AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications
Abstract
:1. Introduction
2. Integration of Wireless Connectivity into the Industrial Domain
3. NTNs for IIoT Applications
3.1. Overview on Spaceborne Platforms for IIoT
3.2. Overview of Airborne Platforms for IIoT
3.3. State of the Art in Wireless Communication and Networking Technologies for NTNs
4. Potential IIoT Applications
4.1. Energy Applications
4.2. Disaster and Crisis Management Applications
4.3. Agriculture and Farming Applications
4.4. Transportation Applications
4.5. Medical Applications
5. Challenges of NTN-Based IIoT and the Emergence of AI
- Particularities of spaceborne and airborne platforms: NTNs have distinctive attributes, including highly dynamic network topologies, orbits, and/or flight trajectories, as well as weak communication links among the network elements. Besides these, possible displacements of the aerial platforms in any direction and at a varying speed may take place due to the winds or pressure variations of the troposphere and stratosphere layers. There also exist on-board computation inefficiency and energy constraints stemming from the limited battery capacity.
- Application of communication and networking technologies: As far as ultra-dense NTN-based IIoT networks are concerned, it is not straightforward to adopt well established wireless standards and protocols, as well as conventional design methods of typical terrestrial networks. More importantly, conventional communication and networking technologies encompass several inherent limitations, as far as non-linear and unexpected phenomena prevail, and a massive number of devices exists. Under these circumstances, channel estimation is a complex and non-trivial process. Therefore, a lack of channel state information (CSI) is inevitable. It is well known that the knowledge of CSI controls important parameters of PHY, such as power allocation, the type of modulation, the management of resources, and the interference mitigation [89]. This issue becomes much more complex when accurate and timely CSI is required (e.g., in massive MIMO systems) or when advanced signal processing algorithms are exploited.
- Computing offloading: Since the spaceborne and airborne platforms represent resource-constrained devices, the provision of computation-intensive services necessitates the offloading of applications to cloud servers with centralized and sufficient computation resources. However, in remote areas, edge/cloud infrastructures are usually unavailable.
- Inter-operability among the heterogeneous types of wireless networks: NTNs have to deal with mutual interference due to the diverse nature of communication technologies within the same system or the coexistence of heterogeneous systems, which limits the performance and capabilities of the entire system.
- Target detection and data acquisition: The inspection, collection, and analysis of structured and unstructured sensor data to extract information and construct IIoT applications typically presupposes human intervention. Nevertheless, accomplishing autonomous, self-configured, and self-optimized network operations in real time within the heterogeneous and multi-dimensional NTN-based IIoT is uncommonly complex.
5.1. Classification of AI Techniques
5.2. Potential Advantages of Learning Techniques in NTN-Based IIoT
6. Overview of Existing AI Techniques for NTN-Based IIoT
6.1. Spaceborne-Based Intelligent IIoT
6.2. Airborne-Based Intelligent IIoT
6.3. Practical Limitations and Open Issues
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3-D | Three-dimensional |
3GPP | 3rd Generation Partnership Project |
4G | Fourth-generation |
5G | Fifth-generation |
6LoWPAN | IPv6 over low-power wireless personal area networks |
A2A | Air-to-air |
A2G | Air-to-ground |
ACM | Adaptive coding and modulation |
Adam | Adaptive moment estimation |
ADC | Analog-to-digital converter |
ADCS | Attitude determination and control systems |
AI | Artificial intelligence |
ANN | Artificial neural network |
ATM | Air traffic management |
B5G | Beyond 5G |
BAN | Body area network |
BER | Bit-error-rate |
BLE | Bluetooth low energy |
CAPEX | Capital expenditure |
CAPP | Certified Applications Provider Programme |
CCTV | Closed circuit television |
CNN | Convolutional neural network |
CoAP | Constrained application protocol |
CPS | Cyber-physical system |
CSI | Channel state information |
DAC | Digital-to-analog converter |
DAP | Distributed aerial processing |
