Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects
Abstract
1. Introduction
2. General Settings
2.1. Damage and Benefits of Large Dams
2.2. Global Dam Safety Legislation
2.3. The Role of Dam Disasters in Shaping Legislation in Italy
3. Materials and Methods
3.1. The Large Dams Census in Italy
3.2. The Analysis of Dams-Location Potential Failure
3.3. The Dam Emergency Plans in Italy
3.4. The Valcamonica Dams: A Case Study in an Vulnerable Area of Italian Central Alps
3.4.1. The Features of the Oglio River Valley
3.4.2. Large Dams in Valcamonica Area
3.4.3. Geo-Hydrological Hazard in Valcamonica
3.4.4. Planning and Civil Protection Strategies for Geo-Hydrological Risk in Valcamonica
4. Results
4.1. Population Exposed to Dam-Related Risk in the Study Area
4.2. Land-Use Changes
4.3. Riverine Area Transformations
4.4. The Improvement of the Riks Analysis in the PED Scenario
4.5. Integrated Risk Evaluation of Large Dams in the Valcamonica
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakatsanis, D.; Patsialis, T.; Kalaitzidou, K.; Kougias, I.; Ntona, M.M.; Theodossiou, N.; Kazakis, N. Optimization of Dam Operation and Interaction with Groundwater: An Over-view Focusing on Greece. Water 2023, 15, 3852. [Google Scholar] [CrossRef]
- Fayaed, S.S.; El-Shafie, A.; Jaafar, O. Reservoir system simulation and optimization techniques. Stoch. Environ. Res. Risk Assess. 2013, 27, 1751–1772. [Google Scholar] [CrossRef]
- Busico, G.; Ntona, M.M.; Carvalho, S.C.P.; Patrikaki, O.; Voudouris, K.; Kazakis, N. Simulating future groundwater recharge in coastal and inland catchments. Water Resour. Manag. 2021, 35, 3617–3632. [Google Scholar] [CrossRef]
- Panizzo, A.; De Girolamo, P.; Di Risio, M.; Maistri, A.; Petaccia, A. Great landslide events in Italian artificial reservoirs. NHESS 2005, 5, 733–740. [Google Scholar] [CrossRef]
- Migliorati, L. The Gleno Dam Disaster (1923). Cultural Trauma and Collective Memories of an In-Depth Mountain Community in Italy a Century Later. Ital. Sociol. Rev. 2024, 14, 51–70. [Google Scholar] [CrossRef]
- Belluco, E. 1923–2023: The centenary of the Gleno dam’s failure (Po basin, Bergamo-Northern Italy). In Proceedings of the ICIRBM—44th Italian Conference on Integrated River Basin Management, Calabria, Italy, 22–23 July 2023; pp. 135–146. Available online: https://hdl.handle.net/11577/3507140 (accessed on 10 September 2024).
- Petraccia, G.; Lai, C.G.; Milazzo, C.; Natale, L. The collapse of the Sella Zerbino gravity dam. Eng. Geol. 2016, 211, 39–49. [Google Scholar] [CrossRef]
- Petaccia, G.; Natale, L. 1935 Sella Zerbino Dam-Break Case Revisited: A New Hydrologic and Hydraulic Analysis. J. Hydraul. Eng. 2020, 146, 0502000. [Google Scholar] [CrossRef]
- French Ministry for Sustainable Development DGPR/SRT/Barpi, Lyon, France, 2010. Release of 50 Million m3 of Water at the Vajont Dam. 9 October 1963. Erto e Casso (PN) Italy. Available online: https://www.aria.developpement-durable.gouv.fr/wp-content/files_mf/A23607_ips23607_002.pdf (accessed on 3 March 2024).
