pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness
Abstract
:Highlights
- Salep mucilage and SAAs were used to develop a halochromic indicator.
- A casting method was used to produce intelligent salep mucilage edible films.
- The incorporation of anthocyanin affected surface morphology, and the physicochemical, barrier, and mechanical properties of salep mucilage edible indicator films.
- The intelligent indicator films underwent a visible color change to discriminate between fresh, consumable, and spoiled rainbow trout fillets.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Anthocyanin
2.3. Preparation of Indicator Films
2.4. Color Parameters and pH Sensitivity
2.5. Physical Properties
2.5.1. Film Thickness
2.5.2. Moisture Content (MC)
2.5.3. Water Solubility (W.S.)
2.5.4. Transparency
2.5.5. Wettability
2.6. Permeability Properties
2.6.1. Water Vapor Permeability (WVP)
2.6.2. Oxygen Permeability (O2P)
2.7. Mechanical Properties
2.8. Morphology
2.8.1. Scanning Electron Microscopy (SEM)
2.8.2. Atomic Force Microscopy (AFM)
2.9. Antioxidant Properties
2.9.1. Total Phenolic Content
2.9.2. Total Anthocyanin Content
2.9.3. Total Flavonoid Content
2.9.4. ABTS Radical Scavenging Activity
2.9.5. DPPH Radical Scavenging Assay
2.9.6. Reducing Power Assay
2.9.7. Ferric Reducing Antioxidant Power
2.10. Antibacterial Properties
2.11. Evaluation of Fish Freshness
2.11.1. Preparation of Samples
2.11.2. pH Measurement
2.11.3. Determination of TVB-N
2.11.4. Microbial Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Analysis of pH Dependence of Anthocyanin Color
3.2. Physical Properties
3.3. Permeability Properties
3.4. Mechanical Properties
3.5. Antioxidant Activity
3.6. Antibacterial Properties
3.7. Color Parameters and pH Sensitivity
3.8. Film Microstructure
3.9. Assessment of Fish Freshness Using Salep Mucilage Edible Indicator Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weston, M.; Phan, M.A.T.; Arcot, J.; Chandrawati, R. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem. 2020, 326, 127017. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; He, Y.; Liu, J.; Zhang, J.; Li, J.; Zhou, J.; Ye, Y.; Wang, J.; Wang, X. Kinetic investigation into pH-dependent color of anthocyanin and its sensing performance. Dye Pigment. 2019, 170, 107643. [Google Scholar] [CrossRef]
- Riaz, R.S.; Elsherif, M.; Moreddu, R.; Rashid, I.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Anthocyanin-functionalized contact lens sensors for ocular pH monitoring. ACS Omega 2019, 4, 21792–21798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.-W. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Abedi-Firoozjah, R.; Yousefi, S.; Heydari, M.; Seyedfatehi, F.; Jafarzadeh, S.; Mohammadi, R.; Rouhi, M.; Garavand, F. Application of red cabbage anthocyanins as pH-sensitive pigments in smart food packaging and sensors. Polymers 2022, 14, 1629. [Google Scholar] [CrossRef] [PubMed]
- Amaregouda, Y.; Kamanna, K.; Gasti, T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int. J. Biol. Macromol. 2022, 218, 799–815. [Google Scholar] [CrossRef]
- Shakouri, M.; Salami, M.; Lim, L.-T.; Ekrami, M.; Mohammadian, M.; Askari, G.; Emam-Djomeh, Z.; McClements, D.J. Development of active and intelligent colorimetric biopolymer indicator: Anthocyanin-loaded gelatin-basil seed gum films. J. Food Meas. Charact. 2022, 1–13. [Google Scholar] [CrossRef]
- Haq, S.U.; Aghajamali, M.; Hassanzadeh, H. Cost-effective and sensitive anthocyanin-based paper sensors for rapid ammonia detection in aqueous solutions. RSC Adv. 2021, 11, 24387–24397. [Google Scholar] [CrossRef]
- Kuswandi, B.; Asih, N.P.; Pratoko, D.K.; Kristiningrum, N.; Moradi, M. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packag. Technol. Sci. 2020, 33, 321–332. [Google Scholar] [CrossRef]
- Pakolpakçıl, A.; Osman, B.; Göktalay, G.; Tümay Özer, E.; Şahan, Y.; Becerir, B.; Karaca, E. Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. J. Polym. Res. 2021, 28, 1–13. [Google Scholar] [CrossRef]
