Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery
Abstract
1. Introduction
2. Overview of AuQDs Synthesis
3. Comparative Analysis of Nanomaterials for Bioimaging Applications
4. Properties and Synthesis of Gold Quantum Dots
Synthesis Method | Key Parameters | Morphology/ Size | Biomedical Applications | References |
---|---|---|---|---|
Chemical Reduction | Gold salt e.g., HAuCl4), reducing agents (e.g., BSA), pH, temperature control. | 1–10 nm, spherical, uniform dispersion. | Bioimaging, biosensing, drug delivery (e.g., tumor targeting). | [17,21,33] |
Hydrothermal Synthesis | High temperature/pressure, reaction time, pH modulation. | <5 nm, tunable charge/surface properties. | pH-responsive drug release, bioimaging (e.g., thiocyanate detection in biological fluids). | [18,29,34] |
Laser Ablation | Laser power, solvent type, gold target purity. | High purity, 1–5 nm, minimal aggregation. | Photothermal therapy, high-resolution imaging (no chemical residues). | [19,35,36] |
Microwave-Assisted | Microwave power, reaction time, precursor concentration. | Hybrid structures (e.g., AuQD-GQD), 2–8 nm. | Energy conversion (solar cells), catalytic biosensing (e.g., glucose detection). | [21,31,37] |
In Situ with GQDs | GQD concentration, mixing ratio, no external reductants. | Core–shell hybrids, 3–7 nm. | Biocompatible drug carriers, real-time cellular tracking. | [21,38,39] |
4.1. Applications in Bioimaging and Energy
4.2. Fluorescence Mechanisms and Environmental Dependence
4.3. Practical Implications and Future Prospects
5. Overview of AuQDs in Cancer Applications
Mechanisms of Glioma Stem Cell Targeting by GQDs
6. Overview of AuQD Biodistribution
6.1. Biodistribution Characteristics
6.2. Toxicity Considerations
6.3. Quantum Optics and Informatics
7. Plasmonic Properties of Gold Quantum Dots
7.1. Quantum Confinement and Fluorescence
7.2. Interaction with Plasmonic Nanoparticles
7.3. Challenges of Fluorescence Quenching
7.4. Applications in Organic Solar Cells
7.5. Key Challenges in Functionalizing Quantum Dots with Gold
7.5.1. Fluorescence Quenching
7.5.2. Control of Spacing
7.5.3. Structural Integrity of Quantum Dots
7.5.4. Size Limitations
7.5.5. Thick Gold Shells
7.5.6. Limited Experimental Demonstrations
7.5.7. Ligand-Mediated Targeted Delivery of AuQDs in Cancer Models
8. Surface Modification Methods for Gold Quantum Dots
8.1. DNA Conjugation
8.2. Chitosan Encapsulation
8.3. Surface Coating with Thiol-Modified Ligands
8.4. Click Chemistry
8.5. Gold Nanozymes
8.6. Hybridization with Other Nanoparticles
8.7. Preclinical Evaluation of AuQDs for Tumor-Targeted Therapeutics
9. Drug Release Mechanisms from Gold Quantum Dots
9.1. pH-Responsive Release
- The hydrolysis of acid-sensitive bonds (e.g., hydrazone, Schiff base), breaking drug-carrier linkages.
- The protonation of carriers, altering charge states and weakening drug binding via electrostatic repulsion.
- The swelling of hydrogels, increasing mesh size and facilitating drug diffusion.
- Ion exchange processes that displace drug ions from carriers.
- Exploiting acidic pathological sites (such as tumors and inflammation) for targeted release.
9.2. Photothermal and Ultrasound Stimulation
9.3. Enzyme-Triggered Release
9.4. Combination of Multiple Stimuli
9.5. Monitoring Drug Release
9.6. Emerging Strategies for Precision Delivery Using AuQDs
10. Future Outlook of AuQDs in Medical Applications
10.1. Enhanced Imaging Techniques
10.2. Targeted Drug Delivery
10.3. Biosensing Applications
10.4. Overcoming Biological Barriers
10.5. Safety and Biocompatibility
- Organ accumulation and inflammation: AuQDs tend to accumulate in organs such as the liver, spleen, kidneys, and lungs. This accumulation may trigger inflammatory responses, potentially leading to tissue damage and toxicity.
