From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment
Abstract
:Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.; Mohammadnejad, J.; Salamat, S.; Zadeh, Z.B.; Tanhaei, M.; Ramakrishna, S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023, 29, 101400. [Google Scholar] [CrossRef]
- Tiwari, H.; Rai, N.; Singh, S.; Gupta, P.; Verma, A.; Singh, A.K.; Kajal; Salvi, P.; Singh, S.K.; Gautam, V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering 2023, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Al-Thani, A.N.; Jan, A.G.; Abbas, M.; Geetha, M.; Sadasivuni, K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024, 352, 122899. [Google Scholar] [CrossRef]
- Oehler, J.B.; Rajapaksha, W.; Albrecht, H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J. Pers. Med. 2024, 14, 723. [Google Scholar] [CrossRef] [PubMed]
- Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023, 15, 1181. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.-S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, T.; Yu, Z.; Liu, T.; Jin, R.; Weng, L.; Bai, Y.; Gooding, J.J.; Zhang, Y.; Chen, X. Intelligent Gold Nanoparticles with Oncogenic MicroRNA-Dependent Activities to Manipulate Tumorigenic Environments for Synergistic Tumor Therapy. Adv. Mater. 2022, 34, 2110219. Available online: https://pubmed.ncbi.nlm.nih.gov/35170096/ (accessed on 3 December 2024). [CrossRef]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef]
- Debnath, M.; Sarkar, S.; Debnath, S.K.; Dkhar, D.S.; Kumari, R.; Vaskuri, G.S.S.J.; Srivastava, A.; Chandra, P.; Prasad, R.; Srivastava, R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS Appl. Bio Mater. 2024, 7, 8126–8148. [Google Scholar] [CrossRef]
- Gaur, M.; Misra, C.; Yadav, A.B.; Swaroop, S.; Maolmhuaidh, F.; Bechelany, M.; Barhoum, A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials 2021, 14, 5978. [Google Scholar] [CrossRef]
- Ornelas-Hernández, L.F.; Garduno-Robles, A.; Zepeda-Moreno, A. A Brief Review of Carbon Dots–Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. Nanoscale Res. Lett. 2022, 17, 56. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Patel, J.; Back, P.I.; Shmeeda, H.; Adamsky, K.; Yang, H.; Alvarez, C.; Gabizon, A.A.; La-Beck, N.M. Comparative effects of free doxorubicin, liposome encapsulated doxorubicin and liposome co-encapsulated alendronate and doxorubicin (PLAD) on the tumor immunologic milieu in a mouse fibrosarcoma model. Nanotheranostics 2022, 6, 451. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016, 116, 5338–5431. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C 2017, 70, 763–771. [Google Scholar] [CrossRef]
- Indoria, S.; Singh, V.; Hsieh, M.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int. J. Pharm. 2020, 582, 119314. [Google Scholar] [CrossRef]
- Luk, B.T.; Zhang, L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 2014, 6, 21859–21873. [Google Scholar] [CrossRef]
- Pant, K.; Sedláček, O.; Nadar, R.A.; Hrubý, M.; Stephan, H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv. Healthc. Mater. 2017, 6, 1601115. [Google Scholar] [CrossRef]
- Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kesharwani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics. Mol. Cancer 2023, 22, 160. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Wang, X.; Liu, X.; Cheng, H.; Wang, P.; Shen, Y.; Xie, A.; Zhu, M. Self-assembled Au4Cu4/Au25NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. J. Mater. Chem. B 2021, 9, 6396–6405. [Google Scholar] [CrossRef]
- Sonali; Singh, R.P.; Sharma, G.; Kumari, L.; Koch, B.; Singh, S.; Bharti, S.; Rajinikanth, P.S.; Pandey, B.L.; Muthu, M.S. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces 2016, 147, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Ke, W.; Dirisala, A.; Toh, K.; Tanaka, M.; Li, J. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 2023, 198, 114895. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kataoka, K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J. Am. Chem. Soc. 2021, 143, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Liñán, P.J.; Alonso-Moreno, C.; Ocaña, A.; Ripoll, C.; García-Gil, E.; Garzón-Ruíz, A.; Herrera-Ochoa, D.; Blas-Gómez, S.; Cohen, B.; Bravo, I. Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging. ACS Appl. Mater. Interfaces 2023, 15, 44786–44795. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, C.; del Campo-Balguerías, A.; Alonso-Moreno, C.; Herrera-Ochoa, D.; Ocaña, A.; Martín, C.; Garzón-Ruíz, A.; Bravo, I. Fluorescence lifetime nanothermometer based on the equilibrium formation of anthracene AIE-excimers in living cells. J. Colloid. Interface Sci. 2024, 674, 186–193. [Google Scholar] [CrossRef]
