Quantifying Causal Impact of Drought on Vegetation Degradation in the Chad Basin (2000–2023) with Machine Learning-Enhanced Transfer Entropy
Abstract
1. Introduction
- To implement a Machine Learning-Enhanced Transfer Entropy (ML-TE) structure, to overcome the statistical limitations of finite-length remote sensing time series for rigorous causal analysis.
- To quantify the spatiotemporal causal relationships between primary drought indicators (precipitation and land surface temperature) and vegetation degradation (NDVI) across the Chad Basin from 2000 to 2023.
- To synthesize the causal analysis into a spatially explicit vulnerability map, identifying and characterizing regional ‘causal hotspots’ to enable efficient environmental management and remediation.
2. Materials and Methods
2.1. Implementation and Validation of the ML-Enhanced Transfer Entropy (ML-TE) Structure (Objective 1)
2.1.1. Synthetic Data Generation
2.1.2. Model Training
2.2. Quantification of Spatiotemporal Causal Relationships (Objective 2)
2.3. Synthesis into a Spatially Explicit Vulnerability Map (Objective 3)
3. Results
Comparative Validation of the ML-TE Estimator
4. Discussion
4.1. Ecological Mechanisms Underlying Causal Relationships
4.2. Methodological Advances and Comparative Context
4.3. Regional Context and Implications
4.4. Synthesis and Broader Implications
5. Limitations of the Study and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 6317. [Google Scholar] [CrossRef]
- Magrin, G. The disappearance of Lake Chad: History of a myth. J. Polit. Ecol. 2016, 23, 204–222. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Epule, T.E.; Ford, J.D.; Lwasa, S.; Lepage, L. Climate change adaptation in the Sahel. Environ. Sci. Policy 2017, 75, 121–137. [Google Scholar] [CrossRef]
- Krich, C.; Runge, J.; Miralles, D.G.; Migliavacca, M.; Perez-Priego, O.; El-Madany, T.; Carrara, A.; Mahecha, M.D. Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences 2020, 17, 1033–1061. [Google Scholar] [CrossRef]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 2553. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Gao, Q.; Wan, Y.; Xu, H.; Li, Y.; Jiangcun, W.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Ferreira, V.G.; Agutu, N.O. Hydrological controls on surface vegetation dynamics over West and Central Africa. Ecol. Indic. 2019, 103, 494–508. [Google Scholar] [CrossRef]
- Qiu, L.; Yang, H. Boosting transfer entropy estimation accuracy with machine learning for finite-length sequences. Chaos Solitons Fractals 2025, 201, 117252. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Papagiannopoulou, C.; Miralles, D.G.; Decubber, S.; Demuzere, M.; Verhoest, N.E.; Dorigo, W.A.; Waegeman, W. A non-linear Granger-causality framework to investigate climate–vegetation dynamics. Geosci. Model Dev. 2017, 10, 1945–1960. [Google Scholar] [CrossRef]
- Okonkwo, C.; Demoz, B.; Onyeukwu, K. Characteristics of drought indices and rainfall in Lake Chad Basin. Int. J. Remote Sens. 2013, 34, 7945–7961. [Google Scholar] [CrossRef]
- Ghezahai, S.B. Assessing Vegetation Changes for Parts of the Sudan and Chad During 2000–2010 Using Time Series Analysis of MODIS-NDVI. Master’s Thesis, Lund University, Lund, Sweden, 2011. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=2158922&fileOId=2373934 (accessed on 29 October 2025).
- Fu, S.; Zhou, Y.; Lei, J.; Zhou, N. Changes in the spatiotemporal of net primary productivity in the conventional Lake Chad basin between 2001 and 2020 based on CASA model. Atmosphere 2023, 14, 232. [Google Scholar] [CrossRef]
- Lu, J.; Qin, T.; Yan, D.; Lv, X.; Yuan, Z.; Wen, J.; Xu, S.; Yang, Y.; Feng, J.; Li, W. Response of vegetation to drought in the source region of the Yangtze and Yellow Rivers based on causal analysis. Remote Sens. 2024, 16, 630. [Google Scholar] [CrossRef]
- Baydaroğlu, Ö.; Yeşilköy, S.; Demir, I. A Phenology-Dependent Analysis for Identifying Key Drought Indicators for Crop Yield based on Causal Inference and Information Theory. EarthArXiv, 2024; preprint. Available online: https://eartharxiv.org/repository/view/7613/ (accessed on 30 November 2025).