DBS | Drone base stations |
DE | Differential evolution |
DL | Deep learning |
DNN | Deep neural network |
DQL | Deep Q-learning |
DQN | Deep Q-network |
DRL | Deep RL |
DVB-NGH | DVB—Next Generation Handheld |
DVB-RCS2 | Digital Video Broadcasting—Return Channel via Satellite – Second Generation |
DVB-S2 | DVB—Satellite—Second Generation |
DVB-SH | DVB—Satellite to Handheld |
EC-GSM-IoT | Extended Coverage-Global System for Mobile Communications for the IoT |
eMBB | Enhanced mobile broadband |
EMBG | Electromagnetic bandgap |
EMEA | European, Middle Eastern, and African |
ESN | Echo state network |
FAA | Federal Aviation Administration |
FANET | Flying ad-hoc network |
FDL | Federated DL |
FSO | Free-space-optical |
GAP | Generalized assignment problem |
GEO | Geostationary Earth orbit |
GM | Gaussian mixture |
GPS | Global positioning system |
GPU | Graphics processing unit |
GSN | Global sensor network |
HAP | High-altitude platform |
HealthIIoT | Healthcare IIoT |
HEO | Highly elliptical orbit |
HTS | High throughput satellites |
IBM | International Business Machines |
IEEE | Institute of Electrical and Electronics Engineers |
IHH | IoT-powered in-home healthcare |
IIoT | Industrial IoT |
IoRT | Internet of Remote Things |
IoST | Internet of Space Things |
IoT | Internet of Things |
IoV | Internet of Vehicles |
IP | Internet protocol |
IR | Infrared |
ISM | Industrial, scientific, and medical |
IT | Information Technology |
kNN | k-nearest-neighbor |
KPI | Key performance indicator |
LAP | Low-altitude platform |
LEO | Low Earth orbit |
LIDAR | Light imaging, detection, and ranging |
LLRA | Low-latency routing algorithm |
LoRa | Long-range |
LoRaWAN | Long-range wide area network |
LoS | Line-of-sight |
LPWAN | Low-power wide area network |
LTE | Long-Term Evolution |
LTE-M | LTE for machines |
LWA | Leaky-wave antennas |
M2M | Machine-to-machine |
MCU | Micro-controller unit |
MDP | Markov decision process |
MEC | Mobile-edge computing |
MEO | Medium Earth orbit |
MFG | Mean field game |
MG | Minority games |
MIMO | Multiple-input multiple-output |
ML | Machine learning |
mMTC | Massive machine type communications |
mm-wave | millimeter-wave |
MTD | Machine-type device |
MU | Multi-user |
NASA | National Aeronautics and Space Administration |
NB-IoT | Narrowband-IoT |
NDVI | Normalized difference vegetation index |
NFC | Near field communication |
NFV | Network function virtualization |
NLoS | Non-line-of-sight |
NOMA | Non-orthogonal multiple access |
NSR | Northern Sky Research |
NTN | Non-terrestrial network |
OPEX | Operation and maintenance expenditure |
OSPA | Optimal subpattern assignment |
OT | Operational technology |
PHD | Probability hypothesis density |
PHY | Physical layer |
PSN | Public safety network |
QoE | Quality of experience |
QoS | Quality of service |
RAN | Radio access network |
RBF | Radial basis function |
RCNN | Region-based convolutional neural networks |
ResNet | Residual network |
RF | Radio frequency |
RGB | Red-green-blue |
RL | Reinforcement learning |
RNN | Recurrent neural network |
RPV | Remotely piloted vehicle |
RTCA | Radio Technical Commission for Aeronautics |
RTT | Round-trip time |
S2A | Satellite-to-air |
S2G | Satellite-to-ground |
SAGIN | Space-air-ground integrated network |
SAR | Synthetic aperture radar |
SCADA | Supervisory control and data acquisition |
SDN | Software-defined networking |
SDR | Software-defined radio |
SESAR | Single European Sky ATM Research |
SIC | Successive interference cancellation |
SINR | Signal-to-interference-noise ratio |
S-IoT | Satellite IoT |
UAV | Unmanned aerial vehicle |
UDHN | Ultra-dense heterogeneous network |
URLLC | Ultra-reliable and low-latency communications |
VM | Virtual machine |
VR | Virtual reality |
Wi-Fi | Wireless Fidelity |
WPC | Wireless powered communication |
WP-IoT | Wireless powered IoT |
WPT | Wireless power transmission |
References
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2017, 6, 3619–3647. [Google Scholar] [CrossRef]