- Christodoulou, E.; Kadoglou, N.P.; Kostomitsopoulos, N.; Valsami, G. Saffron: A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol. 2015, 67, 1634–1649. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, M.; Vahabzadeh, M.; Hosseinzadeh, H. Clinical applications of Saffron (Crocus sativus) and its constituents: A review. Drug Res. 2015, 65, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Kakhki, A.H.; Sarfarazi, M. Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Anal. Methods 2016, 9, 1993–2001. [Google Scholar] [CrossRef]
- Xing, B.; Li, S.; Yang, J.; Lin, D.; Feng, Y.; Lu, J.; Shao, Q. Phytochemistry, pharmacology, and potential clinical applications of Saffron: A review. J. Ethnopharmacol. 2021, 281, 114555. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M.; Khazaei, K.M.; Assadpour, E. Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Sci. Nutr. 2019, 7, 1438–1445. [Google Scholar] [CrossRef]
- Kumar, N. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Umaraw, P.; Verma, A.K. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. [Google Scholar] [CrossRef]
- Ekrami, M.; Emam-Djomeh, Z. Water vapor permeability, optical and mechanical properties of salep-based edible film. J. Food Process. Preserv. 2014, 38, 1812–1820. [Google Scholar] [CrossRef]
- Pourahmad, M.; Jahromi, H.K.; Jahromi, Z.K. Protective effect of Salep on liver. Hepat. Mon. 2015, 15, e28137. [Google Scholar]
- Ekrami, M.; Emam-Djomeh, Z.; Joolaei-Ahranjani, P.; Mahmoodi, S.; Khaleghi, S. Eco-friendly U.V. protective bionanocomposite based on Salep-mucilage/flower-like ZnO nanostructures to control photo-oxidation of kilka fish oil. Int. J. Biol. Macromol. 2021, 168, 591–600. [Google Scholar] [CrossRef]
- Ekrami, M.; Emam-Djomeh, Z.; Ghoreishy, S.A.; Najari, Z.; Shakoury, N. Characterization of a high-performance edible film based on Salep mucilage functionalized with pennyroyal (Mentha pulegium). Int. J. Biol. Macromol. 2019, 133, 529–537. [Google Scholar] [CrossRef] [PubMed]
- ASTM D1746; Standard Test Method for Transparency of Plastic Sheeting. American Society for Testing and Materials: Philadelphia, PA, USA, 1997.
- ASTM E96-95; Standard Test Methods for Water Vapor Transmission of Material. American Society for Testing and Materials: Philadelphia, PA, USA, 1995.
- ASTM D3985; Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor. American Society for Testing and Materials: Philadelphia, PA, USA, 2010.
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Standard designations; American Society for Testing and Materials: Philadelphia, PA, USA, 2001.
- Jridi, M.; Boughriba, S.; Abdelhedi, O.; Nciri, H.; Nasri, R.; Kchaou, H.; Kaya, M.; Sebai, H.; Zouari, N.; Nasri, M. Investigation of physicochemical and antioxidant properties of gelatin edible film mixed with blood orange (Citrus sinensis) peel extract. Food Packag. Shelf Life 2019, 21, 100342. [Google Scholar] [CrossRef]
- Sutharut, J.; Sudarat, J. Total anthocyanin content and antioxidant activity of germinated colored rice. Int. Food Res. J. 2012, 19, 215–221. [Google Scholar]
- Habibi, M.; Golmakani, M.T.; Mesbahi, G.; Majzoobi, M.; Farahnaky, A. Ultrasound-accelerated debittering of olive fruits. Innov. Food Sci. Emerg. Technol. 2015, 31, 105–115. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Lin, S.; Tian, W.; Li, H.; Cao, J.; Jiang, W. Improving antioxidant activities of whey protein hydrolysates obtained by thermal preheat treatment of pepsin, trypsin, alcalase and flavourzyme. Int. J. Food Sci. Technol. 2012, 47, 2045–2051. [Google Scholar] [CrossRef]
- Samotyja, U. Potato Peel as a Sustainable Resource of Natural Antioxidants for the Food Industry. Potato Res. 2019, 62, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 2012, 134, 1571–1579. [Google Scholar] [CrossRef]