- Margitta, M.R.; Onorati, B. The Hydrological Characteristics of the Vajont Valley. Ital. J. Eng. Geol. Environ. 2013, 1, 567–572. [Google Scholar] [CrossRef]
- Barla, G.; Paronuzzi, P. The 1963 Vajont Landslide: 50th Anniversary. Rock Mech. Rock Eng. 2013, 46, 1267–1270. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A.; Pinto, D.; Lenaz, D.; Soccal, M. The clays involved in the 1963 Vajont landslide: Genesis and geomechanical implications. Eng. Geol. 2021, 294, 106376. [Google Scholar] [CrossRef]
- Pirulli, M.; Barbero, M.; Marchelli, M.; Scavia, C. The failure of the Stava Valley tailings dams (Northern Italy): Numerical analysis of the flow dynamics and rheological properties. Geoenviron. Disasters 2017, 4, 3. [Google Scholar] [CrossRef]
- Simeoni, L.; Tosatti, G.; Lucchi, G.; Longo, M. The Stava catastrophic failure of 19th July 1985 (Italy): Technical-scientific data and socioeconomic aspects. CSE J. 2017, 1, 17–30. [Google Scholar] [CrossRef]
- Boaretto, M.; Lucchi, G.; Tosatti, G.; Zorzi, L. The Stava Valley Tailings Dams Disaster: A Reference Point for the Prevention of Severe Mine Incidents. Environ. Sci. Eng. B 2018, 7, 234–241. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Sun, B.; Guo, J.; Hu, S.; Zhang, M. Characterization of dam failure flooding in an urban reservoir under different rainfall conditions. Sci. Rep. 2024, 14, 27560. [Google Scholar] [CrossRef]
- Ferrari, A.; Vacondio, R.; Mignosa, P. High-resolution 2D shallow water modelling of dam failure floods for emergency action plans. J. Hydr. 2023, 618, 129192. [Google Scholar] [CrossRef]
- Aureli, F.; Maranzoni, A.; Petaccia, G. Review of historical dam-break events and laboratory tests on real topography for the validation of numerical models. Water 2021, 13, 1968. [Google Scholar] [CrossRef]
- Gaagai, A.; Aouissi, H.A.; Krauklis, A.E.; Burlakovs, J.; Athamena, A.; Zekker, I.; Boudoukha, A.; Benaabidate, L.; Chenchouni, H. Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water 2022, 14, 767. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Zhou, J.; Guo, X.; Du, X.; Zhang, Q. A quantitative risk analysis model for cascade reservoirs overtopping: Principle and application. Nat. Hazards 2020, 104, 249–277. [Google Scholar] [CrossRef]
- Marangoz, H.O.; Anilan, T. Two-dimensional modeling of flood wave propagation in residential areas after a dam break with application of diffusive and dynamic wave approaches. Nat. Hazards 2022, 110, 429–449. [Google Scholar] [CrossRef]
- CNR IRPI (National Research Council, Research Institute for Geo-Hydrological Protection). Available online: https://www.irpi.cnr.it/en/ (accessed on 3 April 2024).
- Luino, F.; Belloni, A.; Padovan, N.; Bassi, M.; Bossuto, P.; Fassi, P. Historical and geomorphological analysis as a research tool for the identification of flood-prone zones and its role in the revision of town planning: The Oglio basin (Valcamonica—Northern Italy). In Proceedings of the 9th Congress of the International Association for Engineering Geology and the Environment, Durban, South Africa, 16–20 September 2002; pp. 191–200. Available online: https://www.researchgate.net/publication/305303889 (accessed on 13 October 2023).
- Tropeano, D.; Govi, M.; Mortara, G.; Turitto, O.; Sorzana, P.; Negrini, G.; Arattano, M. Eventi Alluvionali e Frane Nell’italia Settentrionale. Periodo 1975-81; CNR-IRPI GNDCI: Turin, Italy, 1999; pp. 240–243. (In Italian) [Google Scholar]
- Castellarin, A.; Magnini, A.; Kyaw, K.K.; Ciavaglia, F.; Bertola, M.; Blöschl, G.; Volpi, E.; Claps, P.; Viglione, A.; Marinelli, A.; et al. Frequency of Italian Record-Breaking Floods over the Last Century (1911–2020). Atmosphere 2024, 15, 865. [Google Scholar] [CrossRef]
- Claps, P.; Evangelista, G.; Ganora, D.; Mazzoglio, P.; Monforte, I. FOCA: A new quality-controlled database of floods and catchment descriptors in Italy. Earth Syst. Sci. Data 2024, 16, 1503–1522. [Google Scholar] [CrossRef]
- Luino, F.; Turconi, L. Eventi di Piena e Frana in Italia Settentrionale nel Periodo 2005–2016; SMS: Moncalieri, Italy, 2017; p. 478. ISBN 8890302380/9788890302381. (In Italian) [Google Scholar]
- ISTAT. Italian GDP. Available online: https://www.istat.it/tag/pil/ (accessed on 10 March 2025).
