Deep Learning and Machine Learning, Better Together Than Apart: A Review on Biometrics Mobile Authentication
Abstract
:1. Introduction
2. Background
3. Literature Review
3.1. Behavioral Biometrics
3.1.1. Touch Dynamics
3.1.2. Motion Dynamics
3.1.3. Keystroke Dynamics
3.1.4. Gait Dynamics
3.2. Physiological Biometrics
3.2.1. Facial Dynamics
3.2.2. Ocular Dynamics
3.2.3. Other Physiological Dynamics
4. Limitations
5. Research Questions
6. Discussion
7. Conclusions
8. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silasai, O.; Khowfa, W. The Study on Using Biometric Authentication on Mobile Device. NU Int. J. Sci. 2020, 17, 90–110. [Google Scholar]
- Siddiqui, N.; Pryor, L.; Dave, R. User authentication schemes using machine learning methods—A review. In Proceedings of the International Conference on Communication and Computational Technologies: ICCCT, Singapore, 28 August 2021. [Google Scholar] [CrossRef]
- López, A.B. Deep learning in biometrics: A survey. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2019, 8, 19–32. [Google Scholar] [CrossRef]
- Kokal, S.; Pryor, L.; Dave, R. Exploration of Machine Learning Classification Models Used for Behavioral Biometrics Authentication. In Proceedings of the 2022 8th International Conference on Computer Technology Applications, Vienna, Austria, 12 May 2022. [Google Scholar]
- Dahia, G.; Jesus, L.; Pamplona, S.M. Continuous authentication using biometrics: An advanced review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1365. [Google Scholar] [CrossRef]
- Jaseena, K.U.; Kovoor, B.C. A survey on deep learning techniques for big data in biometrics. Int. J. Adv. Res. Comput. Sci. 2018, 9, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, H.; Song, C.; Tang, H.; Sun, Y.; Qiao, Y.; Zhang, W. Who Is Using the Phone? Representation-Learning-Based Continuous Authentication on Smartphones. Secur. Commun. Netw. 2022, 2022, 6339407. [Google Scholar] [CrossRef]
- Yang, W.; Wang, M.; Zou, S.; Peng, J.; Xu, G. An Implicit Identity Authentication Method Based on Deep Connected Attention CNN for Wild Environment. In Proceedings of the 9th International Conference on Communications and Broadband Networking, Shanghai, China, 25 February 2021. [Google Scholar] [CrossRef]
- Song, Y.; Cai, Z. Integrating Handcrafted Features with Deep Representations for Smartphone Authentication. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–27. [Google Scholar] [CrossRef]
- Acien, A.; Morales, A.; Vera-Rodriguez, R.; Fierrez, J. Smartphone sensors for modeling human-computer interaction: General outlook and research datasets for user authentication. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference, Madrid, Spain, 13 July 2020. [Google Scholar] [CrossRef]
- Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Ortega-Garcia, J. BioTouchPass2: Touchscreen password biometrics using time-aligned recurrent neural networks. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2616–2618. [Google Scholar] [CrossRef] [Green Version]
- Volaka, H.C.; Alptekin, G.; Basar, O.E.; Isbilen, M.; Incel, O.D. Towards continuous authentication on mobile phones using deep learning models. Procedia Comput. Sci. 2019, 155, 177–184. [Google Scholar] [CrossRef]
- Al-Dori, A.S. Touchscreen-based Smartphone Continuous Authentication System (SCAS) using Deep Neural Network. TURCOMAT 2021, 12, 2382–2391. [Google Scholar]
- Liang, X.; Zou, F.; Li, L.; Yi, P. Mobile terminal identity authentication system based on behavioral characteristics. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147719899371. [Google Scholar] [CrossRef]
- Samet, S.; Ishraque, M.T.; Ghadamyari, M.; Kakadiya, K.; Mistry, Y.; Nakkabi, Y. TouchMetric: A machine learning based continuous authentication feature testing mobile application. Int. J. Inf. Technol. 2019, 11, 625–631. [Google Scholar] [CrossRef]
- Chang, I.; Low, C.Y.; Choi, S.; Teoh, A.B. Kernel deep regression network for touch-stroke dynamics authentication. IEEE Signal Process. Lett. 2018, 25, 1109–1113. [Google Scholar] [CrossRef]
