Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Hydro–Geo-Morphological, Sedimentological and Ecological Integrated Analysis
2.2.1. Delimitation of Reaches and Subcatchments
2.2.2. Data Collection
2.2.3. Subcatchment-Based Analysis
Design Peak Discharge
- Calculating of the total precipitation (P in mm) using the Intensity–Duration–Frequency (IDF) curves provided by the Environmental Protection Agency of Lombardy (ARPA; https://idro.arpalombardia.it/). A common approach to express IDF curves for the high-altitude areas where the contribution of snowpack melting is significant [45,46] is as a power law:
- Designing the effective hyetograph through the distribution of the rainfall excess, i.e., the effective precipitation depth is temporally spatially distributed using Huff’s hyetograph shape [55].
- Designing the flood hydrograph (i.e., the rainfall excess was transformed into surface runoff until the outlet cross-section) and modeling the hydrological propagation within the catchment. This step consisted of the application of WFIUH-1par, a combined approach between the instantaneous unit hydrograph (IUH) concept and the width function (WF) [56]. This model predicted the travel time distribution using a single parameter, i.e., the flow velocity, over the time (t) as follows:
Sediment and Large Wood Mobilizable Budget
Sediment Connectivity Analysis
2.2.4. Reach-Based Analysis
Sediment Volume Change
Monitoring Torrent Control Structures
Monitoring Riparian Vegetation
3. Results
3.1. Delimitation of Reaches and Subcatchments
3.2. Subcatchment-Based Analysis
3.3. Reach-Based Analysis
4. Discussion
4.1. A Diagnostic Approach
4.2. Identification of Critical Areas
4.3. Advantages and Disadvantages
4.4. Management Prescriptions
- Rehabilitate sediment transport capacity: the increase in the longitudinal slope of the main watercourse along specific reach, the reduction in the flow resistance, and/or the removal of transverse torrent control structures can contribute to the sediment transport reducing the streambed aggradation.
- Control of sediment supply: a reduction in the sediment supply entering the watercourse from the contributing subcatchments could be useful in impeding the deposition. Several measures can be implemented at the catchment scale, such as erosion control approaches (e.g., reforestation, soil bioengineering techniques on the hillslope) or solutions to trap sediment upstream of the confluences with the tributaries (e.g., construction retention check dams, retention basin).
- Trapping sediment in specific reservoirs: the detection of accessible and already altered areas, where the settling and accumulation of the sediment can balance the surplus of sediment.
- Redistributing or removing excessive sediments: where necessary, mechanical excavations are a practical solution for reducing the streambed aggradation; however, they are be associated with measures of reactivation of morphological dynamics (creating bars and islands, reactivation of secondary streams).
- Periodic monitoring: updating the DEM, the Morphological Quality Index, and the inventories of maintenance and excavation operations arranged by the hydraulic authority, assessing the functionality of existing defense works, and surveying surface granulometry and riparian vegetation.
- Post-event monitoring: collecting details that are as accurate as possible on the triggering meteorological events and the associated consequences along the main watercourse including flooded areas, damaged infrastructures, removed riparian vegetation, presence of obstructions, etc. This kind of monitoring is crucial not only to update the state of the watercourse and any river changes, but also to provide valuable information on the watercourse’s dynamics during flood, debris flood or debris flow events.
- Continuous monitoring: for the sediment management, collecting data on source areas extension (the detection of unstable areas) over the hillslope and on sediment movement (suspended sediment and bedload) within the river network is necessary. Moreover, this monitoring could be associated with early warning system for the inhabitants.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piégay, H.; Darby, S.E.; Mosselman, E.; Surian, N. A Review of Techniques Available for Delimiting the Erodible River Corridor: A Sustainable Approach to Managing Bank Erosion. River Res. Appl. 2005, 21, 773–789. [Google Scholar] [CrossRef]
