Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of COC Ligand
2.2. Synthesis of VCH
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dykman, L.; Khlebtsov, N.; Shchyogolev, S.; Goryacheva, I.; Rusanova, T.; Smirnova, T.; Zhelobitskaya, E.; Brainina, K.; Stozhko, N.; Bukharinova, M.; et al. Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry; Walter de Gruyter GmbH & Co KG: Saratov, Russia, 2018. [Google Scholar] [CrossRef]
- Su, D.S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, T.; Wudl, F.; Nagase, S. Chemistry of Nanocarbons; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Nishihara, H.; Kyotani, T. Templated nanocarbons for energy storage. Adv. Mater. 2012, 24, 4473–4498. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Vögtle, F. Dendrimers: From design to application—A progress report. Angew. Chem. Int. Ed. 1999, 38, 884–905. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Das, N.K.; Mukherjee, S. Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications. Phys. Sci. Rev. 2018, 3, 20170081. [Google Scholar] [CrossRef]
- Wang, E.; Gao, Y. Toward understanding the structure of gold nanoclusters. In Atomically Precise Nanoclusters; Jenny Stanford Publishing: Singapore, 2021; pp. 123–147. [Google Scholar]
- Tozawa, T.; Jones, J.T.; Swamy, S.I.; Jiang, S.; Adams, D.J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S.Y.; et al. Porous organic cages. Nat. Mater. 2009, 8, 973–978. [Google Scholar] [CrossRef]
- Hasell, T.; Cooper, A.I. Porous organic cages: Soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Ahmad, N.; Younus, H.A.; Chughtai, A.H.; Verpoort, F. Metal-organic molecular cages: Applications of biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. [Google Scholar] [CrossRef]
- Slater, A.G.; Cooper, A.I. Function-led design of new porous materials. Science 2015, 348, aaa8075. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, Y.; Yaghi, O.M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 2016, 138, 3255–3265. [Google Scholar] [CrossRef]
- Frank, M.; Johnstone, M.D.; Clever, G.H. Interpenetrated Cage Structures. Chem. Eur. J. 2016, 22, 14104–14125. [Google Scholar] [CrossRef] [PubMed]
- Greenaway, R.L.; Santolini, V.; Szczypiński, F.T.; Bennison, M.J.; Little, M.A.; Marsh, A.; Jelfs, K.E.; Cooper, A.I. Organic Cage Dumbbells. Chem. Eur. J. 2020, 26, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yang, Y.; Wang, Y. Stable and soluble oligomers of porous organic cages through post-synthesized modification. New J. Chem. 2021, 45, 22049–22052. [Google Scholar] [CrossRef]
- Carné-Sánchez, A.; Craig, G.A.; Larpent, P.; Hirose, T.; Higuchi, M.; Kitagawa, S.; Matsuda, K.; Urayama, K.; Furukawa, S. Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity. Nat. Commun. 2018, 9, 2506. [Google Scholar] [CrossRef]
- Giri, A.; Sahoo, A.; Dutta, T.K.; Patra, A. Cavitand and Molecular Cage-Based Porous Organic Polymers. ACS Omega 2020, 5, 28413–28424. [Google Scholar] [CrossRef] [PubMed]
- Pullen, S.; Tessarolo, J.; Clever, G.H. Increasing structural and functional complexity in self-assembled coordination cages. Chem Sci. 2021, 12, 7269–7293. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yang, P.; Zhu, X.; Wang, Y. Planet-satellite cage hybrids: Covalent organic cages encircling metal organic cage. Sci. China Chem. 2022, 65, 858–862. [Google Scholar] [CrossRef]
- Sato, S.; Ishido, Y.; Fujita, M. Remarkable stabilization of M12L24 spherical frameworks through the cooperation of 48 Pd (II)− pyridine interactions. J. Am. Chem. Soc. 2009, 131, 6064–6065. [Google Scholar] [CrossRef]