- Nader, J.; Alsadoon, A.; Prasad, P.W.; Singh, A.K.; Elchouemi, A. Designing touch-based hybrid authentication method for smartphones. Procedia Comput. Sci. 2015, 70, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Deb, D.; Guirguis, M.M. Use of auxiliary classifier generative adversarial network in touchstroke authentication. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14 December 2020. [Google Scholar] [CrossRef]
- Shankar, V.; Singh, K. An intelligent scheme for continuous authentication of smartphone using deep auto encoder and softmax regression model easy for user brain. IEEE Access 2019, 7, 48645–48654. [Google Scholar] [CrossRef]
- Torres, J.; Santos, S.; Alepis, E.; Patsakis, C. Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning. In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP), Prague, Czech Republic, 23–25 February 2019. [Google Scholar] [CrossRef]
- Shi, D.; Tao, D.; Wang, J.; Yao, M.; Wang, Z.; Chen, H.; Helal, S. Fine-grained and context-aware behavioral biometrics for pattern lock on smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–30. [Google Scholar] [CrossRef]
- Fierrez, J.; Pozo, A.; Martinez-Diaz, M.; Galbally, J.; Morales, A. Benchmarking touchscreen biometrics for mobile authentication. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2720–2733. [Google Scholar] [CrossRef]
- Li, W.; Meng, W.; Furnell, S. Exploring touch-based behavioral authentication on smartphone email applications in IoT-enabled smart cities. Pattern Recognit. Lett. 2021, 144, 35–41. [Google Scholar] [CrossRef]
- Miyamoto, N.; Shibata, C.; Kinoshita, T. Authentication by Touch Operation on Smartphone with Support Vector Machine. Int. J. Inf. Secur. Res 2017, 7, 725–733. [Google Scholar] [CrossRef]
- Antal, M.; Szabó, L.Z. Biometric authentication based on touchscreen swipe patterns. Procedia Technol. 2016, 22, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Buriro, A.; Gupta, S.; Yautsiukhin, A.; Crispo, B. Risk-driven behavioral biometric-based one-shot-cum-continuous user authentication scheme. J. Signal Process. Syst. 2021, 93, 989–1006. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Hu, H. Multimodal continuous user authentication on mobile devices via interaction patterns. Wirel. Commun. Mob. Comput. 2021, 2021, 5677978. [Google Scholar] [CrossRef]
- Leyfer, K.; Spivak, A. Continuous user authentication by the classification method based on the dynamic touchscreen biometrics. In Proceedings of the 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 8 April 2019. [Google Scholar] [CrossRef]
- Levi, M.; Hazan, I.; Agmon, N.; Eden, S. Behavioral embedding for continuous user verification in global settings. Comput. Secur. 2022, 119, 102716. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Kim, Y.G.; Lee, E.K.; Jo, J. Advanced Authentication Method by Geometric Data Analysis Based on User Behavior and Biometrics for IoT Device with Touchscreen. Electronics 2021, 10, 2583. [Google Scholar] [CrossRef]
- Huang, E.; Troia, F.D.; Stamp, M. Evaluating deep learning models and adversarial attacks on accelerometer-based gesture authentication. Artif. Intell. Cybersecur. 2022, 54, 243–259. [Google Scholar] [CrossRef]
- Li, Y.; Hu, H.; Zhu, Z.; Zhou, G. SCANet: Sensor-based continuous authentication with two-stream convolutional neural networks. ACM Trans. Sens. Netw. (TOSN) 2020, 16, 1–27. [Google Scholar] [CrossRef]
- Centeno, M.P.; Guan, Y.; van Moorsel, A. Mobile based continuous authentication using deep features. In Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning, New York, NY, USA, 15 June 2018. [Google Scholar] [CrossRef]
- Benegui, C.; Ionescu, R.T. Convolutional neural networks for user identification based on motion sensors represented as images. IEEE Access 2020, 8, 61255–61266. [Google Scholar] [CrossRef]
- Zhu, T.; Weng, Z.; Chen, G.; Fu, L. A hybrid deep learning system for real-world mobile user authentication using motion sensors. Sensors 2020, 20, 3876. [Google Scholar] [CrossRef]
- Li, Y.; Tao, P.; Deng, S.; Zhou, G. DeFFusion: CNN-based continuous authentication using deep feature fusion. ACM Trans. Sens. Netw. (TOSN) 2021, 18, 1–20. [Google Scholar] [CrossRef]
