Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Electrocatalytic Multicomponent Synthesis of 1′,3′,6-Trimethyl-3-aryl-2′H,3H,4H-spiro-[furo[3,2-c]pyran-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H)-tetraones 2a–i
3. Results and Discussion
3.1. Electrocatalytic Multicomponent One-Pot Synthesis of Spiro[furo[3,2-b]pyran-2,5′-pyrimidines] 2a–i
3.2. Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Schneider, P.; Schneider, G. Priviledge structures revisited. Angew. Chem. Int. Ed. 2017, 56, 7971–7974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; et al. Methods for drug discovery—Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 1988, 31, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Bienayme, H. (Eds.) Multicomponent Reactions; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar] [CrossRef] [Green Version]
- Ameta, K.L.; Dandia, A.A. (Eds.) Multicomponent Reactions: Synthesis of Bioactive Heterocycles; CRS Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- John, S.E.; Gulatia, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front. 2021, 8, 4237–4287. [Google Scholar] [CrossRef]
- Domling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [Green Version]
- Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent Reactions. Molecules 2020, 25, 505. [Google Scholar] [CrossRef] [Green Version]
- Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010–2020). Expert Opin. Ther. Pat. 2021, 31, 267–289. [Google Scholar] [CrossRef]
- Elinson, M.N.; Ryzhkova, Y.E.; Ryzhkov, F.V. Multicomponent design of chromeno[2,3-b]pyridine systems. Russ. Chem. Rev. 2021, 90, 94–115. [Google Scholar] [CrossRef]
- Hammerich, O.; Speiser, B. (Eds.) Organic Electrochemistry: Revised and Expanded, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic Organic Electrochemistry: Calling All Engineers. Angew. Chem. Int. Ed. 2018, 57, 4149–4155. [Google Scholar] [CrossRef] [PubMed]
- Nikishin, G.I.; Elinson, M.N.; Makhova, I.V. Electrocatalytic haloform reaction: Transformation of methyl ketones into methyl esters. Angew. Chem. Int. Ed. 1988, 27, 1716–1717. [Google Scholar] [CrossRef]
- Wang, X.; She, P.; Zhang, Q. Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2021, 2, 299–325. [Google Scholar] [CrossRef]
- Frankle, R.; Little, D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev. 2014, 43, 2492–2521. [Google Scholar] [CrossRef]
- Ogibin, Y.N.; Elinson, M.N.; Nikishin, G.I. Mediator oxidation systems in organic electrosynthesis. Russ. Chem. Rev. 2009, 78, 89–140. [Google Scholar] [CrossRef]
- Tang, H.-T.; Jia, J.-S.; Pan, Y.-M. Halogen-mediated electrochemical organic synthesis. Org. Biomol. Chem. 2020, 18, 5315–5333. [Google Scholar] [CrossRef] [PubMed]
- Karkas, M.D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 2018, 47, 5786–5865. [Google Scholar] [CrossRef] [Green Version]
- Elinson, M.N.; Vereshchagin, A.N.; Ryzhkov, F.V. Catalysis of cascade and multicomponent reactions of carbonyl compounds and C-H acids by electricity. Chem. Rec. 2016, 16, 1950–1964. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Elinson, M.N.; Zaimovskaya, T.A.; Nikishin, G.I. Electrocatalytic multicomponent assembling: Stereo- selective one-pot synthesis of the substituted 3-azabicyclo[3.1.0]hexane-1-carboxylate system from aldehyde, malononitrile, malonate and methanol. Tetrahedron 2008, 64, 9766–9770. [Google Scholar] [CrossRef]