- Angelakis, A.N.; Baba, A.; Valipour, M.; Dietrich, J.; Fallah-Mehdipour, E.; Krasilnikoff, J.; Bilgic, E.; Passchier, C.; Tzanakakis, V.A.; Kumar, R.; et al. Water Dams: From Ancient to Present Times and into the Future. Water 2024, 16, 1889. [Google Scholar] [CrossRef]
- Forsythe, K.W.; Schatz, B.; Swales, S.J.; Ferrato, L.-J.; Atkinson, D.M. Visualization of Lake Mead Surface Area Changes from 1972 to 2009. ISPRS Int. J. Geo-Inf. 2012, 1, 108–119. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mahdavi, G.; Nuss, L.K.; Lall, U. The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook. Eng. Appl. Artif. Intell. 2023, 126, 106813. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Valipour, M.; Ahmed, A.T.; Tzanakakis, V.; Paranychianakis, N.V.; Krasilnikoff, J.; Drusiani, R.; Mays, L.; El Gohary, F.; Koutsoyiannis, D. Water Conflicts: From Ancient to Modern Times and in the Future. Sustainability 2021, 13, 4237. [Google Scholar] [CrossRef]
- Haftendorn, H. Water and international conflict. Third World Q. 2000, 21, 51–68. [Google Scholar] [CrossRef]
- Qureshi, A.S. Water Management in the Indus Basin in Pakistan: Challenges and Opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar] [CrossRef]
- Brühl, J.; le Roux, L.; Visser, M.; Köhlin, G. Decision-Making in a Water Crisis: Lessons from the Cape Town Drought for Urban Water Policy. Oxford Research Encyclopedias Environmental Science. 19 November 2020. Available online: https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-706 (accessed on 7 June 2024).
- Pess, G.R.; McHenry, M.L.; Beechie, T.J.; Davies, J. Biological Impacts of the Elwha River Dams and Potential Salmonid Responses to Dam Removal. Northwest Sci. 2008, 82, 72–90. [Google Scholar] [CrossRef]
- Elagib, N.A.; Basheer, M. Would Africa’s largest hydropower dam have profound environmental impacts? Environ. Sci. Pollut. Res. 2021, 28, 8936–8944. [Google Scholar] [CrossRef]
- Li, B.; Chen, N.; Wang, W.; Wang, C.; Schmitt, R.J.; Lin, A.; Daily, G.C. Eco-environmental impacts of dams in the Yangtze River Basin, China. Sci. Total Environ. 2021, 20, 774–145743. [Google Scholar] [CrossRef]
- Carney, T.M. China’s Three Gorges Dam: Development, Displacement, and Degradation. Neb. Anthropol. 2021, 29, 20–27. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1193&context=nebanthro (accessed on 24 March 2025).
- Zafarnejad, F. The contribution of dams to Iran’s desertification. Int. J. Environ. Stud. 2009, 66, 327–341. [Google Scholar] [CrossRef]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Comm. 2021, 12, 417. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Walling, D.; Zhang, T.; Steiner, J.K.; Wasson, R.J.; Harrison, S.; Nepal, S.; Nie, Y.; Immerzeel, W.W.; et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosc. 2022, 15, 520–530. [Google Scholar] [CrossRef]
- Moore, D.; Dore, J.; Gyawali, D. The World Commission on Dams + 10: Revisiting the Large Dam Controversy. Water Altern. 2010, 3, 3–13. Available online: https://www.water-alternatives.org/index.php/volume3/v3issue2/79-a3-2-2/file (accessed on 15 June 2025).
- ICOLD International Commision on Large Dams. Constitution Status. Available online: https://www.icold-cigb.org/userfiles/files/CIGB/INSTITUTIONAL_FILES/Constitution2011.pdf (accessed on 5 May 2025).
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam Safety: Sediments and Debris Problems. Earth Sci. Geotech. Eng. 2021, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.J.; Escuder-Bueno, I. Dam Safety History and Practice: Is There Room for Improvement? Infrastructures 2023, 8, 171. [Google Scholar] [CrossRef]
- Federal Energy Regulatory Commission (FERC). Available online: https://ferc.gov/ (accessed on 15 December 2024).
- National Dam Safety Program Act (NDSPA). Dam Safety in the United States: A Progress Report on the National Dam Safety Program. Available online: https://www.fema.gov/grants/mitigation/learn/dam-safety/progress-report (accessed on 3 March 2025).
- California Has Its Dam Safety Program. Available online: https://water.ca.gov/programs/all-programs/division-of-safety-of-dams (accessed on 13 January 2025).
- China Law on the Safety of Dams. Available online: http://www.lawinfochina.com/display.aspx?id=29508&lib=law&EncodingName=gb2312 (accessed on 7 July 2024).
- India Dam Safety Act. Available online: https://www.indiacode.nic.in/bitstream/123456789/17002/1/A202141.pdf (accessed on 3 September 2024).
- Council Directive 2000/60/EC (Water Framework Directive). Available online: https://environment.ec.europa.eu/topics/water/water-framework-directive_en (accessed on 17 October 2024).
- Council Directive 2012/18/EU (Seveso III Directive). Available online: https://environment.ec.europa.eu/topics/industrial-emissions-and-safety/industrial-accidents_en (accessed on 25 November 2024).
- Europe Dam Safety Guidelines. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:163:0001:0140:EN:PDF (accessed on 8 June 2024).