- Keiler, M.; Knight, J.; Harrison, S. Climate Change and Geomorphological Hazards in the Eastern European Alps. Philos. Trans. R. Soc. A. 2010, 368, 2461–2479. [Google Scholar] [CrossRef]
- Begert, M.; Frei, C. Long-term Area-mean Temperature Series for Switzerland—Combining Homogenized Station Data and High Resolution Grid Data. Int. J. Clim. 2018, 38, 2792–2807. [Google Scholar] [CrossRef]
- Kotlarski, S.; Gobiet, A.; Morin, S.; Olefs, M.; Rajczak, J.; Samacoïts, R. 21st Century Alpine Climate Change. Clim. Dyn. 2023, 60, 65–86. [Google Scholar] [CrossRef]
- Williamson, S.N.; Zdanowicz, C.; Anslow, F.S.; Clarke, G.K.C.; Copland, L.; Danby, R.K.; Flowers, G.E.; Holdsworth, G.; Jarosch, A.H.; Hik, D.S. Evidence for Elevation-Dependent Warming in the St. Elias Mountains, Yukon, Canada. J. Clim. 2020, 33, 3253–3269. [Google Scholar] [CrossRef]
- Mancini, D.; Lane, S.N. Changes in Sediment Connectivity Following Glacial Debuttressing in an Alpine Valley System. Geomorphology 2020, 352, 106987. [Google Scholar] [CrossRef]
- Micheletti, N.; Lane, S.N. Water Yield and Sediment Export in Small, Partially Glaciated Alpine Watersheds in a Warming Climate. Water Resour. Res. 2016, 52, 4924–4943. [Google Scholar] [CrossRef]
- Liébault, F.; Piégay, H. Assessment of Channel Changes Due to Long-Term Bedload Supply Decrease, Roubion River, France. Geomorphology 2001, 36, 167–186. [Google Scholar] [CrossRef]
- Ashmore, P. Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams. Geogr. Ann. Ser. A Phys. Geogr. 1991, 73, 37–52. [Google Scholar] [CrossRef]
- Scorpio, V.; Surian, N.; Cucato, M.; Dai Prá, E.; Zolezzi, G.; Comiti, F. Channel Changes of the Adige River (Eastern Italian Alps) over the Last 1000 Years and Identification of the Historical Fluvial Corridor. J. Maps 2018, 14, 680–691. [Google Scholar] [CrossRef]
- Curry, A.M.; Cleasby, V.; Zukowskyj, P. Paraglacial Response of Steep, Sediment-mantled Slopes to Post-‘Little Ice Age’ Glacier Recession in the Central Swiss Alps. J. Quat. Sci. 2006, 21, 211–225. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H.; Landon, N. Channel Response to Increased and Decreased Bedload Supply from Land Use Change: Contrasts between Two Catchments. Geomorphology 2002, 45, 35–51. [Google Scholar] [CrossRef]
- Guillon, H.; Mugnier, J.; Buoncristiani, J. Proglacial Sediment Dynamics from Daily to Seasonal Scales in a Glaciated Alpine Catchment (Bossons Glacier, Mont Blanc Massif, France). Earth Surf. Process. Landf. 2018, 43, 1478–1495. [Google Scholar] [CrossRef]
- Piermattei, L.; Heckmann, T.; Betz-Nutz, S.; Altmann, M.; Rom, J.; Fleischer, F.; Stark, M.; Haas, F.; Ressl, C.; Wimmer, M.H.; et al. Evolution of an Alpine Proglacial River during 7 Decades of Deglaciation. Earth Surf. Dyn. 2023, 11, 383–403. [Google Scholar] [CrossRef]
- Scorpio, V.; Cavalli, M.; Steger, S.; Crema, S.; Marra, F.; Zaramella, M.; Borga, M.; Marchi, L.; Comiti, F. Storm Characteristics Dictate Sediment Dynamics and Geomorphic Changes in Mountain Channels: A Case Study in the Italian Alps. Geomorphology 2022, 403, 108173. [Google Scholar] [CrossRef]
- Antoniazza, G.; Nicollier, T.; Boss, S.; Mettra, F.; Badoux, A.; Schaefli, B.; Rickenmann, D.; Lane, S.N. Hydrological Drivers of Bedload Transport in an Alpine Watershed. Water Resour. Res. 2022, 58, e2021WR030663. [Google Scholar] [CrossRef]
- Savi, S.; Pitscheider, F.; Engel, M.; Coviello, V.; Strecker, M.R.; Comiti, F. Sediment Export from an Alpine Proglacial Area under a Changing Climate: Budgets, Rates, and Geomorphological Processes. Geomorphology 2024, 462, 109343. [Google Scholar] [CrossRef]
- Apitz, S.; White, S. A Conceptual Framework for River-Basin-Scale Sediment Management. J. Soils Sediments 2003, 3, 132–138. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simoncini, C.; Piégay, H. Scientific Design Strategy for Promoting Sustainable Sediment Management: The Case of the Magra River (Central-Northern Italy). River Res. Appl. 2009, 25, 607–625. [Google Scholar] [CrossRef]
- Carladous, S.; Piton, G.; Tacnet, J.-M.; Philippe, F.; Nepote-Vesino, R.; Quefféléan, Y.; Marco, O. From the Restoration of French Mountainous Areas to Their Global Management: Historical Overview of the Water and Forestry Administration Actions in Public Forests. In Proceedings of the 13th INTERPRAEVENT Conference, Lucerne, Switzerland, 30 May–2 June 2016; pp. 34–42. [Google Scholar]
