Landslide Susceptibility Assessment Using AHP, Frequency Ratio, and LSI Models: Understanding Topographical Controls in Hanang District, Tanzania
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Preparation of Landslide Inventory Map
2.3. Determination of Conditioning Factors
Conditioning Criteria | Source | Spatial Resolution (m) |
---|---|---|
Administrative boundaries | https://www.nbs.go.tz/ (assessed on 24 March 2022) | |
Elevation (m) | USGS Earth Explorer | 30 |
Slope aspect (°) | SRTM Digital Elevation Model | 30 |
Slope degree (°) | SRTM Digital Elevation Model | 30 |
TWI | SRTM Digital Elevation Model | 30 |
Distance to river (m) | https://www.openstreetmap.org/ (assessed on 24 February 2022) | 30 |
Distance to road (m) | https://www.openstreetmap.org/ (assessed on 24 February 2022) | 30 |
Distance to fault (m) | https://www.openstreetmap.org/ (assessed on 24 February 2022) | 30 |
NDVI | from Sentinel-2A | 10 |
Land use | https://dataspace.copernicus.eu/ (assessed on 5 August 2024) | 10 |
Precipitation (mm) | Tanzania Meteorological Agencies (TMA) | 30 |
Geology | Ministry of Minerals | 30 |
Inventory Points | [59,60], and https://dataspace.copernicus.eu/ (assessed on 5 August 2024) | 10 |
2.4. Methods
2.5. Multicollinearity Analysis of Conditioning Factors
2.6. Importance of Landslide-Related Conditioning Factors
2.7. Frequency Ratio Analysis
2.8. Analytic Hierarchy Process (AHP)
2.9. Model Evaluation Procedures
3. Results
3.1. Conditioning Factor Determination
3.2. Multicollinearity Analysis of Conditioning Factors
3.3. Importance of Conditioning Factors
3.4. Landslide Susceptibility Based on Frequency Ratio, AHP, and LSI
3.5. Model Validation and Comparison
4. Discussion
5. Limitations and Future Directions
6. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabbir, W.; Omer, T.; Pilz, J. The impact of environmental change on landslides, fatal landslides, and their triggers in Pakistan (2003–2019). Environ. Sci. Pollut. Res. 2023, 30, 33819–33832. [Google Scholar] [CrossRef]
- Turner, A.K. Social and environmental impacts of landslides. Innov. Infrastruct. Solut. 2018, 3, 70. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; M. Melesse, A. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. [Google Scholar] [CrossRef]
- Pham, B.T. A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility. J. Geol. Soc. India 2018, 91, 355–362. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Y.; Wang, P.; Hou, J.; Gao, Y.; Zhao, L. Numerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: Eruption or collapsed landslide? Nat. Hazards 2020, 102, 1–13. [Google Scholar] [CrossRef]
- Iqbal, U.; Perez, P.; Barthelemy, J. A process-driven and need-oriented framework for review of technological contributions to disaster management. Heliyon 2021, 7, e08405. [Google Scholar] [CrossRef] [PubMed]
- Regmi, A.D.; Yoshida, K.; Pourghasemi, H.R.; DhitaL, M.R.; Pradhan, B. Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. J. Mt. Sci. 2014, 11, 1266–1285. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Sameen, M.I.; Kalantar, B.; Zhu, A.; Chen, W. Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides 2018, 15, 753–772. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.X.; Chen, W.; Ahmad, B. Bin Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Wu, J.; Hou, Y.; Wen, Y. Demand analysis of forest law in China based on forestry workers’ perspective. Inf. Technol. J. 2013, 12, 4725–4729. [Google Scholar] [CrossRef][Green Version]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [Google Scholar] [CrossRef]