- Abuhamad, M.; Abuhmed, T.; Mohaisen, D.; Nyang, D. AUToSen: Deep-learning-based implicit continuous authentication using smartphone sensors. IEEE Internet Things J. 2020, 7, 5008–5020. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Jitpattanakul, A. Deep learning approaches for continuous authentication based on activity patterns using mobile sensing. Sensors 2021, 21, 7519. [Google Scholar] [CrossRef]
- Amini, S.; Noroozi, V.; Pande, A.; Gupte, S.; Yu, P.S.; Kanich, C. Deepauth: A framework for continuous user re-authentication in mobile apps. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 17 October 2018. [Google Scholar] [CrossRef]
- Neverova, N.; Wolf, C.; Lacey, G.; Fridman, L.; Chandra, D.; Barbello, B.; Taylor, G. Learning human identity from motion patterns. IEEE Access 2016, 4, 1810–1820. [Google Scholar] [CrossRef]
- Centeno, M.P.; van Moorsel, A.; Castruccio, S. Smartphone continuous authentication using deep learning autoencoders. In Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (pst), Calgary, AB, Canada, 28 August 2017. [Google Scholar] [CrossRef]
- Li, C.; Jing, J.; Liu, Y. Mobile user authentication-Turn it to unlock. In Proceedings of the 2021 6th International Conference on Mathematics and Artificial Intelligence, Chengdu, China, 19 March 2021. [Google Scholar] [CrossRef]
- Ehatisham-ul-Haq, M.; Azam, M.A.; Naeem, U.; Amin, Y.; Loo, J. Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing. J. Netw. Comput. Appl. 2018, 109, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Qu, Z.; Xu, H.; Zhang, J.; Shao, Z.; Chen, Y.; Prabhakar, S.; Yang, J. RiskCog: Unobtrusive real-time user authentication on mobile devices in the wild. IEEE Trans. Mob. Comput. 2019, 19, 466–483. [Google Scholar] [CrossRef]
- Hernández-Álvarez, L.; De Fuentes, J.M.; González-Manzano, L.; Encinas, L.H. SmartCAMPP-Smartphone-based continuous authentication leveraging motion sensors with privacy preservation. Pattern Recognit. Lett. 2021, 147, 189–196. [Google Scholar] [CrossRef]
- Maghsoudi, J.; Tappert, C.C. Increasing Accuracy Rate of Behavioural Biometrics for User Authentication on Android-Based Smartphones. In Proceedings of the Student-Faculty Research Day, Pace University, New York, NY, USA, 5 May 2017. [Google Scholar]
- Malik, M.N.; Azam, M.A.; Ehatisham-Ul-Haq, M.; Ejaz, W.; Khalid, A. ADLAuth: Passive authentication based on activity of daily living using heterogeneous sensing in smart cities. Sensors 2019, 19, 2466. [Google Scholar] [CrossRef] [Green Version]
- Buriro, A.; Crispo, B.; Conti, M. AnswerAuth: A bimodal behavioral biometric-based user authentication scheme for smartphones. J. Inf. Secur. Appl. 2019, 44, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Stragapede, G.; Vera-Rodriguez, R.; Tolosana, R.; Morales, A.; Acien, A.; Le Lan, G. Mobile behavioral biometrics for passive authentication. Pattern Recognit. Lett. 2022, 157, 35–41. [Google Scholar] [CrossRef]
- Deb, D.; Ross, A.; Jain, A.K.; Prakah-Asante, K.; Prasad, K.V. Actions speak louder than (pass) words: Passive authentication of smartphone* users via deep temporal features. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Tse, K.W.; Hung, K. Framework for user behavioural biometric identification using a multimodal scheme with keystroke trajectory feature and recurrent neural network on a mobile platform. IET Biom. 2022, 11, 157–170. [Google Scholar] [CrossRef]
- Acien, A.; Morales, A.; Monaco, J.V.; Vera-Rodriguez, R.; Fierrez, J. TypeNet: Deep learning keystroke biometrics. IEEE Trans. Biom. Behav. Identity Sci. 2021, 4, 57–70. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Q.; Du, X.; Gu, Z. Smartphone user authentication based on holding position and touch-typing biometrics. Comput. Mater. Contin. 2019, 3, 1365–1375. [Google Scholar] [CrossRef]
- Stragapede, G.; Vera-Rodriguez, R.; Tolosana, R.; Morales, A. BehavePassDB: Benchmarking Mobile Behavioral Biometrics. arXiv 2022, arXiv:2206.02502. [Google Scholar]