- Hübl, J. Conceptual Framework for Sediment Management in Torrents. Water 2018, 10, 1718. [Google Scholar] [CrossRef]
- Scorpio, V.; Comiti, F.; Liébault, F.; Piegay, H.; Rinaldi, M.; Surian, N. Channel Changes over the Last 200 Years: A Meta Data Analysis on European Rivers. Earth Surf. Process. Landf. 2024, 49, 2651–2676. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A Method for the Assessment and Analysis of the Hydromorphological Condition of Italian Streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180–181, 96–108. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A Methodological Framework for Hydromorphological Assessment, Analysis and Monitoring (IDRAIM) Aimed at Promoting Integrated River Management. Geomorphology 2015, 251, 122–136. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Perron, J.T.; Richardson, P.W.; Ferrier, K.L.; Lapôtre, M. The Root of Branching River Networks. Nature 2012, 492, 100–103. [Google Scholar] [CrossRef]
- Kwang, J.S.; Langston, A.L.; Parker, G. The Role of Lateral Erosion in the Evolution of Nondendritic Drainage Networks to Dendricity and the Persistence of Dynamic Networks. Proc. Natl. Acad. Sci. USA 2021, 118, e2015770118. [Google Scholar] [CrossRef]
- Fawen, L.; Qingyang, L.; Yong, Z. Characterization and Classification of River Network Types. Water Resour. Manag. 2023, 37, 6219–6236. [Google Scholar] [CrossRef]
- Walley, Y.; Tunnicliffe, J.; Brierley, G. The Influence of Network Structure upon Sediment Routing in Two Disturbed Catchments, East Cape, New Zealand. Geomorphology 2018, 307, 38–49. [Google Scholar] [CrossRef]
- Walley, Y.; Henshaw, A.J.; Brasington, J. Topological Structures of River Networks and Their Regional-scale Controls: A Multivariate Classification Approach. Earth Surf. Process. Landf. 2020, 45, 2869–2883. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Where Do Channels Begin? Nature 1988, 336, 232–234. [Google Scholar] [CrossRef]
- Li, M.; Wu, B.; Chen, Y.; Li, D. Quantification of River Network Types Based on Hierarchical Structures. CATENA 2022, 211, 105986. [Google Scholar] [CrossRef]
- Gaucherel, C.; Frelat, R.; Salomon, L.; Rouy, B.; Pandey, N.; Cudennec, C. Regional Watershed Characterization and Classification with River Network Analyses. Earth Surf. Process. Landf. 2017, 42, 2068–2081. [Google Scholar] [CrossRef]
- Valjarević, A. GIS-Based Methods for Identifying River Networks Types and Changing River Basins. Water Resour. Manag. 2024, 38, 5323–5341. [Google Scholar] [CrossRef]
- Bischetti, G.B.; Gandolfi, C.; Whelan, M.J. The Definition of Stream Channel Head Location Using Digital Elevation Data. In Proceedings of the HeadWater ’98 Conference, Merano, Italy, 20–23 April 1998; Volume IAHS Publ. no. 248, pp. 545–552. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. Source Areas, Drainage Density, and Channel Initiation. Water Resour. Res. 1989, 25, 1907–1918. [Google Scholar] [CrossRef]
- Tarolli, P.; Dalla Fontana, G. Hillslope-to-Valley Transition Morphology: New Opportunities from High Resolution DTMs. Geomorphology 2009, 113, 47–56. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Channel Initiation and the Problem of Landscape Scale. Science 1992, 255, 826–830. [Google Scholar] [CrossRef]
- Bull, W.B. The Alluvial-Fan Environment. Prog. Phys. Geogr. Earth Environ. 1977, 1, 222–270. [Google Scholar] [CrossRef]
- Harvey, A.M.; Mather, A.E.; Stokes, M. Introduction. A Review of Alluvial-Fan Research. In Alluvial Fans: Geomorphology, Sedimentology, Dynamics; Geological Society: London, UK, 2005; Volume 251, pp. 1–7. [Google Scholar] [CrossRef]
- Norini, G.; Zuluaga, M.C.; Ortiz, I.J.; Aquino, D.T.; Lagmay, A.M.F. Delineation of Alluvial Fans from Digital Elevation Models with a GIS Algorithm for the Geomorphological Mapping of the Earth and Mars. Geomorphology 2016, 273, 134–149. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A Set of Matlab Functions for Topographic Analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Athira, P.; Sudheer, K.P.; Cibin, R.; Chaubey, I. Predictions in Ungauged Basins: An Approach for Regionalization of Hydrological Models Considering the Probability Distribution of Model Parameters. Stoch. Environ. Res. Risk Assess. 2016, 30, 1131–1149. [Google Scholar] [CrossRef]