- UK Reservoirs Act. Available online: https://www.legislation.gov.uk/ukpga/1975/23 (accessed on 15 June 2025).
- French Water Code and the Dam Safety Regulations. Available online: https://www.barrages-cfbr.eu/Surveillance.html (accessed on 8 April 2025).
- International Commission on Large Dams. Dam Failures Statistical Analysis; ICOLD: Paris, France, 1995. [Google Scholar]
- International Commission on Large Dams. Risk Assessment in Dam Safety Management: A Reconnaissance of Benefits, Methods and Current Applications; ICOLD: Paris, France, 2005. [Google Scholar]
- CAN/CSA-Q850-97; Risk Management: Guideline for Decision-Makers. Canadian Standards Association: Toronto, ON, Canada, 1997.
- World Commission on Dams. Dams and Development, A New Framework for Decision-Making; The Report of the World Commission on Dams; Earthscan Publications Ltd.: London, UK, 2000; Available online: https://awsassets.panda.org/downloads/wcd_dams_final_report.pdf (accessed on 10 May 2025).
- Australian National Committee on Large Dams. Guidelines on Risk Assessment; ANCOLD: Hobart, Australia, 2022; Available online: https://ancold.org.au/product/ancold-guidelines-on-risk-assessment-july-2022/ (accessed on 6 February 2025).
- Spanish National Committee on Large Dams. Risk Analysis as Applied to Dam Safety. Technical Guide on Operation of Dams and Reservoirs; Professional Association of Civil Engineers, 1st ed.; Spancold: Madrid, Spain, 2012. [Google Scholar]
- Canadian Dam Association. Dam Safety Guidelines; CDA—ACB: Markham, ON, Canada, 2013. [Google Scholar]
- New Zealand Society on Large Dams. New Zealand Dam Safety Guidelines. Professional Engineers New Zealand; New Zealand Society on Large Dams: Christchurch, New Zealand, 2015. [Google Scholar]
- Luino, F.; Tosatti, G.; Bonaria, V. Dam failures in the 20th century: Nearly 1000 avoidable victims in Italy alone. J. Environ. Sc. Eng. 2014, 3, 19–31. Available online: https://hdl.handle.net/20.500.14243/257940 (accessed on 3 April 2022).
- Bonaria, V.; Tosatti, G. 13th august 1935: A catastrophic dam failure in the Orba valley (Piedmont, Italy). Ital. J. Eng. Geol. Environ. 2013, 6, 383–391. [Google Scholar] [CrossRef]
- Abbate, A.; Frigerio, A. Molare tragedy: The secondary dam collapse induced by a heavy rainfall event. In Twenty-Eighth International Congress on Large Dams/Vingt-Huitième Congrès International des Grands Barrages, 1st ed.; CRC Press: London, UK, 2025; Volume 1, pp. 296–316. [Google Scholar] [CrossRef]
- Bolla, A.; Paronuzzi, P.; Pinto, D.; Lenaz, D.; Del Fabbro, M. Mineralogical and Geotechnical Characterization of the Clay Layers within the Basal Shear Zone of the 1963 Vajont Landslide. Geosciences 2020, 10, 360. [Google Scholar] [CrossRef]
- Müller, L. The rock slide in the Vajont Valley. Rock. Mech. Eng. Geol. 1964, 2, 148–212. [Google Scholar]
- Bianchizza, C.; Frigerio, S. Domination of or adaptation to nature? A lesson we can still learn from the Vajont. Ital. J. Eng. Geol. Environ. 2013, 6, 523–530. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.V. The Stava mudflow of 19 July 1985 (Northern Italy): A disaster that effective regulation might have prevented. Nat. Hazards Earth Syst. Sci. 2012, 12, 1029–1044. [Google Scholar] [CrossRef]
- Alexander, D.E. Northern Italian dam failure and mudflow, July 1985. Disasters 1986, 10, 3–7. [Google Scholar] [CrossRef]
- Italian National Dam Safety. Available online: https://www.dighe.eu/normativa/allegati/2014_D_Min_IITT_26-06.pdf (accessed on 2 March 2025).
- Italian Large Dam Census. Available online: https://www.dighe.eu/dati/grandi_dighe_italiane.htm (accessed on 11 November 2024).
- Perera, D.; Smakhtin, V.; Williams, S.; North, T.; Curry, A. Ageing water storage infrastructure: An emerging global risk. UNU-INWEH Rep. Ser. 2021, 22, 11–25. [Google Scholar] [CrossRef]
- Stucchi, M.; Meletti, C.; Montaldo, V.; Akinci, A.; Faccioli, E.; Gasperini, P.; Malagnini, L.; Valensise, G. Pericolosità Sismica di Siferimento per il Serritorio Sazionale MPS04 [Data Set]. INGV 2004. Available online: https://doi.org/10.13127/sh/mps04/ag (accessed on 27 January 2025).