- Lu, T.; Zhang, W.; Abel, C.; Horion, S.; Brandt, M.; Huang, K.; Fensholt, R. Changes in vegetation-water response in the Sahel-Sudan during recent decades. J. Hydrol. Reg. Stud. 2024, 52, 101672. [Google Scholar] [CrossRef]
- Kladny, K.-R.; Milanta, M.; Mraz, O.; Hufkens, K.; Stocker, B.D. Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data. Ecol. Inform. 2024, 80, 102474. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, P.; Lv, Q.; Cui, R.; Meng, L. Synergistic drivers and threshold effects of vapor pressure deficit in China: An integrated framework of causal inference and machine learning. J. Environ. Manag. 2025, 395, 127739. [Google Scholar] [CrossRef]
- Lou, P.; Wu, T.; Yang, S.; Wu, X.; Chen, J.; Zhu, X.; Chen, J.; Lin, X.; Li, R.; Shang, C. Deep learning reveals rapid vegetation greening in changing climate from 1988 to 2018 on the Qinghai-Tibet Plateau. Ecol. Indic. 2023, 148, 110020. [Google Scholar] [CrossRef]
- Wei, T.; Sun, Z.; Huang, J.; Zhang, Y.; Zhang, Y. Causal Inference Reveals Temperature as the Dominant Driver of Vegetation Greening on the Qinghai-Tibetan Plateau over the Past Two Decades. ESS Open Archive, 2025; preprint. Available online: https://essopenarchive.org/doi/full/10.22541/essoar.175537241.17726682 (accessed on 30 November 2025).
- Shao, Y.; Hagan, D.F.T.; Li, S.; Zhou, F.; Zou, X.; Cabral, P. The many shades of the vegetation–climate causality: A multimodel causal appreciation. Forests 2024, 15, 1430. [Google Scholar] [CrossRef]
- Sun, Y.; Lao, D.; Ruan, Y.; Huang, C.; Xin, Q. A deep learning-based approach to predict large-scale dynamics of normalized difference vegetation index for the monitoring of vegetation activities and stresses using meteorological data. Sustainability 2023, 15, 6632. [Google Scholar] [CrossRef]
- Limchupanpanich, S.; Sritarapipat, T.; Kaennakham, S.; Ongsomwang, S. Early Drought Prediction Using MODIS Time Series with LSTM: A Study of the Western United States. In Frontiers in Artificial Intelligence and Applications; Tallón-Ballesteros, A.J., Ed.; IOS Press: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, D.; Tian, W.; Zhao, H.; Geng, S.; Lu, H.; Ma, G.; Huang, J.; Choy Lim Kam Sian, K.T. Construction of an integrated drought monitoring model based on deep learning algorithms. Remote Sens. 2023, 15, 667. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Peng, D.; Yi, Q.; Zhang, X.; Zheng, J.; Chen, S. Estimating soybean yields using causal inference and deep learning approaches with satellite remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14161–14178. Available online: https://ieeexplore.ieee.org/abstract/document/10614767/ (accessed on 30 November 2025). [CrossRef]
- Muriga, V.W.; Rich, B.; Mauro, F.; Sebastianelli, A.; Ullo, S.L. A machine learning approach to long-term drought prediction using normalized difference indices computed on a spatiotemporal dataset. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 4927–4930. Available online: https://ieeexplore.ieee.org/abstract/document/10282592/ (accessed on 30 November 2025).