- Parry, S. The Application of Geomorphological Mapping in the Assessment of Landslide Hazard in Hong Kong; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15, ISBN 9780444534460. [Google Scholar] [CrossRef]
- Pan, Y.; Mei, T.; Yao, T.; Li, H.; Rui, Y. Jointly modeling embedding and translation to bridge video and language. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4594–4602. [Google Scholar] [CrossRef]
- Shahabi, H.; Ahmad, B.B.; Khezri, S. Evaluation and comparison of bivariate and multivariate statistical methods for landslide susceptibility mapping (case study: Zab basin). Arab. J. Geosci. 2013, 6, 3885–3907. [Google Scholar] [CrossRef]
- Shafapour Tehrany, M.; Shabani, F.; Neamah Jebur, M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Nat. Hazards Risk 2017, 8, 1538–1561. [Google Scholar] [CrossRef]
- Pradhan, B. Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ. Earth Sci. 2011, 63, 329–349. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Bui, D.T. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 2010, 115, 172–187. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Kumar, R.; Dwivedi, S.B.; Gaur, S. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region. Comput. Geosci. 2021, 155, 104855. [Google Scholar] [CrossRef]
- Acharya, T.D.; Lee, D.H. Landslide Susceptibility Mapping using Relative Frequency and Predictor Rate along Araniko Highway. KSCE J. Civ. Eng. 2019, 23, 763–776. [Google Scholar] [CrossRef]
- Agboola, G.; Beni, L.H.; Elbayoumi, T.; Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecol. Inform. 2024, 81, 102583. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Ouallali, A.; Kader, S. Improving landslide susceptibility mapping in semi-arid regions using machine learning and geospatial techniques. DYSONA-Appl. Sci. 2025, 6, 269–290. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Sun, X.; Liu, X.; Lu, W.; Lin, Z. Landslide susceptibility evaluation based on CF-CNN-LSTM model. J. Nat. Disasters 2024, 33, 84–95. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maiya, S.R.; Ramakrishnan, A.G. A new approach for upscaling document images for improving their quality. In Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017. [Google Scholar] [CrossRef]
- Sumari, N.S.; Cobbinah, P.B.; Ujoh, F.; Xu, G. On the absurdity of rapid urbanization: Spatio-temporal analysis of land-use changes in Morogoro, Tanzania. Cities 2020, 107, 102876. [Google Scholar] [CrossRef]
- NBS. Population and Housing Census—Administrative units Population Distribution and Age and Sex Distribution Reportsl; NBS: Dodoma, Tanzania, 2022. [Google Scholar]
- URT. National Population Projections, Feb 2018; URT: Dodoma, Tanzania, 2018. [Google Scholar]
- Tumbo, S.D.; Mwalukasa, N.; Fue, K.G.; Mlozi, M.R.S.; Haug, R.; Sanga, C.A. Exploring information seeking behavior of farmers’ in information related to climate change adaptation through ICT (CHAI). Int. Rev. Res. Open Distrib. Learn. 2018, 19. [Google Scholar] [CrossRef]