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Li, J.-Q.; Yu, F.R.; Deng, G.; Luo, C.; Ming, Z.; Yan, Q. Industrial Internet: A Survey on the Enabling Technologies, Applications, and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1504–1526. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Nikoukar, A.; Raza, S.; Poole, A.; Güneş, M.; Dezfouli, B. Low-Power Wireless for the Internet of Things: Standards and Applications. IEEE Access 2018, 6, 67893–67926. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; Shukla, P.; See, C.H.; RAbd-Alhameed, R.; Falcone, F.; Limiti, E. Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimetre-wave applications. IET Microw. Antennas Propag. 2019, 13, 1129–1133. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 2016, 51, 1109–1117. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.; Ali, A.; Falcone, F.; Limiti, E. Wideband printed monopole antenna for application in wireless communication systems. IET Microw. Antennas Propag. 2018, 12, 1222–1230. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual-Coupling Isolation Using Embedded Metamaterial EM Bandgap Decoupling Slab for Densely Packed Array Antennas. IEEE Access 2019, 7, 51827–51840. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Huang, H.; Viswanathan, H. Wide-area Wireless Communication Challenges for the Internet of Things. IEEE Commun. Mag. 2017, 55, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Chien, W.; Lai, C.; Hossain, M.S.; Muhammad, G. Heterogeneous Space and Terrestrial Integrated Networks for IoT: Architecture and Challenges. IEEE Netw. 2019, 33, 15–21. [Google Scholar] [CrossRef]
- Qiu, J.; Grace, D.; Ding, G.; Zakaria, M.D.; Wu, Q. Air-Ground Heterogeneous Networks for 5G and Beyond via Integrating High and Low Altitude Platforms. IEEE Wirel. Commun. 2019, 26, 140–148. [Google Scholar] [CrossRef]
- Hong, T.; Zhao, W.; Liu, R.; Kadoch, M. Space-Air-Ground IoT Network and Related Key Technologies. IEEE Wirel. Commun. 2020, 27, 96–104. [Google Scholar] [CrossRef]
- Kandeepan, S.; Gomez, K.; Reynaud, L.; Rasheed, T. Aerial-terrestrial communications: Terrestrial cooperation and energy-efficient transmissions to aerial base stations. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2715–2735. [Google Scholar] [CrossRef] [Green Version]
- Boero, L.; Bruschi, R.; Davoli, F.; Marchese, M.; Patrone, F. Satellite Networking Integration in the 5G Ecosystem: Research Trends and Open Challenges. IEEE Netw. 2018, 32, 9–15. [Google Scholar] [CrossRef]
- Kato, N.; Fadlullah, Z.M.; Tang, F.; Mao, B.; Tani, S.; Okamura, A.; Liu, J. Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence. IEEE Wirel. Commun. 2019, 26, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Sohul, M.; Marojevic, V.; Reed, J.H. Artificial Intelligence Defined 5G Radio Access Networks. IEEE Commun. Mag. 2019, 57, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Xie, X.; Tang, H.; Hong, T.; Kadoch, M.; Nguyen, K.K.; Cheriet, M. Machine-Learning-Based Cognitive Spectrum Assignment for 5G URLLC Applications. IEEE Netw. 2019, 33, 30–35. [Google Scholar] [CrossRef]
- Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based Communications. Sensors 2019, 19, 5170. [Google Scholar] [CrossRef] [Green Version]
- Kouhdaragh, V.; Verde, F.; Gelli, G.; Abouei, J. On the Application of Machine Learning to the Design of UAV-Based 5G Radio Access Networks. Electronics 2020, 9, 689. [Google Scholar] [CrossRef]
- Challita, U.; Ferdowsi, A.; Chen, M.; Saad, W. Machine learning for wireless connectivity and security of cellular-connected UAVs. IEEE Wirel. Commun. 2019, 26, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2019, 6, 2241–2263. [Google Scholar] [CrossRef] [Green Version]
- Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance. Remote Sens. 2019, 11, 2144. [Google Scholar] [CrossRef] [Green Version]
- Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3417–3442. [Google Scholar] [CrossRef] [Green Version]
- Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 2017, 13. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, W.; Tao, F. Industrial IoT in 5G environment towards smart manufacturing. J. Ind. Inf. Integr. 2018, 10, 10–19. [Google Scholar] [CrossRef]
- Dujovne, D.; Watteyne, T.; Vilajosana, X.; Thubert, P. 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Commun. Mag. 2014, 52, 36–41. [Google Scholar] [CrossRef]
- Schulz, P.; Matthé, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I.; et al. Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag. 2017, 55, 70–78. [Google Scholar] [CrossRef]
- Mahalik, N.P. Fieldbus Technology, Industrial Network Standards for Real-Time Distributed Control; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Petersen, S.; Carlsen, S. WirelessHART Versus ISA100.11a: The Format War Hits the Factory Floor. IEEE Ind. Electron. Mag. 2011, 5, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Coverage Maps. Available online: https://opensignal.com/networks (accessed on 30 July 2020).
- Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-Air-Ground Integrated Network: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2714–2741. [Google Scholar] [CrossRef]
- Cioni, S.; Gaudenzi, R.D.; Herrero, O.D.R.; Girault, N. On the Satellite Role in the Era of 5G Massive Machine Type Communications. IEEE Netw. 2018, 32, 54–61. [Google Scholar] [CrossRef]
- Sanctis, M.D.; Cianca, E.; Araniti, G.; Bisio, I.; Prasad, R. Satellite Communications Supporting Internet of Remote Things. IEEE Internet Things J. 2016, 3, 113–123. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, G.; Cao, H.; Xie, J. LEO Satellite Constellation for Internet of Things. IEEE Access 2017, 5, 18391–18401. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A. The Internet of Space Things/CubeSats: A ubiquitous cyber-physical system for the connected world. Comput. Netw. 2019, 150, 134–149. [Google Scholar] [CrossRef]
- Skinnemoen, H.; Rigal, C.; Yun-Garcia, A.; Erup, L.; Alagha, N.; Ginesi, A. DVB-RCS2 overview. Int. J. Satell. Commun. Netw. 2013, 31, 201–217. [Google Scholar] [CrossRef]
- Almonacid, V.; Franck, L. Extending the coverage of the internet of things with low-cost nanosatellite networks. Acta Astronaut. 2017, 138, 95–101. [Google Scholar] [CrossRef]
- Cao, X.; Yang, P.; Alzenad, M.; Xi, X.; Wu, D.; Yanikomeroglu, H. Airborne communication networks: A survey. IEEE J. Sel. Areas Commun. 2018, 36, 1907–1926. [Google Scholar] [CrossRef]
- Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”. Sensors 2018, 18, 4015. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; Ajib, W.; Assi, C. A Novel Cooperative NOMA for Designing UAV-Assisted Wireless Backhaul Networks. IEEE J. Sel. Areas Commun. 2018, 36, 2497–2507. [Google Scholar] [CrossRef]
- Aragón-Zavala, A.; Cuevas-Ruíz, J.L.; Delgado-Penín, J.A. High Altitude Platforms for Wireless Communications, 1st ed.; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Saad, W.; Bennis, M.; Mozaffari, M.; Lin, X. Wireless Communications and Networking for Unmanned Aerial Vehicles; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Naqvi, S.A.R.; Hassan, S.A.; Pervaiz, H.; Ni, Q. Drone-Aided Communication as a Key Enabler for 5G and Resilient Public Safety Networks. IEEE Commun. Mag. 2018, 56, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Bekmezci, I.; Sahingoz, O.K.; Temel, S. Flying Ad-Hoc networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Cawood, A.J.; Bond, C.E.; Howell, J.A.; Butler, R.W.H.; Totake, Y. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [Google Scholar] [CrossRef]
- Study on Enhanced LTE Support for Aerial Vehicles (Release 15), Document 3GPP TR 36.777 V1.1.0 (2018-01), 3GPP, Technical Specification Group Radio Access Network. 2018. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3231 (accessed on 30 July 2020).
- Choi, W.; Shon, T.S.; Choi, H.H.; Lee, Y. Designing a novel unlicensed nomadic access relay station in IEEE 802.16-based wireless access networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC), Dublin, Ireland, 22–25 April 2007; pp. 2961–2965. [Google Scholar]
- Radio Technical Commission for Aeronautics (RTCA), Drone Advisory Committee (DAC). Available online: http://www.rtca.org/content/drone-advisory-committee (accessed on 30 July 2020).
- Armstrong Flight Research Center. Available online: https://www.nasa.gov/centers/armstrong/images/UAV/index.html (accessed on 30 July 2020).
- High Performance Aviation for Europe. Available online: https://www.sesarju.eu (accessed on 30 July 2020).
- Zhang, Q.; Jiang, M.; Feng, Z.; Li, W.; Zhang, W.; Pan, M. IoT Enabled UAV: Network Architecture and Routing Algorithm. IEEE Internet Things J. 2019, 6, 3727–3742. [Google Scholar] [CrossRef]
- Moision, B.; Erkmen, B.; Keyes, E.; Belt, T.; Bowen, O.; Brinkley, D.; Csonka, P.; Eglington, M.; Kazmierski, A.; Kim, N.-H.; et al. Demonstration of free-space optical communication for long-range data links between balloons on Project Loon. In Proceedings of the SPIE 10096, Free-Space Laser Communication and Atmospheric Propagation XXIX, San Francisco, CA, USA, 24 February 2017; p. 100960Z. [Google Scholar]
- Flying Aquila: Early Lessons from the First Full-Scale Test Flight and the Path Ahead. Available online: https://code.facebook.com/posts/268598690180189 (accessed on 30 July 2020).
- Participate in Pegasus II: Real-Time Internet of Things Experiment from the Edge of Space. Available online: https://www.microsoft.com/en-us/research/blog/participate-in-pegasus-ii-real-time-internet-of-things-experiment-from-the-edge-of-space (accessed on 30 July 2020).
- Cellular Drone Communication. Available online: https://www.qualcomm.com/invention/technologies/lte/advanced-pro/cellular-drone-communication (accessed on 30 July 2020).