- Blöschl, G. Rainfall-Runoff Modeling of Ungauged Catchments. In Encyclopedia of Hydrological Sciences; Anderson, M.G., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 1–19. [Google Scholar]
- Burlando, P.; Rosso, R. Scaling and Multiscaling Models of Depth-Duration-Frequency Curves for Storm Precipitation. J. Hydrol. 1996, 187, 45–64. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Galizzi, M.; Bocchiola, D.; Rosso, R.; Rulli, M.C. Modeling Snowmelt Influence on Shallow Landslides in Tartano Valley, Italian Alps. Sci. Total Environ. 2023, 856, 158772. [Google Scholar] [CrossRef]
- Nageswara Rao, K. Analysis of Surface Runoff Potential in Ungauged Basin Using Basin Parameters and SCS-CN Method. Appl. Water Sci. 2020, 10, 47. [Google Scholar] [CrossRef]
- Merizalde, M.J.; Muñoz, P.; Corzo, G.; Muñoz, D.F.; Samaniego, E.; Célleri, R. Integrating Geographic Data and the SCS-CN Method with LSTM Networks for Enhanced Runoff Forecasting in a Complex Mountain Basin. Front. Water 2023, 5, 1233899. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2003; Volume 42, ISBN 978-90-481-6225-3. [Google Scholar]
- Caletka, M.; Šulc Michalková, M.; Karásek, P.; Fučík, P. Improvement of SCS-CN Initial Abstraction Coefficient in the Czech Republic: A Study of Five Catchments. Water 2020, 12, 1964. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sahu, R.K.; Eldho, T.I.; Jain, M.K. An Improved Ia-S Relation Incorporating Antecedent Moisture in SCS-CN Methodology. Water Resour. Manag. 2006, 20, 643–660. [Google Scholar] [CrossRef]
- Del Giudice, G.; Padulano, R.; Rasulo, G. Spatial Prediction of the Runoff Coefficient in Southern Peninsular Italy for the Index Flood Estimation. Hydrol. Res. 2014, 45, 263–281. [Google Scholar] [CrossRef]
- Geetha, K.; Mishra, S.K.; Eldho, T.I.; Rastogi, A.K.; Pandey, R.P. Modifications to SCS-CN Method for Long-Term Hydrologic Simulation. J. Irrig. Drain. Eng. 2007, 133, 475–486. [Google Scholar] [CrossRef]
- Jain, M.K.; Mishra, S.K.; Suresh Babu, P.; Venugopal, K.; Singh, V.P. Enhanced Runoff Curve Number Model Incorporating Storm Duration and a Nonlinear Ia-S Relation. J. Hydrol. Eng. 2006, 11, 631–635. [Google Scholar] [CrossRef]
- Huff, F.A. Time Distribution of Rainfall in Heavy Storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Nardi, F. A Parsimonious Geomorphological Unit Hydrograph for Rainfall–Runoff Modelling in Small Ungauged Basins. Hydrol. Sci. J. 2012, 57, 73–83. [Google Scholar] [CrossRef]
- Evangelista, G.; Woods, R.; Claps, P. Dimensional Analysis of Literature Formulas to Estimate the Characteristic Flood Response Time in Ungauged Basins: A Velocity-Based Approach. J. Hydrol. 2023, 627, 130409. [Google Scholar] [CrossRef]
- Jowett, I.G. Hydraulic Geometry of New Zealand Rivers and Its Use as a Preliminary Method of Habitat Assessment. Regul. Rivers: Res. Mgmt. 1998, 14, 451–466. [Google Scholar] [CrossRef]
- Leopold, L.B. Downstream Change of Velocity in Rivers. Am. J. Sci. 1953, 251, 606–624. [Google Scholar] [CrossRef]
- Pilgrim, D.H. Travel Times and Nonlinearity of Flood Runoff from Tracer Measurements on a Small Watershed. Water Resour. Res. 1976, 12, 487–496. [Google Scholar] [CrossRef]
- Pilgrim, D.H. Isochrones of Travel Time and Distribution of Flood Storage from a Tracer Study on a Small Watershed. Water Resour. Res. 1977, 13, 587–595. [Google Scholar] [CrossRef]
- Haan, C.T.; Barfield, B.J.; Hayes, J.C. Design Hydrology and Sedimentology for Small Catchments; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0-12-312340-2. [Google Scholar]
- McCuen, R.H. Hydrologic Analysis and Design, 2nd ed.; Pearson Education/Prentice Hall: Upper Saddle River, NJ, USA, 1998; ISBN 978-0-13-134958-2. [Google Scholar]
- Grimaldi, S.; Petroselli, A.; Alonso, G.; Nardi, F. Flow Time Estimation with Spatially Variable Hillslope Velocity in Ungauged Basins. Adv. Water Resour. 2010, 33, 1216–1223. [Google Scholar] [CrossRef]
- D’Agostino, V.; Cerato, M.; Coali, R. Extreme Events of Sediment Transport in the Eastern Trentino Torrents. In Proceedings of the INTERPRAEVENT 1996, Garmisch-Partenkirchen, Germany, 24–28 June 1996; Volume 1, pp. 377–386. [Google Scholar]
- Franzi, L.; Bianco, G. A Statistical Method to Predict Debris Flow Deposited Volumes on a Debris Fan. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 683–688. [Google Scholar] [CrossRef]