- Elinson, M.N.; Feducovich, S.K.; Starikova, Z.A.; Vereshchagin, A.N.; Nikishin, G.I. Stereoselective electrocatalytic trans- formation of arylidenemalononitriles and malononitrile into (1R,5S,6R)*-6-aryl-2-amino-4,4-dialkoxy-1,5-dicyano-3-aza- bicyclo[3.1.0]hex-2-enes. Tetrahedron 2004, 60, 11743–11749. [Google Scholar] [CrossRef]
- Elinson, M.N.; Dorofeeva, E.O.; Vereshchagin, A.N.; Nikishin, G.I. Electrochemical synthesis of cyclopropanes. Russ. Chem. Rev. 2015, 84, 485–497. [Google Scholar] [CrossRef]
- Elinson, M.N.; Feducovich, S.K.; Vereshchagin, A.N.; Gorbunov, S.V.; Belyakov, P.A.; Nikishin, G.I. Electrocatalytic multicomponent cyclization of an aldehyde, malononitrile and a malonate into 3-substituted-2,2-dicyanocyclopropane-1,1-dicarboxylate—The first one-pot synthesis of a cyclopropane ring from three different molecules. Tetrahedron Lett. 2006, 47, 9129–9133. [Google Scholar] [CrossRef]
- Elinson, M.N.; Feducovich, S.K.; Bushuev, S.G.; Zakharenkov, A.A.; Pashchenko, D.V.; Nikishin, G.I. Electrochemical transformation of malonate and alkylidenemalonates into 3-substituted cyclopropane-1,1,2,2-tetracarboxylates. Mendeleev Commun. 1998, 8, 15–17. [Google Scholar] [CrossRef]
- Elinson, M.N.; Vereshchagin, A.N.; Ryzkov, F.V. Electrochemical synthesis of heterocycles via cascade reactions. Curr. Org. Chem. 2017, 21, 1427–1439. [Google Scholar] [CrossRef]
- Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blamore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Com. 2016, 2016, 6611–6637. [Google Scholar] [CrossRef]
- Yet, L. Privileged Structures in Drug Discovery: Medicinal Chemistry and Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Katsamakas, S.; Papadopoulos, A.G.; Kouskoura, M.G.; Markopoulou, C.K. Examining barbiturate scaffold for the synthesis of new agents with biological interest. Future Med. Chem. 2019, 11, 2063–2079. [Google Scholar] [CrossRef] [PubMed]
- Brunton, L.L.; Lazo, J.S.; Parker, K.L.; Buxton, I.; Blumenthal, D. Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 11th ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Uhlmann, C.; Froscher, W. Low Risk of Development of Substance Dependence for Barbiturates and Clobazam Prescribed as Antiepileptic Drugs: Results from a Questionnaire Study. CNS Neurosci. Ther. 2009, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. Sleep and Hypnotic Dugs. Drugs 1975, 9, 448–478. [Google Scholar] [CrossRef] [PubMed]
- Grams, F.; Brandstetter, H.; D’Alo, S.; Geppert, D.; Krell, Y.W.; Leinert, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmermann, G. Pyrimidine-2,4,6-triones: A new effective and selective class of matrix metalloproteinase inhibitors. Biol. Chem. 2001, 382, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Gruber, P.; Rechfeld, F.; Kirchmair, J.; Hauser, N.; Boehler, M.; Garczarczyk, D.; Langer, T.; Hofmann, J. Barbituric acid derivative BAS 02104951 inhibits PKCε, PKCη, KCε/RACK2 interaction, Elk-1 phosphorylation in HeLa and PKCε and η translocation in PC3 cells following TPA-induction. J. Biochem. 2011, 149, 331–336. [Google Scholar] [CrossRef]
- Prasad, J.V.N.V.; Pavlovsky, A.; Para, K.S.; Ellsworth, E.L.; Tummino, P.J.; Nouhan, C.; Ferguson, D. Nonpeptidic HIV protease inhibitors: 3-(S-benzyl substituted)-4-hydroxy-6-(phenyl substituted)-2H-pyran-2-one with an inverse mode of binding. Bioorg. Med. Chem. Lett. 1996, 6, 1133–1138. [Google Scholar] [CrossRef]
- Lan, Q.-Y.; Liu, Q.-L.; Cai, J.; Liu, A.-W. 3-Cinnamoyl-4-hydroxy-6-methyl-2H-pyran-2-one (CHP) inhibits human ovarian cell proliferation by inducing apoptosis. Int. J. Clin. Exp. Pathol. 2015, 8, 155–163. Available online: https://e-century.us/files/ijcep/8/1/ijcep0003810.pdf (accessed on 7 April 2022).