- Hu, R.; Qin, A.; Tang, B.Z. AIE polymers: Synthesis and applications. Prog. Polym. Sci. 2020, 100, 101176. [Google Scholar] [CrossRef]
- Chowdhury, P.; Banerjee, A.; Saha, B.; Bauri, K.; De, P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater. Sci. Eng. 2022, 8, 4207–4229. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Zhang, X. Clustering-Triggered Emission of EPS-605 Nanoparticles and Their Application in Biosensing. Polymers 2022, 14, 4050. [Google Scholar] [CrossRef]
- Scholtz, L.; Eckert, J.G.; Elahi, T.; Lübkemann, F.; Hübner, O.; Bigall, N.C.; Resch-Genger, U. Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization. Sci. Rep. 2022, 12, 12061. [Google Scholar] [CrossRef]
- Hu, J.; Lu, K.; Gu, C.; Heng, X.; Shan, F.; Chen, G. Synthetic Sugar-Only Polymers with Double-Shoulder Task: Bioactivity and Imaging. Biomacromolecules 2022, 23, 1075–1082. [Google Scholar] [CrossRef]
- de la Cruz-Martínez, F.; Bresolí-Obach, R.; Bravo, I.; Alonso-Moreno, C.; Hermida-Merino, D.; Hofkens, J.; Lara-Sánchez, A.; Castro-Osma, J.A.; Martín, C. Unexpected luminescence of non-conjugated biomass-based polymers: New approach in photothermal imaging. J. Mater. Chem. B 2023, 11, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.T.; Rosenthal, C.M. The Hohenberg–Kohn theorem. J. Chem. Phys. 1976, 64, 247–249. [Google Scholar] [CrossRef]
- Wang, S.; Wu, D.; Yang, S.; Lin, Z.; Ling, Q. Regulation of clusterization-triggered phosphorescence from a non-conjugated amorphous polymer: A platform for colorful afterglow. Mater. Chem. Front. 2020, 4, 1198–1205. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Li, S.; Lei, D.; Tang, B.Z.; Ye, R. Recent Advances in Clusteroluminescence. Top. Curr. Chem. 2021, 379, 43–64. [Google Scholar] [CrossRef]
- Bresolí-Obach, R.; Castro-Osma, J.A.; Nonell, S.; Lara-Sánchez, A.; Martín, C. Polymers showing cluster triggered emission as potential materials in biophotonic applications. J. Photochem. Photobiol. C Photochem. Rev. 2024, 58, 100653. [Google Scholar] [CrossRef]
- Longobardi, G.; Moore, T.L.; Conte, C.; Ungaro, F.; Satchi-Fainaro, R.; Quaglia, F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1990. [Google Scholar] [CrossRef]
- Shao, L.; Wan, K.; Wang, H.; Cui, Y.; Zhao, C.; Lu, J.; Li, X.; Chen, L.; Cui, X.; Wang, X.; et al. A non-conjugated polyethylenimine copolymer-based unorthodox nanoprobe for bioimaging and related mechanism exploration. Biomater. Sci. 2019, 7, 3016–3024. [Google Scholar] [CrossRef]
- Peng, C.; Zhu, Y.; Zhang, K.; Wang, Y.; Zheng, Y.; Liu, Y.; Fu, W.; Tan, H.; Fu, Q.; Ding, M. Redox-switchable multicolor luminescent polymers for theragnosis of osteoarthritis. Nat. Commun. 2024, 15, 10078. [Google Scholar] [CrossRef]
- Dueñas-Parro, K.; Gulias, O.; Agut, M.; de la de la Cruz-Martínez, F.; Lara-Sánchez, A.; Castro-Osma, J.A.; García-Reyes, J.F.; Sánchez-Ruiz, A.; Martín, C.; Nonell, S.; et al. Cluster and Kill: The Use of Clustering-Triggered Emission Materials for Singlet Oxygen Photosensitization in Antimicrobial Photodynamic Therapy. Adv. Opt. Mater. 2024, 2402179. [Google Scholar] [CrossRef]
- Wang, W.; Liu, M.; Gao, W.; Sun, Y.; Dong, X. Coassembled Chitosan-Hyaluronic Acid Nanoparticles as a Theranostic Agent Targeting Alzheimer’s β-Amyloid. ACS Appl. Mater. Interfaces 2021, 13, 55879–55889. [Google Scholar] [CrossRef]
- Wan, Q.; Jiang, R.; Guo, L.; Yu, S.; Liu, M.; Tian, J.; Liu, G.; Deng, F.; Zhang, X.; Wei, Y. Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. ACS Sustain. Chem. Eng. 2017, 5, 9955–9964. [Google Scholar] [CrossRef]
- Saha, B.; Choudhury, N.; Seal, S.; Ruidas, B.; De, P. Aromatic Nitrogen Mustard-Based Autofluorescent Amphiphilic Brush Copolymer as pH-Responsive Drug Delivery Vehicle. Biomacromolecules 2019, 20, 546–557. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasco-Navarro, C.; Alonso-Moreno, C.; Bravo, I. From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment. J. Nanotheranostics 2025, 6, 3. https://doi.org/10.3390/jnt6010003
Blasco-Navarro C, Alonso-Moreno C, Bravo I. From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment. Journal of Nanotheranostics. 2025; 6(1):3. https://doi.org/10.3390/jnt6010003
Chicago/Turabian StyleBlasco-Navarro, Cristina, Carlos Alonso-Moreno, and Iván Bravo. 2025. "From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment" Journal of Nanotheranostics 6, no. 1: 3. https://doi.org/10.3390/jnt6010003
APA StyleBlasco-Navarro, C., Alonso-Moreno, C., & Bravo, I. (2025). From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment. Journal of Nanotheranostics, 6(1), 3. https://doi.org/10.3390/jnt6010003