- Ardizzone, F.; Basile, G.; Cardinali, M.; Casagli, N.; Del Conte, S.; Del Ventisette, C.; Fiorucci, F.; Garfagnoli, F.; Gigli, G.; Guzzetti, F.; et al. Landslide inventory map for the Briga and the Giampilieri catchments, NE Sicily, Italy. J. Maps 2012, 8, 176–180. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Carrara, A. Comparing landslide maps: A case study in the upper Tiber River basin, central Italy. Environ. Manag. 2000, 25, 247–263. [Google Scholar] [CrossRef]
- Pellicani, R.; Van Westen, C.J.; Spilotro, G. Assessing landslide exposure in areas with limited landslide information. Landslides 2014, 11, 463–480. [Google Scholar] [CrossRef]
- Kottala, R.B.; Badapalli, P.K. Remote Sensing and GIS applications in Mineral Detection and Mapping using Band Rationing Technique. J. Shanghai Jiaotong Univ. 2020, 16, 424. [Google Scholar]
- Sassa, K.; Konagai, K.; Tiwari, B.; Sassa, S. Progress in Landslide Research and Technology; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1, ISBN 978-3-031-55119-2. [Google Scholar] [CrossRef]
- Akgun, A.; Kıncal, C.; Pradhan, B. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ. Monit. Assess. 2012, 184, 5453–5470. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Hu, X.; Su, A.; Wang, L.; Wu, Y.; Criss, R.; Xiong, C.; Li, Y. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides 2015, 12, 511–521. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Lian, Z.; Li, F.; Pang, L.; Xin, Y. Influence of buffer distance on environmental geological hazard susceptibility assessment. Environ. Sci. Pollut. Res. 2024, 31, 9582–9595. [Google Scholar] [CrossRef] [PubMed]
- Makonyo, M.; Zahor, Z. GIS-Based Analysis of Landslides Susceptibility Mapping: A Case Study of Lushoto District, North-Eastern Tanzania; Springer: Dordrecht, The Netherlands, 2023; Volume 118, ISBN 0123456789. [Google Scholar] [CrossRef]
- Alimohammadlou, Y.; Naja, A.; Yalcin, A. Landslide process and impacts: A proposed classi fi cation method. Catena 2013, 104, 219–232. [Google Scholar] [CrossRef]
- Popescu, M.E. Landslide Causal Factors and Landslide Remediatial Options Landslides and related slope instability phenomena plague many parts of the world. In Proceedings of the A wealth of experience has been accumulated in recent years in understanding, recognition and treatment of land. In Proceedings of the 3rd International Conference on Landslides, Slope Stability and Safety of Infra-Structures, Singapore, 11–12 July 2002; pp. 1–21. [Google Scholar]
- Sun, W.; Chen, Z. Learned Image Downscaling for Upscaling Using Content Adaptive Resampler. IEEE Trans. Image Process. 2020, 29, 4027–4040. [Google Scholar] [CrossRef]
- Duncan, G.M. Formulation and Statistical Analysis of the Mixed, Continuous/Discrete Dependent Variable Model in Classical Production Theory. Econometrica 1980, 48, 839. [Google Scholar] [CrossRef]
- de Leon, A.R.; Soo, A.; Williamson, T. Classification with discrete and continuous variables via general mixed-data models. J. Appl. Stat. 2011, 38, 1021–1032. [Google Scholar] [CrossRef]
- Çellek, S. Effect of the slope angle and its classification on landslides. Himal. Geol. 2022, 43, 85–95. [Google Scholar]
- Das, I.; Sahoo, S.; van Westen, C.; Stein, A.; Hack, R. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 2010, 114, 627–637. [Google Scholar] [CrossRef]