- Oxidative stress and mitochondrial dysfunction: Studies on similar quantum dots, particularly cadmium-based ones, indicate that released metal ions can bind mitochondrial proteins, causing oxidative stress, DNA damage, mitochondrial dysfunction, and autophagy. These mechanisms may also apply to AuQDs due to their metallic nature.
- Immune system effects: The immune response to accumulated quantum dots, including infiltration by inflammatory cells and possible immune disruption, is an important concern.
- Histopathological changes: Long-term exposure is evaluated for tissue abnormalities such as fibrosis or cellular damage in organs where AuQDs accumulate, notably the liver and spleen.
- Genotoxicity and apoptosis: Investigations include DNA fragmentation and apoptosis induction in cells exposed to quantum dots, which could translate into long-term carcinogenic or degenerative risks.
10.6. Regulatory and Market Considerations
11. AuQDs in Cancer Combination Therapy
11.1. Mechanisms of Action
- Dual Treatment Approaches
- Recent studies have shown that AuQDs can significantly enhance the efficacy of other treatments, such as cold atmospheric plasma (CAP). For example, a study on glioblastoma demonstrated that combining CAP with AuQDs induced cytotoxicity via Fas/TRAIL-mediated pathways, leading to a marked reduction in cell viability compared to treatment with AuQDs alone. This dual approach not only increased cancer cell death, but also inhibited cell motility and sphere formation, both key indicators of cancer aggressiveness. By combining AuQDs with CAP, researchers enhanced therapeutic effects, rendering cancer cells more susceptible to treatment [94].
- 2.
- Targeted Drug Delivery
- AuQDs are also integrated into multifunctional nanoparticles for targeted drug delivery. Hybrid nanoparticles combining AuQDs with mesoporous silica and other agents have been developed to deliver chemotherapeutic drugs directly to cancer cells. These systems can be further conjugated with targeting ligands to improve specificity for tumor cells, thereby minimizing systemic toxicity. This targeted approach not only enhances the precision of cancer therapies, but also reduces side effects by concentrating therapeutic agents at the tumor site, improving the overall therapeutic index [95].
11.2. Imaging and Diagnostics
11.3. Safety and Efficacy
11.4. Future Perspectives
12. Conclusions and Future Perspective
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AuQDs | Gold Quantum Dots |
AuNPs | Gold Nanoparticles |
QDs | Quantum Dots |
BSA | Bovine Serum Albumin |
LSPR | Localized Surface Plasmon Resonance |
UV | Ultraviolet |
OSCs | Organic Solar Cells |
GQDs | Graphene Quantum Dots |
TEM | Transmission Electron Microscopy |
CT | Computed Tomography |
EPR | Enhanced Permeability and Retention (effect) |
PEG | Polyethylene Glycol |
EpCAM | Epithelial Cell Adhesion Molecule |
HER2 | Human Epidermal Growth Factor Receptor 2 |
CdSe | Cadmium Selenide |
CdTe | Cadmium Telluride |
ZnS | Zinc Sulfide |
MSN | Mesoporous Silica Nanoparticles |
EPI | Epirubicin (a chemotherapy drug) |
Apt | Aptamer |
NPs | Nanoparticles |
ROS | Reactive Oxygen Species |
References
- Phengdaam, A.; Phetsang, S.; Jonai, S.; Shinbo, K.; Kato, K.; Baba, A. Gold nanostructures/quantum dots for the enhanced efficiency of organic solar cells. Nanoscale Adv. 2024, 6, 3494–3512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Algar, W.R.; Massey, M.; Krull, U.J. The Application of Quantum Dots, Gold Nanoparticles and Molecular Switches to Optical Nucleic-Acid Diagnostics. TrAC Trends Anal. Chem. 2009, 28, 292–306. [Google Scholar] [CrossRef]
- Messersmith, R.E.; Nusz, G.J.; Reed, S.M. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles To Monitor Lipid Membrane Assembly and Protein Binding. J. Phys. Chem. C 2013, 117, 26725–26733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdel-Salam, M.; Omran, B.; Whitehead, K.; Baek, K.-H. Superior Properties and Biomedical Applications of Microorganism-Derived Fluorescent Quantum Dots. Molecules 2020, 25, 4486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, N.; Shah, A.A.; Leung, P.K.; Khan, S.; Sun, K.; Zhu, X.; Liao, Q. A Review of Third Generation Solar Cells. Processes 2023, 11, 1852. [Google Scholar] [CrossRef]