- Schwarz, R.T.; Delamotte, T.; Storek, K.; Knopp, A. MIMO Applications for Multibeam Satellites. IEEE Trans. Broadcast. 2019, 65, 664–681. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, E.T.; Nomikos, N.; Trakadas, P.; Kanatas, A.G. Three-Dimensional Modeling of mmWave Doubly Massive MIMO Aerial Fading Channels. IEEE Trans. Veh. Technol. 2020, 69, 1190–1202. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Nomikos, N.; Bithas, P.S.; Vouyioukas, D.; Kanatas, A.G. Optimal 3-D Aerial Relay Placement for Multi-User MIMO Communications. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3218–3229. [Google Scholar] [CrossRef]
- Byman, A.; Hulkkonen, A.; Arapoglou, P.-D.; Bertinelli, M.; De Gaudenzi, R. MIMO for Mobile Satellite Digital Broadcasting: From Theory to Practice. IEEE Trans. Veh. Technol. 2016, 65, 4839–4853. [Google Scholar] [CrossRef]
- Moon, S.; Ko, W.; Vargas, D.; Serrano, D.G.; Nisar, M.D.; Pauli, V. Enhanced spatial multiplexing for rate-2 MIMO of DVB-NGH system. In Proceedings of the 19th International Conference on Telecommunications (ICT), Jounieh, Lebanon, 23–25 April 2012; pp. 1–5. [Google Scholar]
- Wang, W. MIMO SAR imaging: Potential and challenges. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 18–23. [Google Scholar] [CrossRef]
- Li, M.; Hong, Y.; Zeng, C.; Song, Y.; Zhang, X. Investigation on the UAV-to-satellite optical communication systems. IEEE J. Sel. Areas Commun. 2018, 36, 2128–2138. [Google Scholar] [CrossRef]
- Kong, H.; Lin, M.; Zhu, W.; Amindavar, H.; Alouini, M. Multiuser Scheduling for Asymmetric FSO/RF Links in Satellite-UAV-Terrestrial Networks. IEEE Wireless Commun. Lett. 2020. [Google Scholar] [CrossRef]
- Cui, G.; Li, X.; Xu, L.; Wang, W. Latency and Energy Optimization for MEC Enhanced SAT-IoT Networks. IEEE Access 2020, 8, 55915–55926. [Google Scholar] [CrossRef]
- Khoshkholgh, M.G.; Navaie, K.; Yanikomeroglu, H.; Leung, V.C.M.; Shin, K.G. Randomized Caching in Cooperative UAV-Enabled Fog-RAN. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Zhang, N.; Zhang, S.; Yang, P.; Alhussein, O.; Zhuang, W.; Shen, X.S. Software Defined Space-Air-Ground Integrated Vehicular Networks: Challenges and Solutions. IEEE Commun. Mag. 2017, 55, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Mijumbi, R.; Serrat, J.; Gorricho, J.; Bouten, N.; De Turck, F.; Boutaba, R. Network function virtualization: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 2016, 18, 236–262. [Google Scholar] [CrossRef] [Green Version]
- Kak, A.; Guven, E.; Ergin, U.E.; Akyildiz, I.F. Performance Evaluation of SDN-Based Internet of Space Things. In Proceedings of the IEEE Globecom Workshops, Abu Dhabi, UAE, 9–13 December 2018. [Google Scholar]
- Oubbati, O.S.; Atiquzzaman, M.; Ahanger, T.A.; Ibrahim, A. Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access 2020, 8, 98073–98125. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Abujubbeh, M.; Malekloo, A.; Mostarda, L. UAVs assessment in software-defined IoT networks: An overview. Comput. Commun. 2020, 150, 519–536. [Google Scholar] [CrossRef]
- Bacco, M.; Boero, L.; Cassara, P.; Colucci, M.; Gotta, A.; Marchese, M.; Patrone, F. IoT Applications and Services in Space Information Networks. IEEE Wirel. Commun. 2019, 26, 31–37. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Taleb, T.; Arouk, O. Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE Internet Things J. 2016, 3, 899–922. [Google Scholar] [CrossRef]
- Sohraby, K.; Minoli, D.; Occhiogrosso, B.; Wang, W. A Review of Wireless and Satellite-Based M2M/IoT Services in Support of Smart Grids. Mob. Netw. Appl. 2017, 23, 881–895. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Zhang, Y.; Zhang, P. Hybrid satellite-aerial-terrestrial networks in emergency scenarios: A survey. China Commun. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Lakas, A.; Lorenz, P.; Atiquzzaman, M.; Jamalipour, A. Leveraging Communicating UAVs for Emergency Vehicle Guidance in Urban Areas. IEEE Trans. Emerg. Top. Comput. 2019. (early access). [Google Scholar] [CrossRef]