- Alimohammadlou, Y.; Tanyu, B.F.; Abbaspour, A.; Delamater, P.L. Automated landslide detection model to delineate the extent of existing landslides. Nat. Hazards 2021, 107, 1639–1656. [Google Scholar] [CrossRef]
- Iwahashi, J.; Yamagishi, H. Spatial Comparison of Two High-Resolution Landslide Inventory Maps Using GIS-A Case Study of the August 1961 and July 2004 Landslides Caused by Heavy Rainfalls in the Izumozaki Area, Niigata Prefecture, Japan; Springer: Tokyo, Japan, 2017; ISBN 9784431543916. [Google Scholar] [CrossRef]
- Hojati, M.; Mokarram, M. Determination of a topographic wetness index using high resolution digital elevation models. Eur. J. Geogr. 2016, 7, 41–52. [Google Scholar]
- Vojtek, M.; Vojteková, J.; Costache, R.; Pham, Q.B.; Lee, S.; Arshad, A.; Sahoo, S.; Linh, N.T.T.; Anh, D.T. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: A case study from Slovakia. Geomatics, Nat. Hazards Risk 2021, 12, 1153–1180. [Google Scholar] [CrossRef]
- Haile, G.; Berihun, H.; Abera, H.; Agegnehu, G.; Lemenih, M. Soil Properties, Crop Yield, and Economic Return in Response to Lime Application on Acidic Nitisols of Southern Highlands of Ethiopia. Int. J. Agron. 2023, 2023, 6105725. [Google Scholar] [CrossRef]
- Pardeshi, S.D.; Autade, S.E.; Pardeshi, S.S. Landslide hazard assessment: Recent trends and techniques. Springerplus 2013, 2, 523. [Google Scholar] [CrossRef] [PubMed]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Juma, T.; Kervyn, M. Review of Spatial and Temporal Distribution of Landslides in Tanzania. J. Ecosyst. Ecography 2017, 7. [Google Scholar] [CrossRef]
- Sieber, S.; Malekela, A.A.; Chobo, J.S. The Influence of Major Climatic Elements on the Devastated Geo-Hydrological Disasters: A Case of Hanang Disaster of 3rd December 2023 in Tanzania. Atmos. Clim. Sci. 2025, 15, 106–125. [Google Scholar] [CrossRef]
- Hashim, M.; Misbari, S.; Beiranvand, A. Landslide Mapping and Assessment by Integrating Landsat-8, PALSAR-2 and GIS Techniques: A Case Study from Kelantan State, Peninsular Malaysia. J. Indian Soc. Remote Sens. 2017, 46, 233–248. [Google Scholar] [CrossRef]
- Wei, Y.; Qiu, H.; Liu, Z.; Huangfu, W.; Zhu, Y.; Liu, Y.; Yang, D.; Kamp, U. Refined and dynamic susceptibility assessment of landslides using InSAR and machine learning models. Geosci. Front. 2024, 15, 101890. [Google Scholar] [CrossRef]
- Pisano, L.; Zumpano, V.; Malek, Ž.; Rosskopf, C.M.; Parise, M. Science of the Total Environment Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future. Sci. Total Environ. 2017, 601, 1147–1159. [Google Scholar] [CrossRef]
- Bouwafoud, A.; Mouflih, M.; Benbouziane, A. Lithological Mapping Using Landsat 8 OLI in the Meso-Cenozoic Tarfaya Laayoune Basin (South of Morocco): Comparison between ANN and SID Classification. Open J. Geol. 2021, 2021, 658–681. [Google Scholar] [CrossRef]
- Samanta, S.; Kumar, D.; Babita, P. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Appl. Water Sci. 2018, 8, 66. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, G.; Hao, J.; Chen, S.; Xu, J.; Zheng, X. Generalized Centered 2-D Principal Component Analysis. IEEE Trans. Cybern. 2021, 51, 1666–1677. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision. In Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: Berlin/Heidelberg, Germany, 2012; Volume 175, pp. 1–21. [Google Scholar] [CrossRef]
- Sharma, N.; Saharia, M.; Ramana, G.V. High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data. Catena 2024, 235, 107653. [Google Scholar] [CrossRef]