- Ekrami, A.; Ghadermazi, M.; Ekrami, M.; Hosseini, M.A.; Emam-Djomeh, Z.; Hamidi-Moghadam, R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J. Drug Deliv. Sci. Technol. 2022, 69, 103148. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Hu, W.; Li, X. Quality enhancement in refrigerated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chem. 2013, 138, 821–826. [Google Scholar] [CrossRef]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Yong, H.; Qin, Y.; Liu, J.; Liu, J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019, 94, 80–92. [Google Scholar] [CrossRef]
- Velásquez, P.; Bustos, D.; Montenegro, G.; Giordano, A. Ultrasound-assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films. Molecules 2021, 26, 984. [Google Scholar] [CrossRef]
- Tan, Y.; Lim, S.; Tay, B.; Lee, M.; Thian, E. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater. Res. Bull. 2015, 69, 142–146. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Saffron (Crocus sativus) petal as a new pharmacological target: A review. Iran. J. Basic Med. Sci. 2018, 21, 1091. [Google Scholar]
- Cozmuta, A.M.; Turila, A.; Apjok, R.; Ciocian, A.; Cozmuta, L.M.; Peter, A.; Nicula, C.; Galić, N.; Benković, T. Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocoll. 2015, 49, 144–155. [Google Scholar] [CrossRef]
- Shams, B.; Ebrahimi, N.G.; Khodaiyan, F. Development of antibacterial nanocomposite: Whey protein-gelatin-nanoclay films with orange peel extract and tripolyphosphate as potential food packaging. Adv. Polym. Technol. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vedove, T.M.; Maniglia, B.C.; Tadini, C.C. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J. Food Eng. 2021, 289, 110274. [Google Scholar] [CrossRef]
- Fathi, N.; Almasi, H.; Pirouzifard, M.K. Sesame protein isolate based bionanocomposite films incorporated with TiO2 nanoparticles: Study on morphological, physical and photocatalytic properties. Polym. Test. 2019, 77, 105919. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Emam-Djomeh, Z. Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. J. Food Meas. Charact. 2021, 15, 2984–2994. [Google Scholar] [CrossRef]
- Hosseini, M.; Razavi, S.; Mousavi, M. Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process. Preserv. 2009, 33, 727–743. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Krochta, J.M. Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J. Agric. Food Chem. 2001, 49, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Kester, J.J.; Fennema, O. Edible Films and Coatings: A review. In Food technology; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Jouki, M.; Mortazavi, S.A.; Yazdi, F.T.; Koocheki, A. Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 2014, 99, 537–546. [Google Scholar] [CrossRef] [PubMed]
- McHugh, T.H.; Krochta, J.M. Sorbitol vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 1994, 42, 841–845. [Google Scholar] [CrossRef]
- Atarés, L.; Pérez-Masiá, R.; Chiralt, A. The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. J. Food Eng. 2011, 104, 649–656. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Eng. 2013, 117, 350–360. [Google Scholar] [CrossRef]
- Ahmadian-Kouchaksaraie, Z.; Niazmand, R. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. J. Supercrit. Fluids 2017, 121, 19–31. [Google Scholar] [CrossRef]
- Omidi, A.; Rahdari, S.; Fard, M.H. A preliminary study on antioxidant activities of saffron petal extracts in lambs. Vet. Sci. Dev. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Sani, M.; Tavassoli, M.; McClements, D.J.; Hamishehkar, H. Multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocoll. 2021, 111, 106237. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Jafarpour, D. The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Sci. Nutr. 2020, 8, 3128–3137. [Google Scholar] [CrossRef]
- Fathi, M.; Samadi, M.; Abbaszadeh, S.; Nourani, M.R. Fabrication and characterization of multifunctional bio-safe films based on Carboxymethyl Chitosan and Saffron Petal Anthocyanin Reinforced with Copper Oxide Nanoparticles for sensing the meat freshness. J. Polym. Environ. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll. 2019, 87, 858–868. [Google Scholar] [CrossRef]