- Yin, P.-H.; Liu, X.; Qiu, Y.-Y.; Cai, J.-F.; Qin, J.-M.; Zhu, H.-R.; Li, Q. Anti-tumor activity and apoptosis-regulation mechanisms of bufalin in various cancers: New hope for cancer patients. Asian Pac. J. Cancer Prev. 2012, 13, 5329–5343. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, K.; Kobayashi, S.; Nishikiori, T.; Nakagawa, T.; Tatsuta, K. NK10958P, a novel plant growth regulator produced by Streptomyces sp. J. Antibiot. 1997, 50, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; Mayumi, T.; Osada, H. Cell cycle arrest and antitumor activity of pironetin and its derivatives. Cancer Lett. 1998, 126, 29–32. [Google Scholar] [CrossRef]
- Turner, S.R.; Strohbach, J.W.; Tommasi, R.A.; Aristoff, P.A.; Johnson, P.D.; Shulnick, H.I.; Dolak, L.A.; Seest, E.P.; Tomich, P.K.; Bohanon, M.J.; et al. Tipranavir (PNU-140690): A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. J. Med. Chem. 1998, 41, 3467–3476. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Tice, C.M. The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin. Drug Discov. 2016, 11, 831–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, G.; Berkenbosch, T.; Benningshof, J.C.J.; Stumpfe, D.; Bajorath, J. Charting biologically relevant spirocyclic compound space. Chem. Eur. J. 2017, 23, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.M.; Monforte, M.T.; Miceli, N.; Ranerill, E. Anticonvulsant and sedative effects of some 5-substituted bromopyrazolinicspirobarbiturates. Farmaco 2001, 56, 459–461. [Google Scholar] [CrossRef]
- Kim, S.-H.; Pudzianowski, A.T.; Leavitt, K.J.; Barbosa, J.; McDonnell, P.A.; Metzler, W.J.; Rankin, B.M.; Liu, R.; Vaccaro, W.; Pitts, W. Structure-based design of potent and selective inhibitors of collagenase-3 (MMP-13). Bioorg. Med. Chem. Lett. 2005, 15, 1101–1106. [Google Scholar] [CrossRef]
- Fraser, W.; Suckling, C.J.; Wood, H.C.S. Latent inhibitors. Part 7. Inhibition of dihydro-orotate dehydrogenase by spirocyclopropanobarbiturates. J. Chem. Soc. Perkin Trans. 1 1990, 1, 3137–3144. [Google Scholar] [CrossRef]
- Duan, J.; Jiang, B.; Chen, L.; Lu, Z.; Barbosa, J.; Pitts, W.J. Barbituric Acid Derivatives as Inhibitors of the TNF-Alpha Convertingenzyme (TACE) and/or Matrix Metalloproteinases. U.S. Patent WO2003053941, 3 July 2003. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2003053941 (accessed on 7 April 2022).
- Elinson, M.N.; Dorofeeva, E.O.; Vereshchagin, A.N.; Nasybullin, R.F.; Egorov, M.P. Electrocatalytic stereoselective transformation of aldehydes and two molecules of pyrazolin-5-one into (R*,R*)-bis(spiro-2,4-dihydro-3H-pyrazol-3-one)cyclopro- panes. Catal. Sci. Technol. 2015, 5, 2384–2387. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Elinson, M.N.; Egorov, M.P. The first electrocatalytic stereoselective multicomponent synthesis of cyclopropanecarboxylic acid derivatives. RCS Adv. 2015, 5, 98522–98526. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Elinson, M.N.; Dorofeeva, E.O.; Stepanov, N.O.; Zaimovskaya, T.A.; Nikishin, G.I. Electrocatalytic and chemical methods in MHIRC reactions: The first example of the multicomponent assembly of medicinally relevant spirocyclopropylbarbiturates from three different molecules. Tetrahedron 2013, 69, 1945–1952. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Elinson, M.N.; Dorofeeva, E.O.; Zaimovskaya, T.A.; Stepanov, N.O.; Gorbunov, S.V.; Belyakov, P.A.; Nikishin, G.I. Electrocatalytic and chemical assembling of N,N′-dialkylbarbituric acids and aldehydes: Efficient cascade approach to the spiro[furo[2,3-d]pyrimidine-6,5′-pyrimidine]-2,2′,4,4′,6′-(1′H,3H,3′H)-pentone framework. Tetrahedron 2012, 68, 1198–1206. [Google Scholar] [CrossRef]
- Elinson, M.N.; Vereshchagin, A.N.; Stepanov, N.O.; Belyakov, P.A.; Nikishin, G.I. Cascade assembly of N,N′-dialkylbarbituric acids and aldehydes: A simple and efficient one-pot approach to the substituted 1,5-dihydro-2H,2′H-spiro(furo[2,3-d]pyrimidine-6,5′-pyrimidine)-2,2′,4,4′,6′(1′H,3H,3′H)-pentone framework. Tetrahedron Lett. 2010, 51, 6598–6601. [Google Scholar] [CrossRef]
- Bruker APEX-III; Bruker AXS Inc.: Madison, WI, USA, 2019.