- Stragapede, G.; Delgado-Santos, P.; Tolosana, R.; Vera-Rodriguez, R.; Guest, R.; Morales, A. Mobile Keystroke Biometrics Using Transformers. In Proceedings of the 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), Waikoloa Beach, HI, USA, 5–8 January 2023. [Google Scholar] [CrossRef]
- Deng, Y.; Zhong, Y. Keystroke dynamics advances for mobile devices using deep neural network. Recent Adv. User Authentication Using Keystroke Dyn. Biom. 2015, 2, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Cao, B.; Wang, J.; Srisa-an, W.; Philip, S.Y.; Leow, A.D.; Checkoway, S. Kollector: Detecting fraudulent activities on mobile devices using deep learning. IEEE Trans. Mob. Comput. 2020, 20, 1465–1476. [Google Scholar] [CrossRef]
- Salem, A.; Zaidan, D.; Swidan, A.; Saifan, R. Analysis of strong password using keystroke dynamics authentication in touch screen devices. In Proceedings of the 2016 Cybersecurity and Cyberforensics Conference (CCC), Amman, Jordan, 2 August 2016. [Google Scholar] [CrossRef]
- Alshanketi, F.; Traore, I.; Ahmed, A.A. Improving performance and usability in mobile keystroke dynamic biometric authentication. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22 May 2016. [Google Scholar] [CrossRef]
- Hriez, S.; Obeid, N.; Awajan, A. User authentication on smartphones using keystroke dynamics. In Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, New York, NY, USA, 2 December 2019. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Rueda, L.; Saad, S.; Elmiligi, H. Identification of User Behavioral Biometrics for Authentication Using Keystroke Dynamics and Machine Learning. In Proceedings of the 2018 2nd International Conference on Biometric Engineering and Applications, Amsterdam, The Netherlands, 16 May 2018. [Google Scholar] [CrossRef]
- Nerini, M.; Favarelli, E.; Chiani, M. Augmented PIN Authentication through Behavioral Biometrics. Sensors 2022, 22, 4857. [Google Scholar] [CrossRef]
- Gadaleta, M.; Rossi, M. Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognit. 2018, 74, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xiao, Y.; Gao, X.; Li, L.; Wang, J. A framework for behavioral biometric authentication using deep metric learning on mobile devices. IEEE Trans. Mob. Comput. 2021, 22, 19–36. [Google Scholar] [CrossRef]
- Middya, A.I.; Roy, S.; Mandal, S.; Talukdar, R. Privacy protected user identification using deep learning for smartphone-based participatory sensing applications. Neural Comput. Appl. 2021, 33, 17303–17313. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kimura, M. Gait identification and authentication using LSTM based on 3-axis accelerations of smartphone. Procedia Comput. Sci. 2020, 176, 3873–3880. [Google Scholar] [CrossRef]
- Hu, G.; He, Z.; Lee, R.B. Smartphone impostor detection with behavioral data privacy and minimalist hardware support. arXiv 2021, arXiv:2103.06453. [Google Scholar]
- Chauhan, J.; Kwon, Y.D.; Hui, P.; Mascolo, C. Contauth: Continual learning framework for behavioral-based user authentication. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–23. [Google Scholar] [CrossRef]
- Zou, Q.; Wang, Y.; Wang, Q.; Zhao, Y.; Li, Q. Deep learning-based gait recognition using smartphones in the wild. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3197–3212. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhang, X.; Yang, S.; Shi, Z.; Chi, C. Gait-based implicit authentication using edge computing and deep learning for mobile devices. Sensors 2021, 21, 4592. [Google Scholar] [CrossRef] [PubMed]
- Anh Khoa, T.; The Truong, D.N.; Dang, D.N. Cross-Modal Deep Neural Networks based Smartphone Authentication for Intelligent Things System. In Proceedings of the 2021 Workshop on Intelligent Cross-Data Analysis and Retrieval, New York, NY, USA, 21 August 2021. [Google Scholar] [CrossRef]
- Delgado-Santos, P.; Tolosana, R.; Guest, R.; Vera-Rodriguez, R.; Deravi, F.; Morales, A. GaitPrivacyON: Privacy-preserving mobile gait biometrics using unsupervised learning. Pattern Recognit. Lett. 2022, 161, 30–37. [Google Scholar] [CrossRef]
- Cao, Q.; Xu, F.; Li, H. User Authentication by Gait Data from Smartphone Sensors Using Hybrid Deep Learning Network. Mathematics 2022, 10, 2283. [Google Scholar] [CrossRef]