- Bacco, M.; Ferro, E.; Gotta, A. UAVs in WSNs for agricultural applications: An analysis of the two-ray radio propagation model. In Proceedings of the IEEE SENSORS 2014, Valencia, Spain, 2–5 November 2014; pp. 130–133. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2020, 100187. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2018, 5, 19–35. [Google Scholar] [CrossRef]
- Höyhtyä, M.; Ojanperä, T.; Mäkelä, J.; Ruponen, S.; Järvensivu, P. Integrated 5G Satellite-Terrestrial Systems: Use Cases for Road Safety and Autonomous Ships. In Proceedings of the 23rd Ka and Broadband Communications Conference 2017, Trieste, Italy, 16–19 October 2017. [Google Scholar]
- Hossain, M.S.; Muhammad, G. Cloud-assisted Industrial Internet of Things (IIoT)—Enabled framework for health monitoring. Comput. Netw. 2016, 101, 192–202. [Google Scholar] [CrossRef]
- Poyner, I.K.; Sherratt, R.S. Improving access to healthcare in rural communities—IoT as part of the solution. In Proceedings of the 3rd IET International Conference on Technologies for Active and Assisted Living (TechAAL 2019), London, UK, 25 March 2019; pp. 1–6. [Google Scholar]
- Ullah, S.; Kim, K.; Kim, K.H.; Imran, M.; Khan, P.; Tovar, E.; Ali, F. UAV-enabled healthcare architecture: Issues and challenges. Future Gener. Comput. Syst. 2019, 97, 425–432. [Google Scholar] [CrossRef]
- Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access 2020, 8, 90225–90265. [Google Scholar] [CrossRef]
- Srivastava, S.; Pant, M.; Abraham, A.; Agrawal, N. The Technological Growth in eHealth Services. Comput. Math. Methods Med. 2015, 2015, 894171. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Lu, J.; Miao, Y.; Ji, W.; Jin, R.; Song, E. AIEM: AI-enabled affective experience management. Future Gener. Comput. Syst. 2018, 89, 438–445. [Google Scholar] [CrossRef]
- Cao, J.; Peng, T.; Qi, Z.; Duan, R.; Yuan, Y.; Wang, W. Interference Management in Ultradense Networks: A User-Centric Coalition Formation Game Approach. IEEE Trans. Veh. Technol. 2018, 67, 5188–5202. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, S.; Wang, C.-H.; Hong, X.; McLaughlin, S. Artificial Intelligence to Manage Network Traffic of 5G Wireless Networks. IEEE Netw. 2018, 32, 58–64. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.-C.; Hanzo, L. Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 2017, 24, 98–105. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Hu, F.; Hao, Q. Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2595–2621. [Google Scholar] [CrossRef]
- Amjad, M.; Rehmani, M.H.; Mao, S. Wireless Multimedia Cognitive Radio Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018, 20, 1056–1103. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Zhou, X.; Ding, G.; Chen, Y.; Wang, Z.; Zhang, H. Intelligent 5G: When Cellular Networks Meet Artificial Intelligence. IEEE Wirel. Commun. 2017, 24, 175–183. [Google Scholar] [CrossRef]
- Kokalj-Filipovic, S.; Greco, M.S.; Poor, H.V.; Stantchev, G.; Xiao, L. Introduction to the Issue on Machine Learning for Cognition in Radio Communications and Radar. IEEE J. Sel. Top. Signal Process. 2018, 12, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Dörner, S.; Cammerer, S.; Hoydis, J.; Brink, S.T. Deep Learning Based Communication Over the Air. IEEE J. Sel. Top. Signal Process. 2018, 12, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Peng, M.; Mao, S. Deep Reinforcement Learning-Based Mode Selection and Resource Management for Green Fog Radio Access Networks. IEEE Internet Things J. 2019, 6, 1960–1971. [Google Scholar] [CrossRef] [Green Version]
- Lee, W. Resource Allocation for Multi-Channel Underlay Cognitive Radio Network Based on Deep Neural Network. IEEE Commun. Lett. 2018, 22, 1942–1945. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.-R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; NIP: Lake Tahoe, NV, USA, 2012. [Google Scholar]