- Krause, A.L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dorofeeva, E.O.; Elinson, M.N.; Vereshchagin, A.N.; Stepanov, N.O.; Bushmarinov, I.S.; Belyakov, P.A.; Sokolova, O.O.; Nikishin, G.I. Electrocatalysis in MIRC reaction strategy: Facile stereoselective approach to medicinally relevant spirocyclopropylbarbiturates from barbituric acids and activated olefins. RCS Adv. 2012, 2, 4444–4452. [Google Scholar] [CrossRef]
- Elinson, M.N.; Fedukovich, S.K.; Vereshchagin, A.N.; Dorofeev, A.S.; Dmitriev, D.V.; Nikishin, G.I. Electrocatalytic transformation of malononitrile and cycloalkylidenemalononitriles into spirobicyclic and spirotricyclic compounds containing 1,1,2,2-tetracyanocyclopropane fragment. Russ. Chem. Bull. 2003, 52, 2235–2240. [Google Scholar] [CrossRef]
- Elinson, M.N.; Lizunova, T.L.; Dekaprilevich, M.O.; Struchkov, Y.T.; Nikishin, G.I. Electrochemical cyclotrimerization of cyanoacetic ester into trans-1,2,3-tricyanocyclopropane-1,2,3-tricarboxylate. Mendeleev Commun. 1993, 3, 192–193. [Google Scholar] [CrossRef]
- Flare, Version 5.0.0; Cresset: Litlington, UK, 2021; Available online: http://www.cresset-group.com/flare/ (accessed on 7 April 2022).
- Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation. J. Chem. Inf. Model. 2006, 46, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.R.; Mackey, M.D. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein–Ligand Complexes. J. Med. Chem. 2019, 62, 3036–3050. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Firth-Clark, S.; Tosco, P.; Mey, A.S.J.S.; Mackey, M.; Michel, J. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J. Chem. Inf. Model. 2020, 60, 3120–3130. [Google Scholar] [CrossRef] [PubMed]
- Lead Finder, Version 2104 Build 1; BioMolTech: Toronto, ON, Canada, 2021; Available online: http://www.cresset-group.com/lead-finder/ (accessed on 7 April 2022).
- Battles, M.; Langedijk, J.; Furmanova-Hollenstein, P.; Chaiwatpongsakorn, S.; Costello, H.M.; Kwanten, L.; Vranckx, L.; Vink, P.; Jaensch, S.; Jonckers, T.H.M.; et al. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 2016, 12, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwachukwu, J.C.; Srinivasan, S.; Bruno, N.E.; Nowak, J.; Wright, N.J.; Minutolo, F.; Rangarajan, E.S.; Izard, T.; Yao, X.-Q.; Grant, B.; et al. Systems Structural Biology Analysis of Ligand Effects on ERα Predicts Cellular Response to Environmental Estrogens and Anti-hormone Therapies. Cell Chem. Biol. 2017, 24, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Dou, J.; Wei, L.; Li, S.; Liu, J. The selective estrogen receptor modulators in breast cancer prevention. Cancer Chemother. Pharmacol. 2016, 77, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Bondesson, M.; Hao, R.; Lin, C.-Y.; Williams, C.; Gustafsson, J.-Å. Estrogen receptor signaling during vertebrate development. Biochim. Biophys. Acta 2015, 1849, 142–151. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, R.L.; da Silva, F.B.; Ribeiro, R.F.; Stefanon, I. Sex hormones in the cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2014, 18, 89–103. [Google Scholar] [CrossRef]
- Arnal, J.-F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef]
- Hirschberg, A.L. Sex hormones, appetite and eating behaviour in women. Maturitas 2012, 71, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.R. Sources of estrogen and their importance. J. Steroid Biochem. Mol. 2003, 86, 225–230. [Google Scholar] [CrossRef]
- Turgeon, J.L.; McDonnell, D.P.; Martin, K.A.; Wise, P.M. Hormone therapy: Physiological complexity belies therapeutic simplicity. Science 2004, 304, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Rachadech, W.; Kato, Y.; El-Magd, R.M.A.; Shishido, Y.; Kim, S.H.; Sogabe, H.; Maita, N.; Yorita, K.; Fukui, K. P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency. J. Biochem. 2020, 168, 557–567. [Google Scholar] [CrossRef]
- Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological functions of D-amino acid oxidases: From yeast to humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
- Madeira, C.; Freita, M.E.; Vargas-Lopes, C.; Wolosker, H.; Panizzutti, R. Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr. Res. 2008, 101, 76–83. [Google Scholar] [CrossRef]
- Boks, M.P.M.; Rietkerk, T.; van de Beek, M.H.; Sommer, I.E.; de Koning, T.J.; Kahn, R.S. Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur. Neuropsychopharmacol. 2007, 17, 567–572. [Google Scholar] [CrossRef]
- Verrall, L.; Burnet, P.W.J.; Betts, J.F.; Harrison, P.J. The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Mol. Psychiatry 2010, 15, 122–137. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
Entry | Solvent | Mediator | Time/min | Electricity F/mol | Yield of 2a (%) |
---|---|---|---|---|---|
1 | MeOH | LiBr | 64 | 2.0 | 48 |
2 | MeOH | NaBr | 64 | 2.0 | 52 |
3 | MeOH | KBr | 64 | 2.0 | 50 |
4 | MeOH | LiI | 64 | 2.0 | 54 |
5 | MeOH | NaI | 64 | 2.0 | 59 |
6 | MeOH | KI | 64 | 2.0 | 57 |
7 | MeOH | NH4I | 64 | 2.0 | 43 |
8 | EtOH | NaI | 64 | 2.0 | 52 |
9 | n-PrOH | NaI | 64 | 2.0 | 48 |
10 | MeOH | NaI | 70 | 2.2 | 63 |
11 | MeOH | NaI | 77 | 2.4 | 67 |
12 | MeOH | NaI | 83 | 2.6 | 70 |
13 | MeOH | NaI | 90 | 2.8 | 82 |
14 | MeOH | NaI | 96 | 3.0 | 71 |
Structure | 2a | 2b | 2c | 2d | 2e | 2f | 2g | 2h | 2i | AVG |
---|---|---|---|---|---|---|---|---|---|---|
1m9m | –8.7 | –9.5 | –8.9 | –9.2 | –8.5 | –9.1 | –8.0 | –7.9 | –9.1 | –8.8 |
2xas | –8.4 | –9.3 | –8.9 | –10.0 | –8.6 | –10.4 | –8.1 | –7.9 | –9.2 | –9.0 |
4iw8 | –9.0 | –9.5 | –9.2 | –9.6 | –8.6 | –9.7 | –8.4 | –8.6 | –10.0 | –9.2 |
4p6x | –8.7 | –9.0 | –9.0 | –10.1 | –8.4 | –8.8 | –8.4 | –8.3 | –8.7 | –8.8 |
5tlt | –8.8 | –9.3 | –8.7 | –9.5 | –8.8 | –9.4 | –8.5 | –8.4 | –10.0 | –9.0 |
5vv1 | –8.9 | –9.3 | –9.1 | –9.4 | –8.5 | –9.6 | –7.3 | –7.2 | –9.5 | –8.8 |
6kbp | –9.8 | –9.3 | –9.9 | –10.2 | –8.3 | –9.8 | –7.1 | –8.0 | –9.2 | –9.1 |
6nh5 | –8.7 | –9.3 | –8.8 | –9.4 | –8.5 | –9.3 | –7.8 | –7.7 | –9.4 | –8.8 |
6nhb | –9.1 | –9.6 | –9.2 | –9.6 | –8.2 | –9.1 | –7.8 | –7.7 | –9.5 | –8.9 |
6ud5 | –8.7 | –9.2 | –8.6 | –9.5 | –8.8 | –9.5 | –7.9 | –8.2 | –9.5 | –8.9 |
2axa | –6.3 | –4.9 | –4.8 | –5.2 | –4.1 | –3.8 | –4.9 | –4.9 | –4.9 | –4.9 |
3vng | –5.9 | –5.4 | –5.6 | –7.0 | –6.4 | –5.5 | –4.6 | –5.7 | –6.2 | –5.8 |
5i6x | –4.3 | –4.8 | –4.6 | –4.7 | –4.9 | –4.7 | –4.4 | –4.4 | –4.6 | –4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhkova, Y.E.; Elinson, M.N.; Vereshchagin, A.N.; Karpenko, K.A.; Ryzhkov, F.V.; Ushakov, I.E.; Egorov, M.P. Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature. Chemistry 2022, 4, 615-629. https://doi.org/10.3390/chemistry4020044
Ryzhkova YE, Elinson MN, Vereshchagin AN, Karpenko KA, Ryzhkov FV, Ushakov IE, Egorov MP. Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature. Chemistry. 2022; 4(2):615-629. https://doi.org/10.3390/chemistry4020044
Chicago/Turabian StyleRyzhkova, Yuliya E., Michail N. Elinson, Anatoly N. Vereshchagin, Kirill A. Karpenko, Fedor V. Ryzhkov, Ivan E. Ushakov, and Mikhail P. Egorov. 2022. "Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature" Chemistry 4, no. 2: 615-629. https://doi.org/10.3390/chemistry4020044
APA StyleRyzhkova, Y. E., Elinson, M. N., Vereshchagin, A. N., Karpenko, K. A., Ryzhkov, F. V., Ushakov, I. E., & Egorov, M. P. (2022). Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature. Chemistry, 4(2), 615-629. https://doi.org/10.3390/chemistry4020044