- Harris, K.; Fujita, D.; Fujita, M. Giant hollow M(n)L(2n) spherical complexes: Structure, functionalisation and applications. Chem. Commun. 2013, 49, 6703–6712. [Google Scholar] [CrossRef]
- Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins. J. Am. Chem. Soc. 2007, 129, 3816–3817. [Google Scholar] [CrossRef]
- Kikuchi, T.; Sato, S.; Fujita, M. Well-defined DNA Nanoparticles templated by self-assembled M12L24 molecular spheres and binding of complementary oligonucleotides. J. Am. Chem. Soc. 2010, 132, 15930–15932. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wei, P.; Liu, Y.; Wang, M.; Chen, C.; Zhao, J.; Li, G.; Saha, M.L.; Zhou, Z.; An, Z.; et al. Endo- and Exo-Functionalized Tetraphenylethylene M12L24 Nanospheres: Fluorescence Emission inside a Confined Space. J. Am. Chem. Soc. 2019, 141, 9673–9679. [Google Scholar] [CrossRef]
- Samanta, S.K.; Quigley, J.; Vinciguerra, B.; Briken, V.; Isaacs, L. Cucurbit[7]uril Enables Multi-Stimuli-Responsive Release from the Self-Assembled Hydrophobic Phase of a Metal Organic Polyhedron. J. Am. Chem. Soc. 2017, 139, 9066–9074. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Moncelet, D.; Vinciguerra, B.; Briken, V.; Isaacs, L. Metal Organic Polyhedra: A Click-and-Clack Approach Toward Targeted Delivery. Helv. Chim. Acta. 2018, 101, e1800057. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Moncelet, D.; Briken, V.; Isaacs, L. Metal-Organic Polyhedron Capped with Cucurbit[8]uril Delivers Doxorubicin to Cancer Cells. J. Am. Chem. Soc. 2016, 138, 14488–14496. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, J.; Ju, Y.; Serda, R.E.; Croissant, J.G.; Shang, J.; Coker, E.; Agola, J.O.; Zhong, Q.Z.; Ping, Y.; et al. Modular Metal-Organic Polyhedra Superassembly: From Molecular-Level Design to Targeted Drug Delivery. Adv. Mater. 2019, 31, e1806774. [Google Scholar] [CrossRef]
- Ueda, Y.; Ito, H.; Fujita, D.; Fujita, M. Permeable Self-Assembled Molecular Containers for Catalyst Isolation Enabling Two-Step Cascade Reactions. J. Am. Chem. Soc. 2017, 139, 6090–6093. [Google Scholar] [CrossRef]
- Wang, D.-X.; Wang, Q.-Q.; Han, Y.; Wang, Y.; Huang, Z.-T.; Wang, M.-X. Versatile Anion–π Interactions between Halides and a Conformationally Rigid Bis(tetraoxacalix[2]arene[2]triazine) Cage and Their Directing Effect on Molecular Assembly. Chem. Eur. J. 2010, 16, 13053–13057. [Google Scholar] [CrossRef]
- Wang, Q.-Q.; Luo, N.; Wang, X.-D.; Ao, Y.-F.; Chen, Y.-F.; Liu, J.-M.; Su, C.-Y.; Wang, D.-X.; Wang, M.-X. Molecular Barrel by a Hooping Strategy: Synthesis. Structure, and Selective CO2 Adsorption Facilitated by Lone Pair−π Interactions. J. Am. Chem. Soc. 2017, 139, 635–638. [Google Scholar] [CrossRef]
- Gill, N.; Nuttall, R.H.; Scaife, D.; Sharp, D.A. The infra-red spectra of pyridine complexes and pyridinium salts. J. Inorg. Nucl. Chem. 1961, 18, 79–87. [Google Scholar] [CrossRef]
- Radmacher, M.; Fritz, M.; Hansma, H.G.; Hansma, P.K. Direct observation of enzyme activity with the atomic force microscope. Science 1994, 265, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Yu, C.; Zhu, X.; Wang, Y. Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage. Chemistry 2022, 4, 865-871. https://doi.org/10.3390/chemistry4030062
Lv Z, Yu C, Zhu X, Wang Y. Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage. Chemistry. 2022; 4(3):865-871. https://doi.org/10.3390/chemistry4030062
Chicago/Turabian StyleLv, Zhuoqian, Chenjuan Yu, Xinyuan Zhu, and Youfu Wang. 2022. "Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage" Chemistry 4, no. 3: 865-871. https://doi.org/10.3390/chemistry4030062
APA StyleLv, Z., Yu, C., Zhu, X., & Wang, Y. (2022). Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage. Chemistry, 4(3), 865-871. https://doi.org/10.3390/chemistry4030062