- Tassanawat, S.; Phandee, A.; Magaraphan, R.; Nithitanakul, M.; Manuspiya, H. pH-Sensitive P.P./Clay Nanocomposites for Beverage Smart Packaging. In Proceedings of the IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Hanani, Z.N.; Yee, F.C.; Nor-Khaizura, M. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Emam-Djomeh, Z.; Moghaddam, A.; Yasini Ardakani, S.A. Antimicrobial activity of pomegranate (Punica granatum L.) peel extract, physical, mechanical, barrier and antimicrobial properties of pomegranate peel extract-incorporated sodium caseinate film and application in packaging for ground beef. Packag. Technol. Sci. 2015, 28, 869–881. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, J.; Jia, Z.; Yang, X.; Zhou, Z. Intelligent pH indicator films containing anthocyanins extracted from blueberry peel for monitoring tilapia fillet freshness. J. Sci. Food Agric. 2021, 101, 1800–1811. [Google Scholar] [CrossRef]
- Gasti, T.; Dixit, S.; D’Souza, O.J.; Hiremani, V.D.; Vootla, S.K.; Masti, S.P.; Chougale, R.B.; Malabadi, R.B. Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet. Int. J. Biol. Macromol. 2021, 187, 451–461. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr. Polym. 2019, 222, 115030. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, Y.; Zou, Y.; Dong, Q.; Ding, F.; Liu, X.; Li, H. A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocoll. 2019, 90, 198–205. [Google Scholar] [CrossRef]
SAAs Concentration (%v/v) | Contact Angle (°) | Thickness (µm) | Moisture Content (%) | Water Solubility (%) | Transparency (%) |
---|---|---|---|---|---|
0 (Control) | 72.14 ± 1.58 a | 86.90 ± 17.80 d | 12.90 ± 0.11 e | 48.33 ± 0.69 e | 60.34 ± 1.73 a |
2.5 | 70.11 ± 1.18 b | 116.83 ± 25.58 cd | 13.26 ± 0.08 d | 51.04 ± 1.05 d | 41.84 ± 2.03 b |
5 | 65.56 ± 1.84 c | 147.87 ± 14.67 bc | 13.44 ± 0.12 c | 55.13 ± 1.03 c | 34.14 ± 0.98 c |
7.5 | 59.98 ± 1.81 d | 170.80 ± 18.93 ab | 13.77 ± 0.10 b | 59.31 ± 1.05 b | 26.63 ± 1.64 d |
10 | 54.02 ± 1.44 e | 199.03 ± 28.42 a | 14.13 ± 0.15 a | 63.71 ± 0.71 a | 14.27 ± 2.14 e |
Antioxidant Properties | SAAs Concentration (%v/v) | ||||
---|---|---|---|---|---|
0 (Control) | 2.5 | 5 | 7.5 | 10 | |
TPC (mg GAE/100 g) | 7.57 ± 1.54 e | 45.89 ± 4.36 d | 80.44 ± 3.18 c | 114.07 ± 6.73 b | 158.99 ± 7.33 a |
TAC (mg CGE/100 g) | 0.00 ± 0.00 e | 3.09 ± 0.65 d | 5.81 ± 0.32 c | 6.28 ± 0.44 b | 8.02 ± 0.59 a |
TFC (mg QUE/100 g) | 1.60 ± 1.21 e | 7.32 ± 0.90 e | 12.14 ± 1.82 e | 16.84 ± 2.63 e | 19.99 ± 1.84 e |
FRAP (µmol TRE/g) | 0.00 ± 0.00 e | 0.09 ± 0.01 e | 0.15 ± 0.03 e | 0.21 ± 0.02 e | 0.25 ± 0.01 e |
DPPH scavenging (%) | 0.00 ± 0.00 e | 19.12 ± 5.35 e | 28.19 ± 4.59 e | 35.23 ± 5.18 e | 42.62 ± 4.02 e |
Reducing power (Abs 700 nm) | 0.00 ± 0.00 e | 0.02 ± 0.01 e | 0.07 ± 0.01 e | 0.11 ± 0.01 e | 0.15 ± 0.02 e |
ABTS scavenging (%) | 0.00 ± 0.00 e | 4.22 ± 1.05 e | 9.08 ± 1.60 e | 15.96 ± 1.85 e | 20.01 ± 2.66 e |
Inhibition zone diameters (mm) | |||||
Staphylococcus aureus | 0.00 ± 0.00 e | 7.01 ± 0.20 d | 9.95 ± 0.32 c | 12.39 ± 0.23 b | 14.54 ± 0.16 a |
Escherichia coli O157:H7 | 0.00 ± 0.00 e | 6.82 ± 0.21 d | 7.98 ± 0.28 c | 9.89 ± 0.14 b | 11.22 ± 0.24 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekrami, M.; Roshani-Dehlaghi, N.; Ekrami, A.; Shakouri, M.; Emam-Djomeh, Z. pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry 2022, 4, 1360-1381. https://doi.org/10.3390/chemistry4040089
Ekrami M, Roshani-Dehlaghi N, Ekrami A, Shakouri M, Emam-Djomeh Z. pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry. 2022; 4(4):1360-1381. https://doi.org/10.3390/chemistry4040089
Chicago/Turabian StyleEkrami, Mohammad, Negar Roshani-Dehlaghi, Ali Ekrami, Marzieh Shakouri, and Zahra Emam-Djomeh. 2022. "pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness" Chemistry 4, no. 4: 1360-1381. https://doi.org/10.3390/chemistry4040089
APA StyleEkrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M., & Emam-Djomeh, Z. (2022). pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry, 4(4), 1360-1381. https://doi.org/10.3390/chemistry4040089