- Italian Sismic Areas Webgis. Available online: http://zonesismiche.mi.ingv.it/ (accessed on 6 April 2024).
- Italian Sismic Areas. Available online: https://www.testo-unico-sicurezza.com/classificazione-sismica-comuni-italiani.html (accessed on 3 February 2025).
- Turconi, L.; Bono, B.; Genta, R.; Luino, F. The Effects of Flood Damage on Urban Road Networks in Italy: The Critical Function of Underpasses. Land 2024, 13, 1493. [Google Scholar] [CrossRef]
- Turconi, L.; Bono, B.; Faccini, F.; Luino, F. Anthropic Constraint Dynamics in European Western Mediterranean Floodplains Related to Floods Events. Remote Sens. 2023, 15, 4798. [Google Scholar] [CrossRef]
- Turconi, L.; Casazza, M.; Bono, B.; Luino, F. Increasing geohydrological instability in a valley of the Italian Central Alps: A study in the Anthropocene. J. Maps 2022, 19, 2145917. [Google Scholar] [CrossRef]
- Mandarino, A.; Faccini, F.; Luino, F.; Bono, B.; Turconi, L. Integrated Approach for the Study of Urban Expansion and River Floods Aimed at Hydrogeomorphic Risk Reduction. Remote Sens. 2023, 15, 4158. [Google Scholar] [CrossRef]
- ISTAT (Italian Institute of National Statistics) Dataset. Available online: https://demo.istat.it/app/?i=POS (accessed on 21 March 2024).
- ISTAT (Italian Institute of National Statistics) Census. Available online: https://ebiblio.istat.it/digibib/Censimenti%20popolazione/Censimentipopolazioneresidentedal1861/RML0050288Pop_res_cens_1861_1991.pdf (accessed on 7 June 2024).
- ISTAT (Italian Institute of National Statistics) Tourism—Movimento Dei Clienti (Arrivi/Presenze) Negli Esercizi Ricettivi per Tipologia Ricettiva e Comune di Destinazione. Available online: http://dati.istat.it/DownloadFiles.aspx?&DatasetCode=DCSC_TUR&Lang=IT (accessed on 21 March 2025).
- Lombardy Region Geoportal. Available online: https://www.geoportale.regione.lombardia.it/en-GB/home (accessed on 12 April 2024).
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. IDRAIM—Sistema di Valutazione Idromorfologica, Analisi e Monitoraggio dei Corsi d’Acqua; ISPRA: Rome, Italy, 2014. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/idraim-sistema-di-valutazione-idromorfologica-analisi-e-monitoraggio-dei-corsi-dacqua (accessed on 22 December 2016).
- Gestione dei Sedimenti Fluviali (Ge.Se.Flu) CNR IRPI Project. 2014. Available online: http://www.irpi.cnr.it/project/geseflu/ (accessed on 4 September 2020).
- Lombardy Region Circular DSTN/2/2280/1995. Available online: https://www.regione.lombardia.it/wps/wcm/connect/f03628d3-a9ea-4e4f-971c-ab65d1b92442/nota-tecnica-approfondimento-piani-emergenza-dighe.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-f03628d3-a9ea-4e4f-971c-ab65d1b92442-noJzQ9L (accessed on 13 April 2025).
- Luino, F.; De Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2020, 12, 133. [Google Scholar] [CrossRef]
- POLARIS CNR Project. Available online: https://polaris.irpi.cnr.it/ (accessed on 12 May 2024).
- CNR IRPI Archive Historical Documents. Available online: https://www.irpi.cnr.it/en/products-services/data/archives/ (accessed on 30 May 2019).
- AVI Aree Vulnerate Italiane GNDC Italian Project. Available online: https://avi.gndci.cnr.it/ (accessed on 8 June 2024).
- Luino, F.; Bassi, M.; Bossuto, P.; Fassi, P.; Belloni, A.; Padovan, N. Individuazione delle Zone Potenzialmente Inondabili dal Punto di Vista Storico e Morfologico a Fini Urbanistici: Fiume Oglio (Valcamonica); PRIR 2000–Cod IReR 2000A21 CNR IRPI Internal report 12/2000; CNR IRPI: Milan, Italy, 2002. [Google Scholar]
- RASDA System—Sistema Regionale On-Line per la Raccolta Schede Danni ai Sensi della D.G.R. n. 8/8755 del 22/12/2008. Available online: https://sicurezza.servizirl.it/web/protezione-civile/rasda (accessed on 21 June 2025).
- Money Converter. Available online: https://inflationhistory.com (accessed on 3 August 2025).