- Zeroual, A.; Amroune, M.; Derdour, M.; Meraoumia, A.; Bentahar, A. Deep authentication model in Mobile Cloud Computing. In Proceedings of the 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, 24 October 2018. [Google Scholar] [CrossRef]
- Azouji, N.; Sami, A.; Taheri, M. EfficientMask-Net for face authentication in the era of COVID-19 pandemic. Signal Image Video Process. 2022, 16, 1991–1999. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. Mobilefacenets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. In Proceedings of the Chinese Conference on Biometric Recognition (CCBR), Urumqi, China, 11 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Oza, P.; Patel, V.M. Active authentication using an autoencoder regularized cnn-based one-class classifier. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Samangouei, P.; Chellappa, R. Convolutional neural networks for attribute-based active authentication on mobile devices. In Proceedings of the 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls, NY, USA, 6 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Lohokare, J.; Gao, R.; Ye, F. EchoPrint: Two-Factor Authentication Using Acoustics and Vision on Smartphones. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 15 October 2018. [Google Scholar] [CrossRef]
- Ríos-Sánchez, B.; Silva, D.C.; Martín-Yuste, N.; Sánchez-Ávila, C. Deep learning for face recognition on mobile devices. IET Biom. 2020, 9, 109–117. [Google Scholar] [CrossRef]
- Saied, M.; Elshenawy, A.; Ezz, M.M. A Novel Approach for Improving Dynamic Biometric Authentication and Verification of Human Using Eye Blinking Movement. Wirel. Pers. Commun. 2020, 115, 859–876. [Google Scholar] [CrossRef]
- Zeroual, A.; Amroune, M.; Derdour, M.; Bentahar, A. Lightweight deep learning model to secure authentication in Mobile Cloud Computing. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 6938–6948. [Google Scholar] [CrossRef]
- Dar, S.A.; Palanivel, S. Real-Time Face Authentication Using Denoised Autoencoder (DAE) for Mobile Devices. In Handbook of Research on Evolving Designs and Innovation in ICT and Intelligent Systems for Real-World Applications; IGI Global: Hershey, PA, USA, 2022; pp. 163–176. [Google Scholar] [CrossRef]
- Gunasinghe, H.; Bertino, E. PrivBioMTAuth: Privacy Preserving Biometrics-based and User Centric Protocol for User Authentication From Mobile Phones. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1042–1057. [Google Scholar] [CrossRef]
- Samangouei, P.; Patel, V.M.; Chellappa, R. Facial Attributes for Active Authentication on Mobile Devices. Image Vis. Comput. 2017, 58, 181–192. [Google Scholar] [CrossRef]
- Garg, R.; Baweja, Y.; Ghosh, S.; Singh, R.; Vatsa, M.; Ratha, N. Heterogeneity aware deep embedding for mobile periocular recognition. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA, 22 October 2018. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.; Rattani, A.; Derakhshani, R. Ocularnet: Deep patch-based ocular biometric recognition. In Proceedings of the 2018 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA, USA, 23 October 2018. [Google Scholar] [CrossRef]
- Nguyen, H.; Reddy, N.; Rattani, A.; Derakhshani, R. VISOB 2.0-the second international competition on mobile ocular biometric recognition. In Proceedings of the ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021. [Google Scholar] [CrossRef]
- Reddy, N.; Rattani, A.; Derakhshani, R. Comparison of deep learning models for biometric-based mobile user authentication. In Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA, 22 October 2018. [Google Scholar] [CrossRef]
- Sandhya, M.; Morampudi, M.K.; Pruthweraaj, I.; Garepally, P.S. Multi-instance cancelable iris authentication system using triplet loss for deep learning models. Vis. Comput. 2022, 39, 1571–1581. [Google Scholar] [CrossRef]
- Zheng, S.; Rahmat, R.W.; Khalid, F.; Nasharuddin, N.A. Learning scale-variant features for robust iris authentication with deep learning based ensemble framework. arXiv 2019, arXiv:1912.00756. Available online: https://doi.org/10.48550/arXiv.1912.00756 (accessed on 11 April 2023).