- Phetsang, S.; Nootchanat, S.; Lertvachirapaiboon, C.; Ishikawa, R.; Shinbo, K.; Kato, K.; Mungkornasawakul, P.; Ounnunkad, K.; Baba, A. Enhancement of organic solar cell performance by incorporating gold quantum dots (AuQDs) on a plasmonic grating. Nanoscale Adv. 2020, 2, 2950–2957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cogan, N.M.B.; McClelland, K.P.; Peter, C.Y.M.; Rodríguez, C.C.; Fertig, A.A.; Amin, M.; Brennessel, W.W.; Krauss, T.D.; Matson, E.M. Efficient Hole Transfer from CdSe Quantum Dots Enabled by Oxygen-Deficient Polyoxovanadate-Alkoxide Clusters. Nano Lett. 2023, 23, 10221–10227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Qin, L.; Tang, M.; Kang, S.Z.; Li, X. Bi-functional gold nanoparticles composites regulated by graphene quantum dots with various surface states. Results Chem. 2021, 3, 100171. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Younis, M.A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, H.M. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int. J. Nanomed. 2022, 17, 1951–1970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeVree, B.T.; Steiner, L.M.; Głazowska, S.; Ruhnow, F.; Herburger, K.; Persson, S.; Mravec, J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnol. Biofuels 2021, 14, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Golombek, S.K.; May, J.-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, Y.; Zhang, L.; Wu, R.; Li, L.S. Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Res. 2024, 17, 10309–10331. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Z.; Zhang, L.; Yang, W. Synthesis of Au Nanoclusters by Reduction of Bovine Serum Albumin: The Role of Sodium Hydroxide. Langmuir 2023, 39, 6748–6755. [Google Scholar] [CrossRef] [PubMed]
- Burke, W.; Korngiebel, D.M.; Cho, M. Closing the gap between knowledge and clinical application: Challenges for genomic translation. PLoS Genet. 2015, 11, e1004978. [Google Scholar] [CrossRef]
- Rahban, M.; Ahmad, F.; Piatyszek, M.A.; Haertlé, T.; Saso, L.; Saboury, A.A. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv. 2023, 13, 35947–35963. [Google Scholar] [CrossRef] [PubMed]
- Perrault, S.D. Gold Nanoparticles for Efficient Tumour Targeting: Materials, Biology & Application. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Ahmed, S.R.; Sherazee, M.; Srinivasan, S.; Rajabzadeh, A.R. Positively Charged Gold Quantum Dots: An Nanozymatic “Off-On” Sensor for Thiocyanate Detection. Foods 2022, 11, 1189. [Google Scholar] [CrossRef]
- Subhan, A.; Mourad, A.-H.I.; Al-Douri, Y. Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. Nanomaterials 2022, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
- Kustov, L.; Vikanova, K. Synthesis of Metal Nanoparticles under Microwave Irradiation: Get Much with Less Energy. Metals 2023, 13, 1714. [Google Scholar] [CrossRef]
- Chen, W.; Shen, J.; Chen, S.; Yan, J.; Zhang, N.; Zheng, K.; Liu, X. Synthesis of graphene quantum dot-stabilized gold nanoparticles and their application. RSC Adv. 2019, 9, 21215–21219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, K.J.; Ahmed, T.; Gautam, P.; Sadhu, A.S.; Lien, D.-H.; Chen, S.-C.; Chueh, Y.-L.; Kuo, H.-C. Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials 2021, 11, 1549. [Google Scholar] [CrossRef]
- Xiao, D.; Qi, H.; Teng, Y.; Pierre, D.; Kutoka, P.T.; Liu, D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Res. Lett. 2021, 16, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef]
- Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater. 2019, 94, 44–63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirsch, W.D.B.; Weber, A.; Ferri, J.; Etges, A.; Neto, P.I.; Pereira, F.D.A.d.S.; Heitz, C. An Analysis of the Biocompatibility, Cytotoxicity, and Bone Conductivity of Polycaprolactone: An In Vivo Study. Polymers 2024, 16, 2271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuntamung, K.; Yaiwong, P.; Lertvachirapaiboon, C.; Ishikawa, R.; Shinbo, K.; Kato, K.; Ounnunkad, K.; Baba, A. The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells. R. Soc. Open Sci. 2021, 8, 210022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci. 2020, 21, 2480. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Valencia, C.A.; Reyes-Valderrama, M.I.; Escobar-Alarcón, L.; Garibay-Febles, V.; Rodríguez-Lugo, V. Effect of Concentration and pH on the Photoluminescent Properties of CQDs Obtained from Actinidia deliciosa. Crystals 2025, 15, 206. [Google Scholar] [CrossRef]
