chem. 2018, 14, 2618–2626. [Google Scholar] [CrossRef]
- Moseev, T.D.; Varaksin, M.V.; Gorlov, D.A.; Charushin, V.N.; Chupakhin, O.N. Transition-Metal-Free C–H/C–Li Coupling of Nonaromatic 2H-Imidazole 1-Oxides with Pentafluorophenyl Lithium in the Design of Novel Fluorophores with Intramolecular Charge Transfer Effect. J. Org. Chem. 2020, 85, 11124–11133. [Google Scholar] [CrossRef]
- Aricò, F.; Tundo, P. Dimethyl Carbonate as a Modern Green Reagent and Solvent. Russ. Chem. Rev. 2010, 79, 479–489. [Google Scholar] [CrossRef]
Entry a | Solvent | Activator (1 Equiv) | Temperature (°C) | Time (h) | Yield (%) |
---|---|---|---|---|---|
1 | Toluene | AcCl | 0 to rt | 6 | 15 b |
2 | EtOAc | AcCl | 0 to rt | 6 | 24 b |
3 | Acetone | AcCl | 0 to rt | 6 | 56 b |
4 | Hexachloroacetone/acetone (4/1) | AcCl | 0 to rt | 6 | 54 b |
5 | Chlorobenzene/acetone 4/1 | AcCl | 0 to rt | 6 | 40 b |
6 | DMC | AcCl | 0 to rt | 6 | 74 b |
7 | DMC | AcCl | 0 to 50 | 6 | 40 b |
8 | DMC | AcCl | rt | 6 | 55 b |
9 | DMC | AcCl | 0 to rt | 2 | 36 b |
10 | DMC | AcCl | 0 to rt | 3 | 45 b |
11 | DMC | AcCl | 0 to rt | 4 | 58 b |
12 | DMC | AcCl | 0 to rt | 5 | 64 b |
13 | DMC | AcCl | 0 to rt | 7 | 74 b |
14 | DMC | Trichloroacetyl chloride | 0 to rt | 6 | 42 b |
15 | DMC | BzCl | 0 to rt | 6 | 0 c |
16 | DMC | TFAA | 0 to rt | 6 | 0 c |
17 | DMC | TMS-Cl | 0 to rt | 6 | 0 c |
18 | DMC | Ac2O | 0 to rt | 6 | 0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforov, E.A.; Vaskina, N.F.; Moseev, T.D.; Varaksin, M.V.; Charushin, V.N.; Chupakhin, O.N. Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols. Chemistry 2023, 5, 1477-1487. https://doi.org/10.3390/chemistry5030100
Nikiforov EA, Vaskina NF, Moseev TD, Varaksin MV, Charushin VN, Chupakhin ON. Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols. Chemistry. 2023; 5(3):1477-1487. https://doi.org/10.3390/chemistry5030100
Chicago/Turabian StyleNikiforov, Egor A., Nailya F. Vaskina, Timofey D. Moseev, Mikhail V. Varaksin, Valery N. Charushin, and Oleg N. Chupakhin. 2023. "Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols" Chemistry 5, no. 3: 1477-1487. https://doi.org/10.3390/chemistry5030100
APA StyleNikiforov, E. A., Vaskina, N. F., Moseev, T. D., Varaksin, M. V., Charushin, V. N., & Chupakhin, O. N. (2023). Metal-Free Eliminative C-H Arylthiolation of 2H-Imidazole N-Oxides with Thiophenols. Chemistry, 5(3), 1477-1487. https://doi.org/10.3390/chemistry5030100