- Zeng, F.; Hu, S.; Xiao, K. Research on partial fingerprint recognition algorithm based on deep learning. Neural Comput. Appl. 2019, 31, 4789–4798. [Google Scholar] [CrossRef]
- Wu, C.; He, K.; Chen, J.; Zhao, Z.; Du, R. Liveness is Not Enough: Enhancing Fingerprint Authentication with Behavioral Biometrics to Defeat Puppet Attacks. In Proceedings of the USENIX Security Symposium, Boston, MA, USA, 12 August 2020. [Google Scholar]
- Arora, S.; Bhatia, M.S. Fingerprint spoofing detection to improve customer security in mobile financial applications using deep learning. Arab. J. Sci. Eng. 2020, 45, 2847–2863. [Google Scholar] [CrossRef]
- Grosz, S.A.; Engelsma, J.J.; Liu, E.; Jain, A.K. C2cl: Contact to contactless fingerprint matching. IEEE Trans. Inf. Forensics Secur. 2021, 17, 196–210. [Google Scholar] [CrossRef]
- Garcia-Martin, R.; Sanchez-Reillo, R. Deep learning for vein biometric recognition on a smartphone. IEEE Access 2021, 9, 98812–98832. [Google Scholar] [CrossRef]
- Thullier, F.; Bouchard, B.; Menelas, B.A. A text-independent speaker authentication system for mobile devices. Cryptography 2017, 1, 16. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, M.; Zhang, J.; Guan, Q.; Wang, Z.; Zhang, Q.; Wang, W. Chestlive: Fortifying voice-based authentication with chest motion biometric on smart devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–25. [Google Scholar] [CrossRef]
Dynamic | Study | Algorithms | Performance | Datasets |
---|---|---|---|---|
Touch | [7] | CNN | 97.00% ACC | Original Dataset: 180 subjects |
[8] | CNN | 96.94% ACC | Original Dataset: 50 subjects, | |
BrainRun Dataset: 2218 subjects | ||||
[9] | CNN + LSTM + KNN | 1.7% EER | Outsourced Dataset: 161 subjects HuMldb Dataset: 600 subjects e-BioDigitDB: 93 subjects, MobileTouchDB: 217 subjects HMOG Dataset: 100 subjects Touchalytics Dataset: 41 subjects Original Dataset: 20 subjects Original Dataset: 34 subjects Touchalytics Dataset: 41 subjects Original Dataset: 20 subjects Touchalytics Dataset: 41 subjects HMOG Dataset: 10 subjects used Original Dataset: 64 subjects Original Dataset: 77 subjects Serwadda, Frank, Antal, UMDAA-02 Datasets: 350 subjects total Original Dataset: 10 participants Original Dataset: 10 subjects Original Dataset: 40 subjects Original Dataset: 95 subjects Original Dataset: 14 subjects Original Dataset: 14 subjects Original Dataset: 9 k subjects Original Dataset: 20 subjects | |
[10] | LSTM-RNN | 13% EER | ||
[11] | LSTM-RNN | 2.38% EER | ||
[12] | DNN | 89–90% ACC | ||
[13] | DNN | 3.4% EER | ||
[14] | MLP | 95.1% ACC | ||
[15] | MLP | 100% ACC | ||
[16] | KRR | 95% ACC | ||
[17] | PSO + RBFN | 1.95% AER | ||
[18] | AC-GAN | Median 7% EER | ||
[19] | DAE-SR | 0.03% EER | ||
[20] | OC-SVM + K-means | 93.7% TPR | ||
[21] | OC-SVM | 98.96% ACC | ||
[22] | SVM + GMM | 3% EER | ||
[23] | SVM | 2.9% AER | ||
[24] | SVM | 97.7% ACC | ||
[25] | RF | 0.002 ± 0.000 EER | ||
[26] | RF | 91.79% TAR | ||
[27] | RF | >0.1% EER | ||
[28] | GBC | 0.9692 AUC | ||
[29] | L-GBC | 0.913–0.921% AUC | ||
[30] | GMM | 91.5% ACC | ||
Motion | [31] | CNN | 90–94% ACC | Original Dataset: 16 subjects |
[32] | CNN + OC-SVM | 90.04% ACC | Original Dataset: 100 subjects | |