- Pedersoli, G.S. La Lunga Alluvione (1960): Cronaca e Storia Dopo Trent’Anni; Cividate Camuno Edizioni Toroselle: Artogne, BS, Italy, 1991; p. 287. (In Italian) [Google Scholar]
- Italian Ministry of the Interior. Territorial Government Policies. Available online: https://www.interno.gov.it/it/amministrazione-trasparente/pianificazione-e-governo-territorio (accessed on 1 June 2025).
- IFFI ISPRA Geoportal. Available online: https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/suolo-e-territorio-1/iffi-inventario-dei-fenomeni-franosi-in-italia (accessed on 1 April 2024).
- PAI ADBPo Geoportal. Available online: https://pai.adbpo.it/documentazione-pai/ (accessed on 5 March 2024).
- PGRA ISPRA Geoportal. Available online: https://www.isprambiente.gov.it/pre_meteo/idro/Piani_gest.html (accessed on 9 April 2024).
- Turconi, L.; Tropeano, D.; Savio, G.; Bono, B.; De, S.K.; Frasca, M.; Luino, F. Torrential Hazard Prevention in Alpine Small Basin through Historical, Empirical and Geomorphological Cross Analysis in NW Italy. Land 2022, 11, 699. [Google Scholar] [CrossRef]
- Paranunzio, R.; Chiarle, M.; Laio, F.; Nigrelli, G.; Turconi, L.; Luino, F. Slope failures in high-mountain areas in the Alpine Region [dataset]. PANGAEA 2019. [Google Scholar] [CrossRef]
- Paranunzio, R.; Chiarle, M.; Laio, F.; Nigrelli, G.; Turconi, L.; Luino, F. New insights in the relation between climate and slope failures at high-elevation sites. Theor. Appl. Climatol. 2019, 137, 1765–1784. [Google Scholar] [CrossRef]
- L’Eco di Bergamo Online Journal Archive. Available online: https://www.ecodibergamo.it/stories/valle-di-scalve/diga-del-gleno-95-anni-fa-disastro-ecco-come-leco-racconto-tragedia-o_1295769_11/ (accessed on 21 July 2024).
- Kuang, D.; Xu, R.; Zhou, W. How do lessons learned from past flood experiences influence household-level flood resilience: A case study of Jiangnan village in Southern China. Int. J. Disaster Risk Reduct. 2024, 114, 104998. [Google Scholar] [CrossRef]
- Mochizuki, J.; Chang, S.E. Disasters as opportunity for change: Tsunami recovery and energy transition in Japan. Int. J. Disaster Risk Reduct. 2017, 21, 331–339. [Google Scholar] [CrossRef]
- Albano, R.; Mancusi, L.; Adamowski, J.; Cantisani, A.; Sole, A. A GIS Tool for Mapping Dam-Break Flood Hazards in Italy. ISPRS Int. J. Geo-Inf. 2019, 8, 250. [Google Scholar] [CrossRef]
- Maranzoni, A.; D’Oria, M.; Rizzo, C. Probabilistic mapping of life loss due to dam-break flooding. Nat. Hazards 2024, 120, 2433–2460. [Google Scholar] [CrossRef]
- Seyedashraf, O.; Mehrabi, M.; Akhtari, A.A. Novel approach for dam break flow modelling using computational intelligence. J. Hydrol. 2018, 559, 1028–1038. [Google Scholar] [CrossRef]
- IT-Alert System. Available online: https://www.it-alert.it/it/ (accessed on 3 October 2024).