- Hampel, R. Geschiebewirtschaft in Wildbächen. Wildbach Und Lawinenverbau 1977, 41, 3–34. [Google Scholar]
- Rickenmann, D. Empirical Relationships for Debris Flows. Nat. Hazards 1999, 19, 47–77. [Google Scholar] [CrossRef]
- VanDine, D.F. Debris Flows and Debris Torrents in the Southern Canadian Cordillera. Can. Geotech. J. 1985, 22, 44–68. [Google Scholar] [CrossRef]
- Marchi, L.; Brunetti, M.T.; Cavalli, M.; Crema, S. Debris-flow Volumes in Northeastern Italy: Relationship with Drainage Area and Size Probability. Earth Surf. Process. Landf. 2019, 44, 933–943. [Google Scholar] [CrossRef]
- Gavrilović, S. Méthode de La Classification Des Bassins Torrentiels et Équations Nouvelles Pour Le Calcul Des Hautes Eaux et Du Débit Solide. Vadopriveda 1959. [Google Scholar]
- Milanesi, L.; Pilotti, M.; Clerici, A. Application of an Improved Version of the Erosion Potential Method in Alpine Areas. Ital. J. Eng. Geol. Environ. 2016, 1, 17–30. [Google Scholar] [CrossRef]
- Comiti, F.; Lucía, A.; Rickenmann, D. Large Wood Recruitment and Transport during Large Floods: A Review. Geomorphology 2016, 269, 23–39. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment Connectivity: A Framework for Understanding Sediment Transfer at Multiple Scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef]
- Hooke, J.; Souza, J. Challenges of Mapping, Modelling and Quantifying Sediment Connectivity. Earth-Sci. Rev. 2021, 223, 103847. [Google Scholar] [CrossRef]
- Cislaghi, A.; Bischetti, G.B. Source Areas, Connectivity, and Delivery Rate of Sediments in Mountainous-Forested Hillslopes: A Probabilistic Approach. Sci. Total Environ. 2019, 652, 1168–1186. [Google Scholar] [CrossRef]
- Hoffmann, T. Sediment Residence Time and Connectivity in Non-Equilibrium and Transient Geomorphic Systems. Earth-Sci. Rev. 2015, 150, 609–627. [Google Scholar] [CrossRef]
- Wohl, E.; Brierley, G.; Cadol, D.; Coulthard, T.J.; Covino, T.; Fryirs, K.A.; Grant, G.; Hilton, R.G.; Lane, S.N.; Magilligan, F.J.; et al. Connectivity as an Emergent Property of Geomorphic Systems: Geomorphic Connectivity. Earth Surf. Process. Landf. 2018, 44, 4–26. [Google Scholar] [CrossRef]
- Martini, L.; Cavalli, M.; Picco, L. Predicting Sediment Connectivity in a Mountain Basin: A Quantitative Analysis of the Index of Connectivity. Earth Surf. Process. Landf. 2022, 47, 1500–1513. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to Sediment and Flow Connectivity in the Landscape: A GIS and Field Numerical Assessment. CATENA 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric Assessment of Spatial Sediment Connectivity in Small Alpine Catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Cavalli, M.; Vericat, D.; Crema, S.; Llena, M.; Beinat, A.; Marchi, L.; Cazorzi, F. Monitoring Topographic Changes through 4D-Structure-from-Motion Photogrammetry: Application to a Debris-Flow Channel. Environ. Earth Sci. 2018, 77, 632. [Google Scholar] [CrossRef]
- Lane, S.N.; Richards, K.S.; Chandler, J.H. Developments in Monitoring and Modelling Small-scale River Bed Topography. Earth Surf. Process. Landf. 1994, 19, 349–368. [Google Scholar] [CrossRef]
- Wechsler, S.P.; Kroll, C.N. Quantifying DEM Uncertainty and Its Effect on Topographic Parameters. Photogramm. Eng. Remote Sens. 2006, 72, 1081–1090. [Google Scholar] [CrossRef]
- Wise, S.M. Effect of Differing DEM Creation Methods on the Results from a Hydrological Model. Comput. Geosci. 2007, 33, 1351–1365. [Google Scholar] [CrossRef]
- Chappell, A.; Heritage, G.L.; Fuller, I.C.; Large, A.R.G.; Milan, D.J. Geostatistical Analysis of Ground-Survey Elevation Data to Elucidate Spatial and Temporal River Channel Change. Earth Surf. Process. Landf. 2003, 28, 349–370. [Google Scholar] [CrossRef]
- Cislaghi, A.; Bischetti, G.B. Best Practices in Post-Flood Surveys: The Study Case of Pioverna Torrent. J. Agric. Eng. 2022, 53, 11. [Google Scholar] [CrossRef]
- Fuller, I.C.; Large, A.R.G.; Milan, D.J. Quantifying Channel Development and Sediment Transfer Following Chute Cutoff in a Wandering Gravel-Bed River. Geomorphology 2003, 54, 307–323. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological Sensitivity of Morphometric Estimates of Coarse Fluvial Sediment Transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Bunte, K.; Abt, S.R. Sampling Frame for Improving Peeble Count Accuracy in Coarse Gravel-Bed Streams. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1001–1014. [Google Scholar] [CrossRef]