- Van Cleemput, E.; Adler, P.B.; Suding, K.N.; Rebelo, A.J.; Poulter, B.; Dee, L.E. Scaling-up ecological understanding with remote sensing and causal inference. Trends Ecol. Evol. 2025, 40, 122–135. [Google Scholar] [CrossRef]
- Ramachandra, V. Causal inference for climate change events from satellite image time series using computer vision and deep learning. arXiv 2019, arXiv:1910.11492. [Google Scholar] [CrossRef]
- Jun, K.S.; Sseguya, F. Advancing Drought Monitoring and Prediction in Africa Using Remote Sensing, Gaussian Kernel, and Machine Learning. Copernic. Meet. 2025. Available online: https://meetingorganizer.copernicus.org/EGU25/EGU25-7989.html (accessed on 30 November 2025).
- Chouikhi, F.; Abbes, A.B.; Farah, I.R. Monitoring Desertification in Tunisia Using Modis Ecological Indicators and Machine Learning. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 10006–10010. Available online: https://ieeexplore.ieee.org/abstract/document/10641199/ (accessed on 30 November 2025).
- Wang, X.; Xu, H.; Pan, Y.; Yang, X. Forecasting ecological water demand of an arid oasis under a drying climate scenario based on deep learning methods. Ecol. Inform. 2024, 82, 102721. [Google Scholar] [CrossRef]
- Kumar, V.; Bharti, B.; Singh, H.P.; Topno, A.R. Assessing the interrelation between NDVI and climate dependent variables by using granger causality test and vector auto-regressive neural network model. Phys. Chem. Earth Parts ABC 2023, 131, 103428. [Google Scholar] [CrossRef]







| tte | Sequence_Length | M | m_abc_0 | m_abc_1 | m_abc_2 | m_abc_3 | m_abc_4 | m_abc_5 | m_abc_6 | m_abc_7 | m_b_0 | m_b_1 | m_ab_0 | m_ab_1 | m_ab_2 | m_ab_3 | m_bc_0 | m_bc_1 | m_bc_2 | m_bc_3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0167 | 24 | 2 | 7 | 6 | 0 | 4 | 4 | 2 | 0 | 1 | 19 | 5 | 13 | 4 | 6 | 1 | 11 | 8 | 0 | 5 |
| 0.0995 | 24 | 2 | 0 | 4 | 1 | 4 | 5 | 0 | 5 | 5 | 9 | 15 | 4 | 5 | 5 | 10 | 5 | 4 | 6 | 9 |
| 0.0714 | 24 | 2 | 13 | 1 | 1 | 5 | 0 | 1 | 2 | 1 | 15 | 9 | 14 | 6 | 1 | 3 | 13 | 2 | 3 | 6 |
| 0.0258 | 24 | 2 | 1 | 2 | 8 | 3 | 2 | 1 | 3 | 4 | 6 | 18 | 3 | 11 | 3 | 7 | 3 | 3 | 11 | 7 |
| 0.0586 | 24 | 2 | 1 | 7 | 1 | 1 | 6 | 4 | 2 | 2 | 18 | 6 | 8 | 2 | 10 | 4 | 7 | 11 | 3 | 3 |
| 0.1293 | 24 | 2 | 8 | 3 | 0 | 5 | 1 | 2 | 2 | 3 | 14 | 10 | 11 | 5 | 3 | 5 | 9 | 5 | 2 | 8 |
| 0.2088 | 24 | 2 | 4 | 4 | 2 | 5 | 0 | 6 | 2 | 1 | 14 | 10 | 8 | 7 | 6 | 3 | 4 | 10 | 4 | 6 |
| 0.0436 | 24 | 2 | 0 | 1 | 4 | 7 | 4 | 2 | 4 | 2 | 7 | 17 | 1 | 11 | 6 | 6 | 4 | 3 | 8 | 9 |
| 0.0717 | 24 | 2 | 0 | 4 | 2 | 4 | 5 | 4 | 0 | 5 | 13 | 11 | 4 | 6 | 9 | 5 | 5 | 8 | 2 | 9 |