Description | 1 | 2 | 3 |
---|---|---|---|
Geomorphological and Topographic Setting | Floodplain regions | Hilly regions | Mountainous regions |
Slope failures and drainage network instability | Localized minor shallow instabilities near the dam (e.g., rockfalls, soil slips); minimal tributary presence with negligible sediment transport; no recorded avalanche activity | Widespread small-scale landslides near the reservoir; lateral tributaries show low to moderate torrential sediment supply. No recent avalanche activity recorded. | Fractured rock slopes with active deep and shallow landslides, tributaries delivering debris flow, and frequent avalanche activity |
Seismic zoning of the municipality(ies) where the dam is located [76,77,78] | Zone 4 | Zone 3 | Zone 1–2 |
Factor | Description | 1 | 2 | 3 |
---|---|---|---|---|
A | Increase in the population | <100% | 101–150% | >151% |
B | Tourism pressure | <3 | 4–10 | >10 |
C | Increase in the built-up areas | <2 | 3–5 | >6 |
D | Road infrastructure density | <2 | 3–5 | >6 |
E | Anthropized riverine area | <25% | 26–50% | >51% |
F | Main stream artificiality | L | M | H |
G | Strategic structures | L | M | H |
Class | Low | Medium | High |
---|---|---|---|
Total score | <7 | 8–14 | >15–21 |
Dam | Finishing (Year) | Typology | Elevation (m a.s.l.) | Structural Height (m) | Impounded Volume (106 m3) | Area at Risk (km2) | Main Use |
---|---|---|---|---|---|---|---|
Lago Baitone | 1930 | Gravity | 2291 | 37.90 | 10.65 | 27 | Hydroelectric |
Lago Benedetto | 1940 | Gravity | 1929 | 31.00 | 6.96 | 33 | Hydroelectric |
Lago d’Arno | 1927 | Gravity | 1817 | 36.85 | 22.80 | 25 | Hydroelectric |
Lago d’Avio | 1929 | Gravity | 1902 | 39.55 | 12.38 | 30 | Hydroelectric |
Lago di Lova | 1935 | Embankment | 1302 | 18.00 | 0.46 | 2 | Hydroelectric |
Lago Salarno | 1928 | Gravity | 2084 | 38.4 | 11.34 | 23 | Hydroelectric |
Pantano d’Avio | 1956 | Gravity | 2376 | 59.00 | 12.67 | 36 | Hydroelectric |
Poglia | 1950 | Gravity | 626 | 49.40 | 0.50 | 4 | Hydroelectric |
Vasca di Edolo | 1984 | Embankment | 640 | 23.90 | 1.32 | 24 | Hydroelectric |
Venerocolo | 1959 | Gravity | 2529 | 26.90 | 2.55 | 34 | Hydroelectric |
Municipalities | Abbreviation | Flood Events (No) | Flood Frequence Occurrency |
---|---|---|---|
Artogne/Gianico | AR/GN | 5 | Low |
Berzo Demo | BD | 13 | Medium |
Braone | BRA | 13 | Medium |
Breno | BRE | 15 | Medium |
Borno/Ossimo | BO/OS | 5 | Low |
Capo di Ponte | CDP | 13 | Medium |
Cedegolo | CG | 20 | High |
Cerveno/Ono San Pietro | CR/OSP | 13 | Medium |
Ceto | CE | 16 | High |
Cevo/Saviore dell’Adamello | CO/SA | 6 | Medium |
Cividate Camuno | CC | 20 | High |
Costa Volpino | CV | 1 | Low |
Darfo Boario Terme | DBT | 46 | Very High |
Edolo | ED | 17 | High |
Esine | ES | 21 | High |
Incudine | IN | 11 | Medium |
Losine | LO | 4 | Low |
Lovere | LV | 1 | Low |
Malegno | ML | 1 | Low |
Malonno | MA | 13 | Medium |
Monno | MO | 6 | Medium |
Niardo | NR | 4 | Low |
Paspardo | PA | N.D. | N.D. |
Pian Camuno/Pisogne | PC/PS | 2 | Low |
Piancogno | PI | 1 | Low |
Ponte di Legno | PDL | 19 | High |
Rogno | RO | 1 | Low |
Sellero | SE | N.D. | N.D. |
Sonico | SO | 20 | High |
Temù | TM | 20 | High |
Vezza d’Oglio | VDO | 14 | Medium |
Vione | VI | 27 | Very High |
Dam Area | Increase in Population | Tourism Pressure |
---|---|---|
Lago Baitone | 151% | 4.31 |
Lago Benedetto | 145% | 4.31 |
Lago d’Arno | 180% | 4.31 |
Lago d’Avio | 151% | 4.31 |
Lago di Lova | 151% | 4.31 |
Lago Salarno | 155% | 4.31 |
Pantano d’Avio | 145% | 4.31 |
Poglia | 145% | 4.31 |
Vasca di Edolo | 108% | 4.31 |
Venerocolo | 123% | 4.31 |