- Hussain, M.; Ajmal, M.M.; Khan, M.; Saber, H. Competitive priorities and knowledge management: An empirical investigation of manufacturing companies in UAE. J. Manuf. Technol. Manag. 2015, 26, 791–806. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F. A new technique for landslide mapping from a large-scale remote sensed image: A case study of Central Nepal. Comput. Geosci. 2016, 100, 115–124. [Google Scholar]
- Mugagga, F.; Kakembo, V.; Buyinza, M. Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena 2012, 90, 39–46. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Lima, E.; Gorski, E.; Loures, E.F.R.; Portela Santos, E.A.; Deschamps, F. Applying machine learning to AHP multicriteria decision making method to assets prioritization in the context of industrial maintenance 4.0. IFAC-PapersOnLine 2019, 52, 2152–2157. [Google Scholar] [CrossRef]
- Benschop, N.D.; Chironda-Chikanya, G.; Naidoo, S.; Jafta, N.; Ramsay, L.F.; Naidoo, R.N. El Niño, Rainfall and Temperature Patterns Influence Perinatal Mortality in South Africa: Health Services Preparedness and Resilience in a Changing Climate; Springer: Cham, Switzerland, 2023; ISBN 9783031388774. [Google Scholar] [CrossRef]
- Mulaya, E.; Gama, R.; Kimani, C.; Joseph, P.; Kazimoto, E.; Mshiu, E. The triggering factors on the 3rd December 2023 catastrophic landslide in the Hanang area, northern Tanzania. In Landslides; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Rn | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Conditioning Factors | Class | Proportion of Grid in the Whole Area (%) | Grids in Landslide | Percent | FR | PR |
---|---|---|---|---|---|---|
Flat | 45.32 | 32,123 | 8.13 | 0.0185 | ||
North | 5.89 | 2305 | 4.53 | 0.0102 | ||
Northeast | 6.70 | 2378 | 4.67 | 0.0092 | ||
East | 8.95 | 2927 | 25.75 | 0.0085 | ||
Aspect | Southeast | 2.88 | 825 | 1.62 | 0.0074 | 1 |
South | 5.75 | 2064 | 4.06 | 0.0093 | ||
Southwest | 6.57 | 2477 | 4.87 | 0.0098 | ||
West | 6.05 | 2088 | 4.10 | 0.0090 | ||
Northwest | 8.97 | 2875 | 5.65 | 0.0083 | ||
North | 2.91 | 820 | 1.61 | 0.0073 | ||
0–2000 | 26.99 | 3758 | 7.39 | 0.0036 | ||
2000–4000 | 21.86 | 15,731 | 30.92 | 0.0187 | ||
Distance 2 Fault (m) | 4000–6000 | 20.14 | 24,024 | 47.22 | 0.0310 | 3.65 |
6000–8000 | 18.55 | 4022 | 7.90 | 0.0056 | ||
>8000 | 12.46 | 3347 | 6.58 | 0.0070 | ||
0–200 | 28.53 | 4033 | 7.93 | 0.0037 | ||
200–500 | 27.49 | 3885 | 7.64 | 0.0037 | ||
Distance to River (m) | 500–800 | 21.29 | 22,732 | 44.68 | 0.0278 | |
800–1100 | 14.15 | 15,949 | 31.35 | 0.0293 | 2.9 | |
>1100 | 8.55 | 4283 | 8.42 | 0.0130 | ||
0–300 | 56.97 | 27,514 | 54.07 | 0.0126 | ||
300–1300 | 28.18 | 18,952 | 37.25 | 0.0175 | ||
Distance to Road (m) | 1300–2300 | 9.94 | 4416 | 8.68 | 0.0116 | 1.25 |
2300–3300 | 3.67 | 0 | 0 | 0 | ||
>3300 | 1.24 | 0 | 0 | 0 | ||
0–1509 | 15.37 | 19,467 | 38.26 | 0.0328 | ||
1509–1609 | 34.26 | 25,282 | 49.69 | 0.0191 | ||
1609–1710 | 31.14 | 1079 | 2.12 | 0.0009 | ||
Elevation | 1710–1894 | 16.69 | 5025 | 9.88 | 0.0078 | 4.64 |
1894–2203 | 1.52 | 29 | 0.06 | 0.0005 | ||
2203–2659 | 0.70 | 0 | 0.00 | 0 | ||
2659–3402 | 0.32 | 0 | 0.00 | 0 | ||
B-L/M | 55.39 | 33,158 | 65.17 | 0.0155 | ||
U-L/H | 25.94 | 16,481 | 32.39 | 0.0214 | 4.48 | |
Geology | I-L/M | 18.67 | 1243 | 2.44 | 0.0017 | |