- Wolman, M.G. A Method of Sampling Coarse River-bed Material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar]
- Cucchiaro, S.; Cazorzi, F.; Marchi, L.; Crema, S.; Beinat, A.; Cavalli, M. Multi-Temporal Analysis of the Role of Check Dams in a Debris-Flow Channel: Linking Structural and Functional Connectivity. Geomorphology 2019, 345, 106844. [Google Scholar] [CrossRef]
- Cislaghi, A.; Morlotti, E.; Cucchiaro, S.; Morando, P.; Bischetti, G.B. Monitoring of Torrent Control Structures: An Integrated Approach from First-level Inspections to Maintenance Strategies. J. Flood Risk Manag. 2024, e13011. [Google Scholar] [CrossRef]
- Fogliata, P.; Cislaghi, A.; Sala, P.; Giupponi, L. An Ecological Analysis of the Riparian Vegetation for Improving the Riverine Ecosystem Management: The Case of Lombardy Region (North Italy). Landsc. Ecol. Eng. 2021, 17, 375–386. [Google Scholar] [CrossRef]
- Melton, M.A. Correlation Structure of Morphometric Properties of Drainage Systems and Their Controlling Agents. J. Geol. 1958, 66, 442–460. [Google Scholar] [CrossRef]
- Montgomery, D.R.; MacDonald, L.H. Diagnostic Approach to Stream Channel Assessment and Monitoring. J. Am. Water Resour. Assoc. 2002, 38, 1–16. [Google Scholar] [CrossRef]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of Debris Flow, Debris Flood and Flood Hazard through Watershed Morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef]
- Lane, E.W. Design of Stable Channels. Trans. Am. Soc. Civ. Eng. 1955, 120, 1234–1260. [Google Scholar] [CrossRef]
Reach | Lc | Sc | Wc | N. of Bridges |
---|---|---|---|---|
(km) | (m m−1) | (m) | ||
4A | 0.796 | 0.013 | 40.32 | 1 |
4B | 0.300 | 0.011 | 28.64 | 1 |
4C | 0.382 | 0.010 | 41.00 | 1 |
4D | 0.600 | 0.009 | 62.46 | 1 |
5A | 0.341 | 0.020 | 26.71 | 0 |
5B | 1.691 | 0.013 | 27.22 | 1 |
5C | 1.235 | 0.009 | 31.10 | 1 |
5D | 0.291 | 0.020 | 30.00 | 0 |
6A | 0.334 | 0.029 | 46.38 | 0 |
6B | 0.742 | 0.004 | 70.08 | 0 |
6C | 0.591 | 0.002 | 84.88 | 0 |
7A | 1.623 | 0.004 | 36.92 | 0 |
7B | 0.972 | 0.080 | 63.63 | 1 |
8A | 2.084 | 0.021 | 47.93 | 1 |
Subcatch. | Toponymy | A | L | Zmin | Zmean | Zmax | Sb | Lc | Sc | MR |
---|---|---|---|---|---|---|---|---|---|---|
(km2) | (km) | (m) | (m) | (m) | (m m−1) | (m) | (m m−1) | (km km−1) | ||
4A_1 | Cadolena | 3.80 | 4.85 | 1163 | 1999 | 2589 | 0.394 | 3.61 | 0.228 | 0.73 |
4B_1 | Ciucco | 4.21 | 4.55 | 1150 | 1625 | 2674 | 0.339 | 1.78 | 0.234 | 0.74 |
4C_1 | Presurina | 2.36 | 3.98 | 1150 | 2070 | 2761 | 0.427 | 1.91 | 0.302 | 1.05 |
4D_1 | Cagnola | 2.81 | 4.25 | 1146 | 1827 | 2659 | 0.396 | 2.01 | 0.295 | 0.90 |
4D_2 | Vallecetta | 4.09 | 5.39 | 1144 | 2302 | 3138 | 0.492 | 4.39 | 0.316 | 0.99 |
4D_3 | Valle del Prete | 0.71 | 2.25 | 1144 | 1535 | 1979 | 0.433 | 0.82 | 0.238 | 0.99 |
5B_1 | Valcepina | 2.23 | 4.14 | 1126 | 1900 | 2746 | 0.509 | 2.70 | 0.349 | 1.08 |
5B_2 | Vallaccia | 3.65 | 4.82 | 1126 | 2373 | 3020 | 0.518 | 3.62 | 0.352 | 0.99 |
5B_3 | Rez de la Piscia | 0.99 | 3.87 | 1229 | 2375 | 3145 | 0.540 | 3.06 | 0.421 | 1.93 |
5C_1 | Valle Soena | 0.23 | 2.00 | 1120 | 1628 | 2358 | 0.589 | 0.82 | 0.505 | 2.59 |
5C_2 | Resole | 1.09 | 3.17 | 1492 | 2396 | 3154 | 0.582 | 2.32 | 0.443 | 1.59 |
5C_3 | Val del Solco | 0.72 | 2.30 | 1222 | 2046 | 2677 | 0.703 | 1.73 | 0.515 | 1.71 |
5D_1 | Massaniga | 9.76 | 6.41 | 1106 | 2469 | 3414 | 0.559 | 5.03 | 0.274 | 0.74 |
6B_1 | Novalena | 2.96 | 4.51 | 1085 | 2394 | 3141 | 0.567 | 3.40 | 0.405 | 1.19 |
6B_2 | Pra Bonelli | 1.81 | 3.84 | 1082 | 1820 | 2640 | 0.478 | 0.94 | 0.331 | 1.16 |
7A_1 | Vendrello | 3.29 | 4.57 | 1080 | 2272 | 2998 | 0.535 | 3.15 | 0.351 | 1.06 |
7A_2 | Val Mala | 2.02 | 3.18 | 1306 | 2284 | 2999 | 0.679 | 2.05 | 0.442 | 1.19 |
7A_3 | Valle Asciutta | 0.94 | 2.99 | 1102 | 1698 | 2528 | 0.604 | 0.77 | 0.471 | 1.47 |
7A_4 | Presure | 5.48 | 6.60 | 1096 | 2416 | 3062 | 0.544 | 5.07 | 0.236 | 0.84 |
7A_5 | Motta | 0.16 | 1.60 | 1169 | 1598 | 2072 | 0.602 | 0.79 | 0.470 | 2.29 |
7A_6 | Val Pola | 2.07 | 4.12 | 1141 | 2288 | 3048 | 0.555 | 2.27 | 0.430 | 1.32 |
8A_1 | Valle Fine | 3.85 | 3.63 | 995 | 2054 | 2895 | 0.628 | 2.57 | 0.425 | 0.97 |
8A_2 | Valle Fiorino | 0.11 | 1.46 | 1010 | 1495 | 1931 | 0.719 | 0.84 | 0.544 | 2.76 |