Dam Area | Increase in Population | Tourism Pressure |
---|---|---|
Lago Baitone | 3 | 2 |
Lago Benedetto | 2 | 2 |
Lago d’Arno | 3 | 2 |
Lago d’Avio | 3 | 2 |
Lago di Lova | 3 | 2 |
Lago Salarno | 3 | 2 |
Pantano d’Avio | 2 | 2 |
Poglia | 2 | 2 |
Vasca di Edolo | 2 | 2 |
Venerocolo | 2 | 2 |
Dam Area | Increase in Built-Up Areas | Road Infrastructure Density (km/km2) |
---|---|---|
Lago Baitone | 7.3 | 3.1 |
Lago Benedetto | 7.0 | 3.7 |
Lago d’Arno | 7.2 | 3.5 |
Lago d’Avio | 7.1 | 3.5 |
Lago di Lova | 4.6 | 0.8 |
Lago Salarno | 7.3 | 3.3 |
Pantano d’Avio | 6.9 | 3. 8 |
Poglia | 8.5 | 3.1 |
Vasca di Edolo | 7.5 | 3.5 |
Venerocolo | 7.0 | 3.5 |
Dam Area | Increase in Built-Up Areas | Road Infrastructure Density (km/km2) |
---|---|---|
Lago Baitone | 3 | 2 |
Lago Benedetto | 3 | 2 |
Lago d’Arno | 3 | 2 |
Lago d’Avio | 3 | 2 |
Lago di Lova | 2 | 1 |
Lago Salarno | 3 | 2 |
Pantano d’Avio | 3 | 2 |
Poglia | 3 | 2 |
Vasca di Edolo | 3 | 2 |
Venerocolo | 3 | 2 |
Dam Area | Anthropized Riverine Area | Main Stream Artificiality |
---|---|---|
Lago Baitone | 26% | H |
Lago Benedetto | 26% | H |
Lago d’Arno | 30% | H |
Lago d’Avio | 26% | H |
Lago di Lova | 31% | H |
Lago Salarno | 30% | H |
Pantano d’Avio | 26% | H |
Poglia | 30% | H |
Vasca di Edolo | 26% | H |
Venerocolo | 26% | H |
Dam Area | Anthropized Riverine Area | Main Stream Artificiality |
---|---|---|
Lago Baitone | 2 | 3 |
Lago Benedetto | 2 | 3 |
Lago d’Arno | 2 | 3 |
Lago d’Avio | 2 | 3 |
Lago di Lova | 2 | 3 |
Lago Salarno | 2 | 3 |
Pantano d’Avio | 2 | 3 |
Poglia | 2 | 3 |
Vasca di Edolo | 2 | 3 |
Venerocolo | 2 | 3 |
Dam Area | Strategic Structures |
---|---|
Lago Baitone | H |
Lago Benedetto | H |
Lago d’Arno | H |
Lago d’Avio | H |
Lago di Lova | H |
Lago Salarno | H |
Pantano d’Avio | H |
Poglia | H |
Vasca di Edolo | H |
Venerocolo | H |
Dam Area | Strategic Structures |
---|---|
Lago Baitone | 3 |
Lago Benedetto | 3 |
Lago d’Arno | 3 |
Lago d’Avio | 3 |
Lago di Lova | 3 |
Lago Salarno | 3 |
Pantano d’Avio | 3 |
Poglia | 3 |
Vasca di Edolo | 3 |
Venerocolo | 3 |
Dam Area | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
Lago Baitone | 3 | 2 | 3 | 2 | 2 | 3 | 3 |
Lago Benedetto | 2 | 2 | 3 | 2 | 2 | 3 | 3 |
Lago d’Arno | 3 | 2 | 3 | 2 | 2 | 3 | 3 |
Lago d’Avio | 3 | 2 | 3 | 2 | 2 | 3 | 3 |
Lago di Lova | 3 | 2 | 2 | 1 | 2 | 3 | 3 |
Lago Salarno | 3 | 2 | 3 | 2 | 2 | 3 | 3 |
Pantano d’Avio | 2 | 2 | 3 | 2 | 2 | 3 | 3 |
Poglia | 2 | 2 | 3 | 2 | 2 | 3 | 3 |
Vasca di Edolo | 2 | 2 | 3 | 2 | 2 | 3 | 3 |
Venerocolo | 2 | 2 | 3 | 2 | 2 | 3 | 3 |
Dam | Final Score | Integrate Value |
---|---|---|
Lago Baitone | 18 | H |
Lago Benedetto | 17 | H |
Lago d’Arno | 18 | H |
Lago d’Avio | 18 | H |
Lago di Lova | 16 | H |
Lago Salarno | 18 | H |
Pantano d’Avio | 17 | H |
Poglia | 17 | H |
Vasca di Edolo | 17 | H |
Venerocolo | 17 | H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turconi, L.; Luino, F.; Roccati, A.; Zaina, G.; Bono, B. Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects. GeoHazards 2025, 6, 65. https://doi.org/10.3390/geohazards6040065
Turconi L, Luino F, Roccati A, Zaina G, Bono B. Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects. GeoHazards. 2025; 6(4):65. https://doi.org/10.3390/geohazards6040065
Chicago/Turabian StyleTurconi, Laura, Fabio Luino, Anna Roccati, Gilberto Zaina, and Barbara Bono. 2025. "Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects" GeoHazards 6, no. 4: 65. https://doi.org/10.3390/geohazards6040065
APA StyleTurconi, L., Luino, F., Roccati, A., Zaina, G., & Bono, B. (2025). Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects. GeoHazards, 6(4), 65. https://doi.org/10.3390/geohazards6040065