- Yamuna, B.; Kumar, V.S.S.B.; Ismael, K.; Mahammed, N.; Reddy, S.S.; Shahid, S.; Sowmya, G.; Reddy, L.T.K.; Kumar, B.R. Quantum Dots in Nanotechnology: Advances in Therapeutics, Drugs Delivery and Imaging. Int. J. Pharm. Investig. 2025, 15, 759–769. [Google Scholar] [CrossRef]
- Kong, J.; Wei, Y.; Zhou, F.; Shi, L.; Zhao, S.; Wan, M.; Zhang, X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024, 29, 2002. [Google Scholar] [CrossRef]
- Giroux, M.S.; Zahra, Z.; Salawu, O.A.; Burgess, R.M.; Ho, K.T.; Adeleye, A.S. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. Environ. Sci. Nano 2022, 9, 867–910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wax, T.J.; Dey, S.; Chen, S.; Luo, Y.; Zou, S.; Zhao, J. Excitation Wavelength-Dependent Photoluminescence Decay of Hybrid Gold/Quantum Dot Nanostructures. ACS Omega 2018, 3, 14151–14156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avti, P.K.; Maysinger, D.; Kakkar, A. Alkyne-azide “click” chemistry in designing nanocarriers for applications in biology. Molecules 2013, 18, 9531–9549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garehbaghi, S.; Ashrafi, A.M.; Adam, V.; Richtera, L. Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay. Mater. Today Bio 2023, 20, 100656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Lv, J.; Jia, Z. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection. Sensors 2017, 17, 1058. [Google Scholar] [CrossRef] [PubMed]
- Andresen, T.L.; Thompson, D.H.; Kaasgaard, T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy (Invited Review). Mol. Membr. Biol. 2010, 27, 353–363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, S.R.; Sherazee, M.; Srinivasan, S.; Rajabzadeh, A.R. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quantum dots hybrids. Food Chem. 2022, 379, 132152. [Google Scholar] [CrossRef] [PubMed]
- Etefa, H.F.; Dejene, F.B. Applications of Green Carbon Dots in Personalized Diagnostics for Precision Medicine. Int. J. Mol. Sci. 2025, 26, 2846. [Google Scholar] [CrossRef]
- Kortel, M.; Mansuriya, B.D.; Vargas Santana, N.; Altintas, Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines 2020, 11, 866. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Y.-M.; Kim, S.-E.; Park, J.-E. Strong coupling in plasmonic metal nanoparticles. Nano Converg. 2023, 10, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, J.; Hu, H.; Zheng, D.; Zhang, D.; Deng, Q.; Zhang, S.; Xu, H. Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano 2018, 12, 10393–10402. [Google Scholar] [CrossRef] [PubMed]
- Riley, E.A.; Hess, C.M.; Reid, P.J. Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes. Int. J. Mol. Sci. 2012, 13, 12487–12518. [Google Scholar] [CrossRef]
- Bentolila, L.A.; Ebenstein, Y.; Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med. 2009, 50, 493–496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, T.-Q.; Peng, B.; Shan, B.-Q.; Zong, Y.-X.; Jiang, J.-G.; Wu, P.; Zhang, K. Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. Nanomaterials 2020, 10, 261. [Google Scholar] [CrossRef]
- Ishikawa-Ankerhold, H.C.; Ankerhold, R.; Drummen, G.P.C. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17, 4047–4132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; et al. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nano Biotechnol. 2020, 18, 142. [Google Scholar] [CrossRef]
- Dar, M.S.; Tabish, T.A.; Thorat, N.D.; Swati, G.; Sahu, N.K. Photothermal therapy using graphene quantum dots. APL Bioeng. 2023, 7, 031502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, D.L.; Chung, T.S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Res. 2018, 147, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Iannazzo, D.; Espro, C.; Celesti, C.; Ferlazzo, A.; Neri, G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers 2021, 13, 3194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wahab, R.; Kaushik, N.; Khan, F.; Kaushik, N.K.; Lee, S.-J.; Choi, E.H.; A Al-Khedhairy, A. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via β-catenin downregulation in vitro. Int. J. Nanomed. 2019, 14, 1131–1148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, L.; Ju, L.; Cui, H. Chemiluminescent and Fluorescent Dual-Signal Graphene Quantum Dots and Their Application in Pesticide Sensing Arrays. J. Mater. Chem. C 2017, 5, 7753–7758. [Google Scholar] [CrossRef]