- Yu, T.; Wang, X.; Shami, A. UAV-Enabled Spatial Data Sampling in Large-Scale IoT Systems Using Denoising Autoencoder Neural Network. IEEE Internet Things J. 2019, 6, 1856–1865. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Jiao, J.; Wu, S.; Zhang, Q. Deep Learning-Based Long-Term Power Allocation Scheme for NOMA Downlink System in S-IoT. IEEE Access 2019, 7, 86288–86296. [Google Scholar] [CrossRef]
- Nie, S.; Jornet, J.M.; Akyildiz, I.F. Deep-Learning-Based Resource Allocation for Multi-Band Communications in CubeSat Networks. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Wei, J.; Cao, S. Application of Edge Intelligent Computing in Satellite Internet of Things. In Proceedings of the IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 85–91. [Google Scholar]
- Wei, J.; Han, J.; Cao, S. Satellite IoT Edge Intelligent Computing: A Research on Architecture. Electronics 2019, 8, 1247. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Lyu, F.; Quan, W.; Zhou, C.; He, H.; Shi, W.; Shen, X. Space/Aerial-Assisted Computing Offloading for IoT Applications: A Learning-Based Approach. IEEE J. Sel. Areas Commun. 2019, 37, 1117–1129. [Google Scholar] [CrossRef]
- Ejaz, W.; Ahmed, A.; Mushtaq, A.; Ibnkahla, M. Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks. Comput. Commun. 2020, 155, 150–157. [Google Scholar] [CrossRef]
- Almalki, F.A.; Angelides, M.C. Deployment of an aerial platform system for rapid restoration of communications links after a disaster: A machine learning approach. Computing 2020, 102, 829–864. [Google Scholar] [CrossRef] [Green Version]
- Sikeridis, D.; Tsiropoulou, E.E.; Devetsikiotis, M.; Papavassiliou, S. Wireless powered public safety IoT: A UAV-assisted adaptive-learning approach towards energy efficiency. J. Netw. Comput. Appl. 2018, 123, 69–79. [Google Scholar] [CrossRef]
- Coolen, A.C.C. The Mathematical Theory of Minority Games: Statistical Mechanics of Interacting Agents; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Li, L.; Xu, Y.; Zhang, Z.; Yin, J.; Chen, W.; Han, Z. A prediction-based charging policy and interference mitigation approach in the wireless powered Internet of Things. IEEE J. Sel. Areas Commun. 2019, 37, 439–451. [Google Scholar] [CrossRef]
- Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 5995–6009. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yao, H.; Wang, J.; Jiang, C.; Benslimane, A.; Liu, Y. Multi-UAV Enabled Load-Balance Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Tang, J.; Song, J.; Ou, J.; Luo, J.; Zhang, X.; Wong, K.K. Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method. IEEE Access 2020, 8, 9124–9132. [Google Scholar] [CrossRef]
- Esrafilian, O.; Gangula, R.; Gesbert, D. Learning to communicate in UAV-aided wireless networks: Map-based approaches. IEEE Internet Things J. 2019, 6, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Hong, T.; Hong, H.; Ji, S.; Mumtaz, S.; Cheriet, M. An Improved UAV-PHD Filter-Based Trajectory Tracking Algorithm for Multi-UAVs in Future 5G IoT Scenarios. Electronics 2019, 8, 1188. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.; Ma, W. The gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Salhaoui, M.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J.; El Oualkadi, A.; Torregrosa, C.L. Smart Industrial IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant. Sensors 2019, 19, 3316. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.N.; Jenssen, R.; Roverso, D. Intelligent Monitoring and Inspection of Power Line Components Powered by UAVs and Deep Learning. IEEE Power Energy Technol. Syst. J. 2019, 6, 11–21. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Mukherjee, A.; Misra, S.; Sukrutha, A.; Raghuwanshi, N.S. Distributed aerial processing for IoT-based edge UAV swarms in smart farming. Comput. Netw. 2020, 167, 107038. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Chakareski, J. UAV-IoT for Next Generation Virtual Reality. IEEE Trans. Image Process. 2019, 28, 5977–5990. [Google Scholar] [CrossRef]
- Powering Change with AI and Deep Learning. Available online: https://www.nvidia.com/en-us/deep-learning-ai (accessed on 30 July 2020).
- Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.; Belopolsky, A.; et al. Theano: A python framework for fast computation of mathematical expressions. arXiv 2016, arXiv:1605.02688. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Brik, B.; Ksentini, A.; Bouaziz, M. Federated Learning for UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open Problems. IEEE Access 2020, 8, 53841–53849. [Google Scholar] [CrossRef]
Terrestrial Networks | Non-Terrestrial Networks | |||||||
---|---|---|---|---|---|---|---|---|
Spaceborne | Airborne | |||||||
Cellular | Low-Power Wide Area Network (LPWAN) | Geostationary Earth Orbit (GEO) | Medium Earth Orbit (MEO) | Low Earth Orbit (LEO) | CubeSats | High-Altitude Platform (HAP) | Low-Altitude Platform (LAP) | |
Altitude (km) | - | - | 35,786 | 3000 | <3000 | <1000 | 17-22 | <15 |
Mobility | Static | Static | Static to Earth | Medium | High | High | Quasi-Stationary | Varying Speeds |
Round-Trip Time (ms) | Lowest | Lowest | 500 | <100 | <100 | ~10 | Low | Low |
Throughput | Medium to High | Low | Low to High | Low to High | Low to High | Low to High | Low to High | Low to High |
Radio Coverage | Urban and Suburban | Urban | Global | Global | Global | Global | Global | Global |
Propagation Loss | Least | Least | Highest | High | Medium | Medium | Low | Low |
Network Complexity | Complex | Complex | Simple | Medium | Complex | Complex | Medium | Medium |
Resources | Rich | Rich | Limited | Limited | Limited | Limited | Limited | Limited |
Cost | Medium | Medium to Low | High | High | High | Medium | Medium | Medium to Low |
Reference | Platform | Optimization Target | AI Solution | Performance Metrics |
---|---|---|---|---|
Sun et al. [103] | Satellite IoT (S-IoT) | Decoding order of successive interference cancellation (SIC) and long-term power allocation | Deep learning (DL)-based Adam algorithm | Utility, data rate, and queue delay |
Nie et al. [104] | Cubesat | Resource allocation | Deep neural network (DNN) | Bit-error-rate (BER) and data throughput |
Cui et al. [67] | S-IoT | Latency and energy consumption | Deep Q-network (DQN) | Total cost and proportion of tasks |
Wei et al. [105] | S-IoT | Image data target detection | DL-based | Connectivity, coverage, and processing delay |
Wei et al. [106] | S-IoT | Data processing | DNN | Connectivity, coverage, and processing delay |
Cheng et al. [107] | SAGIN | Computing offloading | Deep reinforcement learning (DRL) | Delay, run-time, total cost, and energy consumption |
Ejaz et al. [108] | Unmanned aerial vehicle (UAV) | Energy efficiency | Decision tree classifier | Energy consumption |
Almalki et al. [109] | Low-altitude platforms (LAPs) and high-altitude platforms (HAPs) | Link budget, energy efficiency, and connectivity | Radial basis function (RBF) artificial neural network (ANN) | BER, probability of blocking, probability of a call being delayed |
Sikeridis et al. [110] | UAV | Lifetime radio frequency (RF) energy harvesting and connectivity | Machine learning (ML)-based | Consumed energy, harvested energy, energy availability |
Li et al. [112] | UAV | Energy efficiency, charging policy, and interference mitigation | Echo state networks (ESNs) and k-means algorithm | Packet loss rate, signal-to-interference-noise ratio (SINR) |
Wan et al. [113] | UAV | Path planning and action rewards prediction | DRL | Data delay and power consumption |
Yang et al. [114] | UAV | Computing offloading | DRL | Reward for task scheduling and average slowdown of offloaded tasks |
Tang et al. [115] | UAV | Data throughput | Deep Q-learning (DQL) | Minimum data throughput |
Esrafilian et al. [116] | UAV | Trajectory | Map compression based | Data throughput |
Tang et al. [117] | UAV | Trajectory tracking | k-nearest-neighbor (kNN) and k-means algorithms | Optimal subpattern assignment (OSPA) distance |
Salhaoui et al. [119] | UAV | Visual recognition | DNN | Latency |
Nguyen et al. [120] | UAV | Image recognition and object detection | Deep residual networks (ResNets) | Detection of common faultson power line components |
Mukherjee et al. [122] | UAV | Tracking ground targets | Faster region-based convolutional neural network (RCNN) | Processing time and speed |
Chakareski et al. [124] | UAV | Delivered expected immersion fidelity | RL | Network capacity, network rate mismatch, and packet loss rate |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, E.T.; Potirakis, S.M.; Kanatas, A.G. AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications. IoT 2020, 1, 21-48. https://doi.org/10.3390/iot1010003
Michailidis ET, Potirakis SM, Kanatas AG. AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications. IoT. 2020; 1(1):21-48. https://doi.org/10.3390/iot1010003
Chicago/Turabian StyleMichailidis, Emmanouel T., Stelios M. Potirakis, and Athanasios G. Kanatas. 2020. "AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications" IoT 1, no. 1: 21-48. https://doi.org/10.3390/iot1010003
APA StyleMichailidis, E. T., Potirakis, S. M., & Kanatas, A. G. (2020). AI-Inspired Non-Terrestrial Networks for IIoT: Review on Enabling Technologies and Applications. IoT, 1(1), 21-48. https://doi.org/10.3390/iot1010003