[33] | CNN + OC-SVM | 97.8% ACC | HMOG Dataset: 100 subjects | |
[34] | CNN + SVM | 96.72% ACC | HMOG Dataset: 100 subjects | |
[35] | CNN + SVM | 95.01% ACC | Original Dataset: 1513 subjects | |
[36] | CNN + OC-SVM | 1.00% EER | Original Dataset: 100 subjects | |
[37] | LSTM | 0.09% EER | Original Dataset: 84 subjects | |
[38] | LSTM | 0.01% EER | HMOG Dataset: 100 subjects, | |
UCI-HAR Dataset: 30 subjects, | ||||
WISDM-HARB Dataset: 51 subjects | ||||
[39] | LSTM-RNN | 99.05% AUC | Original Dataset: 41 subjects | |
[40] | RNN + GMM | 18.17% EER | Original Dataset: 1.5 k subjects | |
[41] | DAE | 2.2% EER | HMOG Dataset: 100 subjects, | |
Original Dataset: 20 subjects | ||||
[42] | DNN | 94–98% ACC | Original Dataset: 19 subjects | |
[43] | SVM | 97.95% ACC | Original Dataset: 10 subjects | |
[44] | SVM | 95.57% ACC | Outsourced Dataset IV: 1513 subjects | |
[45] | SVM | 76.85% ACC | Sherlock Dataset: 52 subjects | |
[46] | SVM | 92.0% ACC | Original Dataset: 60 subjects | |
[47] | RF | 97.13% ACC | HAR Dataset: 30 subjects, | |
PAMAP2 Dataset: 9 subjects, | ||||
MobiAct Dataset: 59 subjects | ||||
[48] | RF | 99.35% ACC | Original Dataset: 85 subjects | |
Keystroke | [49] | LSTM-RNN | 4.62% EER | HuMldb Dataset: 600 subjects |
[50] | LSTM-RNN | 99.98% TAR | Original Dataset: 37 subjects | |
[51] | RNN | 1.78% EER | Original Dataset: 31 subjects | |
[52] | RNN | 9.2% EER | Palin et al. Dataset: 260 k subjects Original Dataset: 10 subjects BehavePassDB: 81 subjects Aalto Dataset: 260 k subjects Stanford TapDynamics Dataset: 55 subjects Original Dataset: 26 subjects Original Dataset: 5 subjects Antal et al. Dataset: 42 subjects Antal et al. Dataset: 42 subjects Original Dataset: 94 subjects Original Dataset: 12 subjects | |
[53] | RNN + SVM | 93.9% ACC | ||
[54] | LSTM-RNN | 68.72% AUC | ||
[55] | CNN | 3.15% EER | ||
[56] | DNN | 2.8% EER | ||
[57] | GRU-BRNN | 94.07% ACC | ||
[58] | MLP | 5.43% EER | ||
[59] | RF | 2.3% EER | ||
[60] | RF | 94.26% ACC | ||
[61] | L-SVM + RBF | 97.4% ACC | ||
[62] | PCA | 5% EER | ||
Gait | [63] | CNN + OC-SVM | <0.15% FRR, FAR | Original Dataset: 50 subjects |
[64] | CNN (VGG8) | 0.981 ACC | Mcgill: 20 subjects, | |
IDnet: 50 subjects, | ||||
ZJU: 153 subjects, | ||||
Osaka: 744 subjects | ||||
[65] | CNN | 0.9882 ± 0.004 ACC | Kaggle Dataset: 387 subjects | |
[66] | DRNN-LSTM | >95% ACC | Original Dataset: 21 subjects | |
[67] | LSTM | 90.24% ACC | HAPT Dataset: 30 subjects | |
[68] | LSTM + SGD | 97% ACC | IDNet Dataset: 50 subjects | |
[69] | CNN + LSTM | 93.75% ACC | WhuGAIT: 118 subjects | |
[70] | CNN + LSTM | 97.7% ACC | IDNet Dataset: 50 subjects | |
[71] | CNN + LSTM | 92.3% ACC | Outsourced Dataset: 50 subjects | |
[72] | CNN + LSTM | 91.5–99.9% AUC | MotionSense Dataset: 24 subjects, | |
MobiAct Dataset: 56 subjects | ||||
[73] | CNN + LSTM | 95.79% ACC | IDNet Dataset: 50 subjects | |
Face | [74] | CNN | 99.50% ACC | FEI Dataset: 200 subjects |
[75] | CNN + LMPL | 99.53–99.64% ACC | Masked FaceNet, | |
Flicker Face-HQ Datasets: 15 k images | ||||