- Liebelt, B.D.; Shingu, T.; Zhou, X.; Ren, J.; Shin, S.A.; Hu, J.; Ulasov, I.V. Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells Int. 2016, 2016, 7849890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, J.; Liu, Y.; Chen, Y.; Ouyang, D.; Yang, G.; Yu, T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomed. 2018, 13, 5991–6007. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osorio, H.M.; Castillo-Solís, F.; Barragán, S.Y.; Rodríguez-Pólit, C.; Gonzalez-Pastor, R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 10539. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99 Pt A, 28–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamidu, A.; Pitt, W.G.; Husseini, G.A. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. Nanomaterials 2023, 13, 2566. [Google Scholar] [CrossRef]
- Lalwani, G.; D’AGati, M.; Khan, A.M.; Sitharaman, B. Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 2016, 105, 109–144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, e1904362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vefaghi, M.; Sedehi, H.R.; Ashkani, O.; Yar-Ahmadi, Y.; Tabak, Y. Recent advances in increasing the efficiency of solar cells using gold nanostructures/quantum dots, a comprehensive review. Charact. Appl. Nanomater. 2024, 8, 11533. [Google Scholar] [CrossRef]
- Phetsang, S.; Phengdaam, A.; Lertvachirapaiboon, C.; Ishikawa, R.; Shinbo, K.; Kato, K.; Mungkornasawakul, P.; Ounnunkad, K.; Baba, A. Investigation of a Gold Quantum Dot/Plasmonic Gold Nanoparticle System for Improvement of Organic Solar Cells. Nanoscale Adv. 2019, 1, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, Y.; Wang, H.; Hou, S. Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. 2019, 855, 113495. [Google Scholar] [CrossRef]
- Elamkulavan, H.J.; Purayil, N.P.; Subramaniam, S.; Keloth, C. Impact of Tamm plasmon structures on fluorescence and optical nonlinearity of graphene quantum dots. Sci. Rep. 2024, 14, 13255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pangdam, A.; Nootchanat, S.; Ishikawa, R.; Shinbo, K.; Kato, K.; Kaneko, F.; Thammacharoen, C.; Ekgasit, S.; Baba, A. Effect of Urchin-Like Gold Nanoparticles in Organic Thin-Film Solar Cells. Phys. Chem. Chem. Phys. 2016, 18, 18500–18506. [Google Scholar] [CrossRef]
- Ji, X.; Peng, F.; Zhong, Y.; Su, Y.; He, Y. Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf. B 2014, 124, 132–139. [Google Scholar] [CrossRef]
- Ganesh, K.M.; Bhaskar, S.; Cheerala, V.S.K.; Battampara, P.; Reddy, R.; Neelakantan, S.C.; Reddy, N.; Ramamurthy, S.S. Review of Gold Nanoparticles in Surface Plasmon-Coupled Emission Technology: Effect of Shape, Hollow Nanostructures, Nano-Assembly, Metal–Dielectric and Heterometallic Nanohybrids. Nanomaterials 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Y.; Gao, X. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldeek, F.; Ji, X.; Mattoussi, H. Quenching of Quantum Dot Emission by Fluorescent Gold Clusters: What It Does and Does Not Share with the Förster Formalism. J. Phys. Chem. C 2013, 117, 15429–15437. [Google Scholar] [CrossRef]
- Piella, J.; Bastús, N.G.; Puntes, V. Size-controlled Synthesis of sub-10 nm Citrate-stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar] [CrossRef]
- Singh, U.; Morya, V.; Rajwar, A.; Chandrasekaran, A.R.; Datta, B.; Ghoroi, C.; Bhatia, D. DNA-Functionalized Nanoparticles for Targeted Biosensing and Biological Applications. ACS Omega 2020, 5, 30767–30774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, W.B.; Zhang, Y. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J. Biomed. Mater. Res. Part A 2005, 75, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Mahapatra, D.K.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, S.; Peng, G.; Ma, Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. Nanomaterials 2024, 14, 2014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demers, L.M.; Mirkin, C.A.; Mucic, R.C.; Reynolds, R.A.; Letsinger, R.L.; Elghanian, R.; Viswanadham, G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 2000, 72, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef]
- Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release 2010, 148, 122–127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chu, S.; Shi, X.; Tian, Y.; Gao, F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front. Oncol. 2022, 12, 855019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Agarwal, P.; Liang, Y.; Xu, J.; Zhao, G.; Tkaczuk, K.H.; Lu, X.; He, X. Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials 2018, 180, 265–278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273–12286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, M.; Zhu, Y.; Guan, W.; Lu, C. Quantitative Measurement of Drug Release Dynamics within Targeted Organelles Using Förster Resonance Energy Transfer. Small 2023, 19, e2206866. [Google Scholar] [CrossRef] [PubMed]
- Cormode, D.P.; Naha, P.C.; Fayad, Z.A. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol. Imaging 2014, 9, 37–52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bohunicky, B.; Mousa, S.A. Biosensors: The new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 2010, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ansari, A.A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S. Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors 2010, 10, 6535–6581. [Google Scholar] [CrossRef]
- Lin, X.; Chen, T. A review of in vivo toxicity of quantum dots in animal models. Int. J. Nanomed. 2023, 18, 8143–8168. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.K.; Kaushik, N.; Wahab, R.; Bhartiya, P.; Linh, N.N.; Khan, F.; Al-Khedhairy, A.A.; Choi, E.H. Cold Atmospheric Plasma and Gold Quantum Dots Exert Dual Cytotoxicity Mediated by the Cell Receptor-Activated Apoptotic Pathway in Glioblastoma Cells. Cancers 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Zheng, Y.; Qi, G.; Zhang, Y.; Wang, S.; He, J.; Chen, X.; Zeng, D.; Liu, L. Tannic acid cross-linked polyethylenimine quantum dot nanoclusters for efficient DNA release. Int. J. Biol. Macromol. 2025, 310, 143055. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, Y.; Zeng, D.; Wang, M.; Zhang, Y.; Liu, G.; Chen, X.; Liu, L. Integrated cell membrane encapsulated PQDs-TK quantum dot nanoclusters with ROS-responsive triggering for efficient and visualized DNA delivery. J. Colloid Interface Sci. 2025, 683, 393–410. [Google Scholar] [CrossRef]
- He, J.; Hu, P.; Wang, M.; Qi, G.; Huang, H.; Zeng, D.; Guan, J.; Lv, P.; Liu, L. Utilization of chitosan nanocomposites loaded with quantum dots enables efficient and traceable DNA delivery. Colloids Surf. B Biointerfaces 2025, 245, 114221. [Google Scholar] [CrossRef]
- Liu, L.; Qi, G.; Wang, M.; He, J.; Zheng, Y.; Guan, J.; Lv, P.; Zeng, D. Construction of intelligent response gene vector based on MOF/Fe3O4/AuNRs for tumor-targeted gene delivery. Int. J. Biol. Macromol. 2024, 277, 13431. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yukawa, H.; Sato, K.; Baba, Y. Theranostics Applications of Quantum Dots in Regenerative Medicine, Cancer Medicine, and Infectious Diseases. Adv. Drug Deliv. Rev. 2023, 200, 114863. [Google Scholar] [CrossRef]
- Mazahir, F.; Sharma, R.; Yadav, A.K. Bioinspired theranostic quantum dots: Paving the road to a new paradigm for cancer diagnosis and therapeutics. Drug Discov. Today 2023, 28, 103822. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, A.; Rangra, S.; Patil, R.; Desai, N.; Jyothi, V.G.S.S.; Salave, S.; Amate, P.; Benival, D.; Kommineni, N. Receptor-Targeted Nanomedicine for Cancer Therapy. Receptors 2024, 3, 323–361. [Google Scholar] [CrossRef]
- Wang, M.; He, J.; Qi, G.; Shi, Y.; Zeng, D.; Chen, X.; Liu, L. Potential applications of PEI loaded graphene oxide quantum dots in safe and efficient DNA delivery. J. Drug Deliv. Sci. Technol. 2024, 101, 105146. [Google Scholar] [CrossRef]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef]
- Masucci, M.; Karlsson, C.; Blomqvist, L.; Ernberg, I. Bridging the Divide: A Review on the Implementation of Personalized Cancer Medicine. J. Pers. Med. 2024, 14, 561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pareek, A.; Kumar, D.; Pareek, A.; Gupta, M.M. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers 2025, 17, 878. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murugesan, A.; Li, H.; Shoaib, M. Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal–Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications. Foods 2025, 14, 2060. [Google Scholar] [CrossRef]