| 0.0113 | 24 | 2 | 4 | 6 | 5 | 2 | 1 | 4 | 1 | 1 | 15 | 9 | 10 | 7 | 5 | 2 | 5 | 10 | 6 | 3 |
| Year | Mean (NDVI) | Mean (LST Day ° Celsius) | Mean (LST Night ° Celsius) |
|---|---|---|---|
| 2000 | 0.212 | 41.59 | 21.89 |
| 2001 | 0.202 | 39.24 | 20.42 |
| 2002 | 0.203 | 38.90 | 21.76 |
| 2003 | 0.208 | 39.01 | 21.56 |
| 2004 | 0.205 | 38.84 | 21.26 |
| 2005 | 0.206 | 38.35 | 21.41 |
| 2006 | 0.211 | 39.00 | 21.34 |
| 2007 | 0.209 | 38.69 | 21.46 |
| 2008 | 0.211 | 38.88 | 20.96 |
| 2009 | 0.205 | 39.31 | 22.10 |
| 2010 | 0.207 | 38.78 | 22.14 |
| 2011 | 0.209 | 38.59 | 21.52 |
| 2012 | 0.215 | 38.62 | 21.54 |
| 2013 | 0.214 | 39.93 | 21.79 |
| 2014 | 0.213 | 39.07 | 21.82 |
| 2015 | 0.206 | 38.53 | 21.45 |
| 2016 | 0.206 | 39.20 | 22.59 |
| 2017 | 0.209 | 38.20 | 21.17 |
| 2018 | 0.212 | 39.26 | 22.26 |
| 2019 | 0.225 | 38.77 | 22.00 |
| 2020 | 0.222 | 39.33 | 22.49 |
| 2021 | 0.220 | 39.83 | 21.96 |
| 2022 | 0.223 | 38.23 | 22.14 |
| 2023 | 0.194 | 37.37 | 22.27 |
| Layer | Neurons | Activation | Parameters |
|---|---|---|---|
| (Dense) | 128 | ReLU | 2432 |
| (Dropout) | (Rate = 0.2) | N/A | 0 |
| (Dense) | 64 | ReLU | 8256 |
| (Dropout) | (Rate = 0.2) | N/A | 0 |
| (Dense) | 32 | ReLU | 2080 |
| (Dense) | 1 | Linear | 33 |
| Total | 12,801 |
| Statistic | Value |
|---|---|
| Mean | 0.064 |
| Std Dev | 0.025 |
| Min | 0.041 |
| Max | 0.388 |
| Count | 10,271,299 |
| Statistic | Value |
|---|---|
| Mean | 0.063 |
| Std Dev | 0.024 |
| Min | 0.042 |
| Max | 0.375 |
| Count | 10,309,251 |
| Estimator Type | Mean Absolute Error (MAE) |
|---|---|
| ML-TE Estimator | 0.049 |
| Conventional KSG Estimator | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bormudoi, A.; Nagai, M. Quantifying Causal Impact of Drought on Vegetation Degradation in the Chad Basin (2000–2023) with Machine Learning-Enhanced Transfer Entropy. GeoHazards 2026, 7, 2. https://doi.org/10.3390/geohazards7010002
Bormudoi A, Nagai M. Quantifying Causal Impact of Drought on Vegetation Degradation in the Chad Basin (2000–2023) with Machine Learning-Enhanced Transfer Entropy. GeoHazards. 2026; 7(1):2. https://doi.org/10.3390/geohazards7010002
Chicago/Turabian StyleBormudoi, Arnob, and Masahiko Nagai. 2026. "Quantifying Causal Impact of Drought on Vegetation Degradation in the Chad Basin (2000–2023) with Machine Learning-Enhanced Transfer Entropy" GeoHazards 7, no. 1: 2. https://doi.org/10.3390/geohazards7010002
APA StyleBormudoi, A., & Nagai, M. (2026). Quantifying Causal Impact of Drought on Vegetation Degradation in the Chad Basin (2000–2023) with Machine Learning-Enhanced Transfer Entropy. GeoHazards, 7(1), 2. https://doi.org/10.3390/geohazards7010002