8A_3 | Valle Cameraccia | 2.06 | 3.98 | 987 | 2187 | 3099 | 0.605 | 1.99 | 0.455 | 1.47 |
8A_4 | Val di Sovilla | 1.53 | 2.99 | 972 | 1857 | 2646 | 0.595 | 1.63 | 0.519 | 1.35 |
8A_5 | Pravadina | 0.17 | 1.29 | 973 | 1485 | 1782 | 0.781 | 0.08 | 0.466 | 1.97 |
8A_6 | Valle del Tegne | 0.27 | 1.50 | 957 | 1536 | 1843 | 0.638 | 0.73 | 0.546 | 1.69 |
8A_7 | Valle del Corno | 2.55 | 5.40 | 952 | 2347 | 3136 | 0.567 | 4.66 | 0.328 | 1.37 |
Subcatchment | CN (-) | Q (m3 s−1) | ||||||
---|---|---|---|---|---|---|---|---|
RP = 2 | RP = 10 | RP = 30 | RP = 50 | RP = 100 | RP = 200 | RP = 500 | ||
4A_1 | 63.85 | 0.08 | 1.10 | 2.63 | 3.64 | 5.38 | 7.58 | 11.36 |
4B_1 | 65.72 | 0.24 | 1.75 | 3.61 | 4.77 | 6.72 | 9.04 | 12.88 |
4C_1 | 66.01 | 0.33 | 1.33 | 2.39 | 3.00 | 3.96 | 5.15 | 7.08 |
4D_1 | 66.29 | 0.17 | 1.12 | 2.29 | 2.98 | 4.11 | 5.55 | 7.81 |
4D_2 | 67.77 | 0.13 | 1.75 | 4.29 | 6.01 | 8.89 | 12.66 | 18.97 |
4D_3 | 63.05 | <0.01 | <0.01 | 0.02 | 0.05 | 0.33 | 0.85 | 2.10 |
5B_1 | 63.64 | 0.03 | 0.50 | 1.35 | 1.99 | 3.07 | 4.46 | 6.91 |
5B_2 | 73.95 | 0.46 | 2.91 | 5.95 | 7.94 | 10.95 | 14.78 | 21.17 |
5B_3 | 75.50 | <0.01 | 0.26 | 1.13 | 1.76 | 3.00 | 4.59 | 7.28 |
5C_1 | 62.88 | <0.01 | 0.04 | 0.12 | 0.17 | 0.28 | 0.42 | 0.67 |
5C_2 | 72.64 | 0.01 | 0.17 | 0.90 | 1.51 | 2.65 | 4.31 | 7.19 |
5C_3 | 65.42 | <0.01 | <0.01 | 0.07 | 0.26 | 0.70 | 1.41 | 2.68 |
5D_1 | 75.30 | 2.43 | 11.32 | 21.33 | 27.23 | 37.03 | 48.85 | 67.94 |
6B_1 | 74.24 | 0.04 | 1.42 | 4.11 | 6.13 | 9.56 | 14.10 | 22.16 |
6B_2 | 64.71 | 0.08 | 0.62 | 1.33 | 1.76 | 2.50 | 3.39 | 4.87 |
7A_1 | 71.42 | 0.29 | 2.20 | 4.55 | 6.06 | 8.57 | 11.65 | 16.84 |
7A_2 | 71.70 | 0.25 | 1.81 | 3.79 | 5.00 | 6.99 | 9.44 | 13.38 |
7A_3 | 65.28 | 0.05 | 0.34 | 0.69 | 0.91 | 1.29 | 1.73 | 2.49 |
7A_4 | 75.42 | 0.62 | 4.69 | 9.95 | 13.22 | 18.60 | 25.50 | 36.61 |
7A_5 | 80.02 | <0.01 | 0.14 | 0.41 | 0.60 | 0.91 | 1.29 | 1.91 |
7A_6 | 78.99 | 0.25 | 1.84 | 3.96 | 5.10 | 7.41 | 9.84 | 14.43 |
8A_1 | 67.94 | 0.39 | 2.60 | 5.33 | 6.96 | 9.65 | 12.94 | 18.25 |
8A_2 | 66.15 | <0.01 | 0.02 | 0.07 | 0.11 | 0.19 | 0.29 | 0.48 |
8A_3 | 71.35 | 0.15 | 1.11 | 2.33 | 3.11 | 4.38 | 5.95 | 8.46 |
8A_4 | 63.87 | 0.04 | 0.56 | 1.29 | 1.77 | 2.64 | 3.67 | 5.42 |
8A_5 | 58.70 | <0.01 | 0.02 | 0.07 | 0.12 | 0.21 | 0.34 | 0.55 |
8A_6 | 61.67 | <0.01 | 0.05 | 0.16 | 0.24 | 0.38 | 0.57 | 0.89 |
8A_7 | 73.68 | 0.2 | 2.05 | 4.69 | 6.33 | 9.12 | 12.54 | 18.66 |
Subcatchment | G | Gs50 | Gs99 | Vlw | IC50 | IC95 |
---|---|---|---|---|---|---|
(m3 year−1) | (m3) | (m3) | (m3) | (-) | (-) | |
4A_1 | 853 | 6406 | 296,363 | 1995 | −1.997 | −0.689 |
4B_1 | 558 | 6865 | 328,940 | 2079 | −2.403 | −0.891 |
4C_1 | 146 | 4651 | 182,913 | 1648 | −2.258 | −1.158 |
4D_1 | 651 | 5235 | 218,619 | 1769 | −2.210 | −0.775 |
4D_3 | 50 | 2080 | 54,388 | 1020 | −2.369 | −1.271 |
4D_2 | 4631 | 6734 | 319,520 | 2056 | −1.900 | −0.650 |
5B_3 | 2497 | 2234 | 60,543 | 1064 | −1.862 | −0.601 |
5B_2 | 6888 | 6241 | 284,921 | 1964 | −1.951 | −0.628 |
5B_1 | 408 | 4482 | 172,981 | 1612 | −2.361 | −1.121 |
5C_2 | 1721 | 2771 | 83,767 | 1210 | −1.857 | −0.696 |
5C_3 | 341 | 2062 | 53,667 | 1014 | −1.436 | −0.299 |
5C_1 | 92 | 975 | 17,356 | 649 | −1.540 | −0.243 |
5D_1 | 10,745 | 12,058 | 768,974 | 2911 | −1.938 | −0.746 |
6B_2 | 519 | 3892 | 139,828 | 1482 | −2.340 | −1.135 |
6B_1 | 2828 | 5341 | 225,307 | 1790 | −1.774 | −0.481 |
7A_1 | 2138 | 5814 | 256,074 | 1883 | −2.057 | −0.656 |
7A_2 | 1797 | 4190 | 156,248 | 1548 | −1.575 | −0.309 |
7A_6 | 912 | 4268 | 160,699 | 1566 | −1.834 | −0.515 |
7A_3 | 404 | 2520 | 72,627 | 1143 | −1.826 | −0.730 |
7A_4 | 8287 | 8193 | 429,411 | 2311 | −1.866 | −0.409 |
7A_5 | 141 | 684 | 10,177 | 525 | −1.712 | −0.279 |
8A_5 | 73 | 794 | 12,742 | 574 | −1.689 | −0.320 |
8A_4 | 386 | 3487 | 118,460 | 1388 | −1.765 | −0.540 |
8A_3 | 1210 | 4256 | 159,988 | 1563 | −1.753 | −0.413 |
8A_7 | 1784 | 4900 | 197,873 | 1700 | −1.667 | −0.378 |
8A_6 | 46 | 1101 | 20,827 | 697 | −1.600 | −0.217 |
8A_1 | 1967 | 6466 | 300,525 | 2006 | −1.619 | −0.305 |
8A_2 | 180 | 602 | 8384 | 486 | −1.259 | 0.211 |
Reach | Area (m2) | d84 | Uc (m) | ΔV 2014–2008 (m3) | ΔV 2021–2014 (m3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | M.1 | M.2 | M.0 | M.1 | M.2 | R.0 | M.0 | M.1 | M.2 | R.0 | ||
4A | 53,407 | 0.064 | 0.064 | 0.247 | 17,485 | 16,079 | 11,698 | 16,000 | −17,521 | −16,390 | −12,731 | 108,600 |