- Pallares, R.M.; Kiessling, F.; Lammers, T. Clinical translation of quantum dots. Nanomedicine 2024, 19, 2433–2435. [Google Scholar] [CrossRef]
- Imran, S.M.; Shao, G.N.; Kim, H. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal. B Environ. 2016, 180, 263–270. [Google Scholar]
- Le, N.; Kim, K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int. J. Mol. Sci. 2023, 24, 12682. [Google Scholar] [CrossRef]
- Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.; Abdel-Aleem, J.A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083. [Google Scholar] [CrossRef]
- Costa, M.C.; Echeverrigaray, S.G.; Andreeva, D.V.; Novoselov, K.S.; Neto, A.H.C. Two-dimensional quantum dots: From photoluminescence to biomedical applications. Solids 2022, 3, 578–602. [Google Scholar] [CrossRef]
- Biswas, P.; Saha, A.; Sridhar, B.; Patel, A.; Desai, B.M.A. Quantum Dots as Functional Nanosystems for Enhanced Biomedical Applications. arXiv 2025, arXiv:2505.15705. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
Property | AuQDs | Traditional Quantum Dots (QDs) | Gold Nanoparticles (GNPs) |
---|---|---|---|
Size | Typically < 2 nm | Varies widely; often larger than AuQDs | Generally larger than AuQDs, often in the range of 5–100 nm |
Fluorescence | Strong fluorescence, tunable by size and surface | High brightness, resistance to photobleaching | Limited fluorescence; primarily used for X-ray imaging |
Biocompatibility | High biocompatibility and low toxicity | Varies; some heavy metal QDs can be toxic | Generally biocompatible, but toxicity can vary with size and surface modification |
Surface Plasmon Resonance | Not applicable | Not applicable | Exhibits strong surface plasmon resonance, enhancing imaging contrast |
Applications | Bioimaging, cellular tracking, targeted imaging | Intracellular tracking, diagnostics, drug delivery | X-ray contrast agents, tumor detection |
Stability | Good stability in biological environments | Stability can vary; often requires surface passivation | Generally stable but can aggregate if not properly functionalized |
Feature | AuQDs (Gold Quantum Dots) | Carbon Quantum Dots (CQDs) | PEI Quantum Dots (PEI-QDs) |
---|---|---|---|
Material Composition | Gold nanoparticles | Carbon-based nanoparticles with sp2/sp3 carbon, often doped with N, O, S | Carbon QDs functionalized with polyethyleneimine (PEI) |
Size | Typically < 10 nm (varies by synthesis) | Generally < 10 nm, often 1–5 nm | Similar size range as CQDs |
Photoluminescence (PL) | Strong, tunable emission depending on size and surface | Excitation-dependent emission with broad PL bands; QY varies widely (3–90%) | Enhanced fluorescence due to PEI passivation; tunable multiple-wavelength emission |
Quantum Yield (QY) | Moderate to high (specific values vary by synthesis) | Variable; can reach up to 41% or higher depending on synthesis conditions | Improved QY compared to bare CQDs due to surface passivation |
Stability | High chemical and photostability | Good stability but generally shorter fluorescence lifetime than semiconductor QDs | Enhanced stability and fluorescence intensity due to PEI coating |
Biocompatibility | Generally good, low toxicity | High biocompatibility, low or no toxicity | Good biocompatibility; used in bioimaging and gene delivery |
Synthesis Methods | Chemical reduction, seed-mediated growth | Hydrothermal, pyrolysis, polymerization of small molecules | Hydrothermal synthesis followed by PEI functionalization |
Surface Functionalization | Possible with ligands for targeted applications | Rich surface chemistry with –COOH, –OH, –NH2 groups allowing easy functionalization | PEI provides amine groups for enhanced interaction with biological molecules |
Applications | Bioimaging, sensing, catalysis, photothermal therapy | Bioimaging, drug delivery, sensing, photovoltaics, catalysis | Bioimaging, gene delivery, nucleic acid transfection, sensing |
Toxicity | Low compared to heavy metal QDs like CdSe, but depends on coating | Low toxicity; eco-friendly and biocompatible | Low toxicity; PEI coating reduces cytotoxicity compared to bare QDs |
Advantages | High photostability, tunable optical properties | Low cost, eco-friendly, easy synthesis, versatile surface chemistry | Enhanced fluorescence and cellular uptake due to PEI; multifunctional for bioapplications |