Wetland | 0.41 | 3792 | 7.45 | 0.0204 | ||
Water | 1.81 | 2386 | 8.20 | 0.0115 | ||
Forest | 2.61 | 8412 | 5.53 | 0.0133 | ||
Agriculture | 53.62 | 12,707 | 24.97 | 0.0146 | ||
LULC | Woodland | 16.40 | 2103 | 4.13 | 0.0210 | 1.03 |
Built-up | 20.12 | 23,868 | 20.45 | 0.0282 | ||
Shrub land | 2.43 | 8918 | 6.15 | 0.0160 | ||
Grassland | 1.13 | 1034 | 5.18 | 0.0156 | ||
Bare land | 1.46 | 12,998 | 18.36 | 0.0181 | ||
<0.113 | 2.44 | 1252 | 2.46 | 0.0133 | ||
0.113–0.403 | 7.00 | 6919 | 13.60 | 0.0256 | ||
NDVI | 0.403–0.548 | 18.29 | 11,630 | 22.86 | 0.0165 | 3.01 |
0.548–0.659 | 35.13 | 17,190 | 25.78 | 0.0127 | ||
0.659–0.867 | 37.13 | 13,891 | 27.30 | 0.0097 | ||
0–811 | 29.65 | 1709 | 3.43 | 0.0016 | ||
811–859 | 28.14 | 16,606 | 33.37 | 0.0159 | ||
Precipitation (mm) | 859–915 | 17.33 | 16,973 | 34.11 | 0.0263 | 2.58 |
915–999 | 22.11 | 11,765 | 23.65 | 0.0143 | ||
999–1192 | 2.76 | 2703 | 5.43 | 0.0264 | ||
1–2 | 54.50 | 43,245 | 10 | 0.0206 | ||
2–7 | 34.59 | 7417 | 14.58 | 0.0056 | ||
Slope | 7–14 | 8.07 | 196 | 0.39 | 0.0506 | 6.58 |
14–27 | 2.14 | 24 | 0.05 | 0.0003 | ||
27–72 | 0.70 | 0 | 0.00 | 0 | ||
−8.961 to −4.671 | 29.54 | 6199 | 12.18 | 0.005 | ||
−4.671 to −3.134 | 39.11 | 18,884 | 37.11 | 0.013 | ||
TWI | −3.134 to −1.110 | 18.65 | 10,739 | 21.11 | 0.015 | 3.44 |
−1.110 to 1.641 | 8.22 | 7283 | 14.31 | 0.023 | ||
1.641 to 11.758 | 4.48 | 7777 | 15.28 | 0.045 |
Landslide Susceptibility Class | Number of Pixels | Area (Km2) | Percentage (%) |
---|---|---|---|
Low | 612,788 | 584.43 | 16.54 |
Moderate | 1,170,629 | 1116.45 | 31.60 |
High | 927,626 | 884.69 | 25.04 |
Very high | 993,182 | 947.21 | 26.81 |
Landslide Susceptibility Class | Number of Pixels | Area (Km2) | Percentage (%) | Model |
---|---|---|---|---|
Low | 612,788 | 584.43 | 16.54 | FR |
Moderate | 1,170,629 | 1116.45 | 31.6 | |
High | 927,626 | 884.69 | 25.04 | |
Very high | 993,182 | 947.21 | 26.81 | |
Low | 68,084 | 64.93 | 1.84 | AHP |
Moderate | 1,361,488 | 1298.47 | 36.73 | |
High | 1,541,466 | 1470.12 | 41.58 | |
Very high | 736,129 | 702.06 | 19.86 | |
Low | 594,818 | 567.29 | 16.06 | |
Moderate | 1,263,950 | 1205.45 | 34.12 | LSI |
High | 681,004 | 649.48 | 18.38 | |
Very high | 1,164,453 | 1110.56 | 31.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhimbula, J.; Sumari, N.S.; Balz, T. Landslide Susceptibility Assessment Using AHP, Frequency Ratio, and LSI Models: Understanding Topographical Controls in Hanang District, Tanzania. GeoHazards 2025, 6, 58. https://doi.org/10.3390/geohazards6030058
Muhimbula J, Sumari NS, Balz T. Landslide Susceptibility Assessment Using AHP, Frequency Ratio, and LSI Models: Understanding Topographical Controls in Hanang District, Tanzania. GeoHazards. 2025; 6(3):58. https://doi.org/10.3390/geohazards6030058
Chicago/Turabian StyleMuhimbula, Johanes, Neema Simon Sumari, and Timo Balz. 2025. "Landslide Susceptibility Assessment Using AHP, Frequency Ratio, and LSI Models: Understanding Topographical Controls in Hanang District, Tanzania" GeoHazards 6, no. 3: 58. https://doi.org/10.3390/geohazards6030058
APA StyleMuhimbula, J., Sumari, N. S., & Balz, T. (2025). Landslide Susceptibility Assessment Using AHP, Frequency Ratio, and LSI Models: Understanding Topographical Controls in Hanang District, Tanzania. GeoHazards, 6(3), 58. https://doi.org/10.3390/geohazards6030058