[64] | CNN | ~0.99 ACC | Original Dataset: 40 subjects CASIA-Webface, LFW, AgeDB-30 Datasets: unspecified subjects MOBIO Dataset: 150 subjects, UMDAA-01 Dataset: 50 subjects, UMDAA-02 Dataset: 44 subjects MOBIO Dataset: 150 subjects, UMDAA-01 Dataset: 50 subjects Original Dataset: 57 subjects BioID, EUCFI, ORL, Ext. Yale B, PrintAttack, gb2sTablet, gb2sMOD, gb2s_Selfies, gb2s_IDCards: 696 subjects CEW Dataset: 2423 images, ZJU Dataset: 80 video clips ORL: 40 subjects, Yale: 15 subjects, Extended Yale: 40 subjects, Georgia Tech: 50 subjects, FEI: 200 subjects MSU-MFSD Dataset: 35 subjects AT&T Dataset: 40 subjects MOBIO Dataset: 150 subjects, UMDAA-01 Dataset: 50 subjects | |
[76] | CNN | 99.28% ACC | ||
[77] | OC-ACNN | 0.9772 AUROC | ||
[78] | CNN + SVM | 0.19–0.20% EER | ||
[79] | CNN + SVM | 98.05% Precision | ||
[80] | CNN + SVM | 0.00–2.56% EER | ||
[81] | CNN + SVM | 98.4% FI-score | ||
[82] | CNN + KNN | 90.90–98.78% ACC | ||
[83] | DAE | >92.58% TRR | ||
[84] | SVM | ~1% FAR | ||
[85] | SVM | 0.25% ERR | ||
Ocular | [86] | CNN | 99.41% ACC | VISOB Dataset: 550 subjects, |
CSIP Dataset: 50 subjects, | ||||
IIITD Dataset: 62 subjects | ||||
[87] | CNN | 1.17% EER | VISOB Dataset: 550 subjects, | |
UBIRIS-1 Dataset: 241 subjects, | ||||
UBIRIS-2 Dataset: 261 subjects, | ||||
CrossEyed Dataset: 120 subjects | ||||
[88] | CNN | 0.988 AUC | VISOB-2 Dataset; 150 subjects | |
[89] | CNN | 4.65–6.57% EER | VISOB Dataset: 550 subjects | |
[90] | CNN + ANN | 0.03–0.06% EER | IITD Dataset: 225 subjects, | |
MMU Dataset: 45 subjects | ||||
[91] | CNN | 99.10% ACC | UTiris Dataset: 79 subjects | |
Other | [92] | CNN | 91.8–93% ACC | NCUT-FR Dataset: 5 k images, |
MST-DB4 Dataset: 4 k images | ||||
[93] | CNN + LOF | 97.99% BAC | Original Dataset: 105 subjects | |
[94] | CNN | >99.00% ACC | FVS2006, ATVSFFpDB, Spoof Attack Finger Vein Database, LivDet 2013 Dataset, LivDet 2015 Dataset | |
[95] | CNN | 0.03% EER | UWA Benchmark, ManTech Phase2, PolyU, MSU, IIT, ISPFDv2, ZJU Datasets: ~1 k subjects total UC3M-CV2: 2400 images, UC3M-CV1: 1200 images, PUT: 1200 images, ImageNet: 14 million images Original Dataset: 11 subjects Original Dataset: 61 subjects | |
[96] | CNN | 0.33% EER | ||
[97] | Naïve-Bayes | 94% ACC | ||
[98] | NN | 98.31% ACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokal, S.; Vanamala, M.; Dave, R. Deep Learning and Machine Learning, Better Together Than Apart: A Review on Biometrics Mobile Authentication. J. Cybersecur. Priv. 2023, 3, 227-258. https://doi.org/10.3390/jcp3020013
Kokal S, Vanamala M, Dave R. Deep Learning and Machine Learning, Better Together Than Apart: A Review on Biometrics Mobile Authentication. Journal of Cybersecurity and Privacy. 2023; 3(2):227-258. https://doi.org/10.3390/jcp3020013
Chicago/Turabian StyleKokal, Sara, Mounika Vanamala, and Rushit Dave. 2023. "Deep Learning and Machine Learning, Better Together Than Apart: A Review on Biometrics Mobile Authentication" Journal of Cybersecurity and Privacy 3, no. 2: 227-258. https://doi.org/10.3390/jcp3020013
APA StyleKokal, S., Vanamala, M., & Dave, R. (2023). Deep Learning and Machine Learning, Better Together Than Apart: A Review on Biometrics Mobile Authentication. Journal of Cybersecurity and Privacy, 3(2), 227-258. https://doi.org/10.3390/jcp3020013