Disadvantages | Potential aggregation, costlier than carbon QDs | Broader emission peaks, shorter fluorescence lifetime than semiconductor QDs | Possible cytotoxicity at high PEI concentrations; synthesis complexity |
Application | Functionalization | Key Properties | Performance Metrics | References |
---|---|---|---|---|
Cancer Therapy |
|
| In total, 16% tumor growth inhibition, 30% enhanced drug delivery. | [12,49,94] |
Bioimaging |
|
| High-resolution live-cell imaging, multiplexed detection. | [23,44,96] |
Biosensing |
|
| LOD: 0.1 nM for thiocyanate ions. | [18,63,76] |
Drug Delivery |
|
| In total, 90% release under dual stimuli (pH + NIR). | [36,78,82] |
Crossing BBB |
|
| Enhanced brain tumor targeting. | [10,57,84] |
Characterization | Technique | Observations | Impact on Applications | References |
---|---|---|---|---|
Size/Shape | TEM, SEM | Spherical/cluster morphology, 1–10 nm. | Determines quantum confinement and fluorescence. | [17,19,71] |
Optical Properties | UV-Vis, Fluorescence Spectroscopy | Absorption in UV, emission tunable (400–700 nm). | Bioimaging sensitivity and multiplexing. | [28,40,47] |
Surface Charge | Zeta Potential | Positive/negative charge (hydrothermal synthesis). | Cellular uptake efficiency (e.g., tumor targeting). | [18,30,57] |
Biocompatibility | Cytotoxicity Assays (MTT) | Low toxicity (e.g., >80% cell viability at 100 µg/mL). | Safe for in vivo use (e.g., glioma therapy). | [26,52,97] |
Drug Release | FRET, HPLC | pH/enzyme-triggered kinetics (e.g., 70% release in 6 h at pH 5.4). | Controlled therapy with reduced side effects. | [79,80,82] |
Obstacle Category | Specific Challenge | Description/Impact |
---|---|---|
Stability issues | Aggregation and degradation | AuQDs, like other quantum dots, are prone to aggregation and chemical degradation, affecting their optical properties. |
Poor aqueous solubility | Organometallic synthesis often yields hydrophobic QDs requiring surface modification for water solubility. | |
Sensitivity to oxidation and environmental factors | Surface atoms can oxidize, leading to loss of quantum properties. | |
Pharmaceutical Challenges | Surface ligand instability | Ligand exchange or coating needed to improve stability and biocompatibility, complicating production. |
Heavy metal toxicity concerns | Although AuQDs are less toxic than heavy metal QDs, biosafety and accumulation remain concerns. | |
Scalability and Production | Complexity of synthesis and scale-up | Green, aqueous-based, and biotechnology methods are needed to improve scalability and reduce environmental hazards. |
Batch-to-batch reproducibility | Variability in particle size and surface chemistry affects clinical reliability. | |
Biological and Safety | Clearance and retention balance | Need to balance retention time for efficacy with clearance to avoid toxicity. |
Immunogenicity and side effects | Potential immune reactions, cytokine storms, and hypersensitivity can occur. | |
Regulatory and Clinical | Lack of standardized protocols and predictive models | Difficulty in establishing consistent clinical trial protocols and predictive in vitro/in vivo models. |
Limited clinical trials and market availability | Few ongoing clinical trials and limited commercial substitutes hinder clinical adoption. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, N.; Chanderiya, A.; Das, R.; Mukhanova, E.A.; Soldatov, A.V.; Belbekhouche, S. Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery. J. Nanotheranostics 2025, 6, 25. https://doi.org/10.3390/jnt6030025
Shukla N, Chanderiya A, Das R, Mukhanova EA, Soldatov AV, Belbekhouche S. Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery. Journal of Nanotheranostics. 2025; 6(3):25. https://doi.org/10.3390/jnt6030025
Chicago/Turabian StyleShukla, Nutan, Aayushi Chanderiya, Ratnesh Das, Elizaveta A. Mukhanova, Alexander V. Soldatov, and Sabrina Belbekhouche. 2025. "Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery" Journal of Nanotheranostics 6, no. 3: 25. https://doi.org/10.3390/jnt6030025
APA StyleShukla, N., Chanderiya, A., Das, R., Mukhanova, E. A., Soldatov, A. V., & Belbekhouche, S. (2025). Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery. Journal of Nanotheranostics, 6(3), 25. https://doi.org/10.3390/jnt6030025