4B | 11,204 | 0.072 | 0.072 | 0.261 | −112 | −365 | −1081 | 0 | 505 | 452 | 353 | 0 |
4C | 17,309 | 0.055 | 0.055 | 0.186 | 1881 | 1306 | 1704 | 8300 | 10,915 | 9803 | 5308 | 22,500 |
4D | 40,181 | 0.041 | 0.041 | 0.194 | 16,557 | 15,273 | 12,284 | 0 | 7634 | 6884 | 4414 | 10,000 |
5A | 12,134 | 0.058 | 0.180 | 0.129 | −2372 | −2337 | −2277 | 6000 | 64 | 119 | 167 | 0 |
5B | 61,197 | 0.051 | 0.051 | 0.124 | −12,210 | −12,058 | −12,084 | 0 | 518 | 1129 | 929 | 0 |
5C | 70,051 | 0.064 | 0.064 | 0.224 | −1866 | −2855 | −4893 | 2500 | 6422 | 6441 | 5654 | 0 |
5D | 11,657 | 0.069 | 0.080 | 0.131 | −1430 | −1381 | −1325 | 0 | −1182 | −867 | −472 | 0 |
6A | 16,274 | 0.040 | 0.040 | 0.276 | 3598 | 3472 | 2828 | 0 | 3507 | 3443 | 3125 | 0 |
6B | 110,105 | 0.032 | 0.024 | 0.253 | 163,960 | 161,614 | 149,682 | 0 | 73,455 | 69,192 | 52,935 | 0 |
6C | 72,084 | 0.028 | 0.028 | 0.214 | 66,847 | 65,415 | 58,180 | 0 | 38,482 | 36,226 | 27,414 | 0 |
7A | 110,836 | 0.025 | 0.036 | 0.195 | −3343 | −3518 | −4428 | 0 | 12,025 | 11,385 | 9383 | 0 |
7B | 65,819 | 0.022 | 0.022 | 0.203 | 14,635 | 14,166 | 11,251 | 0 | n.d. | n.d. | n.d. | 0 |
8A | 8689 | 0.044 | 0.051 | 0.185 | −2271 | −2074 | −1448 | 0 | n.d. | n.d. | n.d. | 0 |
Reach | In-Channel | Streambank | Top of Bank | Management | Dominant Species |
---|---|---|---|---|---|
4A | Negligible | Low | Medium | No management | Salix purpurea (purple willow) Salix alba (white willow), Acer pseudoplatanus (sycamore maple), Betula pendula (silver birch), and Alnus incana (grey alder) |
4B | Negligible | Negligible | Negligible | No management | |
4C | Negligible | Negligible | Negligible | No management | |
4D | Low | Medium | Medium | Repeated cutting (every year) | Salix purpurea, Salix alba, and Salix caprea (goat willow) |
5A | Negligible | Low | Medium | No management | Salix purpurea, Salix caprea, Fraxinus excelsior (European ash), Acer pseudoplatanus, and Alnus incana |
5B | Low | Low | Medium | Periodic cutting (3–5 years) | Salix purpurea, Salix alba, Alnus incana, Sambucus nigra (elderberry), Betula pendula, Fraxinus excelsior, Acer pseudoplatanus, Larix decidua (European larch), Picea abies (Norway spruce), and Populus tremula (common aspen) |
5C | Medium | Medium | Medium | Periodic cutting (3–5 years) | Alnus incana, Salix alba, Salix elaeagnos (rosemary willow), and Hippopae rhamnoides (sea buckthorn) |
5D | Low | Low | Medium | No management | Acer pseudoplatanus, Picea abies, Larix decidua, Betula pendula, Salix purpurea and Fraxinus excelsior |
6A | Low | Low | Medium | No management | Salix alba, Salix purpurea, Picea abies, Betula pendula, and Hippopae rhamnoides |
6B | Low | Low | Medium | No management | Betula pendula, Salix purpurea, Salix alba and Alnus incana, Populus tremula and Buddleja davidii (butterfly bush) |
6C | Low | Low | Medium | No management | Betula pendula and Buddleja davidii |
7A | Negligible | Low | Negligible | No management | Betula pendula, Salix elaeagnos and Buddleja davidii |
7B | Negligible | Low | Low | No management | Betula pendula, Salix elaeagnos and Buddleja davidii |
8A | Low | Low | Medium | No management | Salix purpurea, Alnus incana, Buddleja davidii, Populus tremula, and Pinus sylvestris (Scots pine) |
Reach | Inflow | Morphological Change | Obstacles |
---|---|---|---|
4A | High | High | Low |
4B | Low | Low | Medium |
4C | Low | High | Medium |
4D | Medium | High | Low |
5A | Low | Medium | Medium |
5B | Medium | Low | Low |
5C | Medium | Low | Medium |
5D | High | Low | Low |
6A | Low | Medium | Low |
6B | Low | High | Medium |
6C | Low | High | Low |
7A | Low | Medium | Low |
7B | Low | Low | Low |
8A | High | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cislaghi, A.; Morlotti, E.; Sacchetti, V.G.; Bellingeri, D.; Bischetti, G.B. Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment. GeoHazards 2024, 5, 1125-1151. https://doi.org/10.3390/geohazards5040053
Cislaghi A, Morlotti E, Sacchetti VG, Bellingeri D, Bischetti GB. Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment. GeoHazards. 2024; 5(4):1125-1151. https://doi.org/10.3390/geohazards5040053
Chicago/Turabian StyleCislaghi, Alessio, Emanuele Morlotti, Vito Giuseppe Sacchetti, Dario Bellingeri, and Gian Battista Bischetti. 2024. "Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment" GeoHazards 5, no. 4: 1125-1151. https://doi.org/10.3390/geohazards5040053
APA StyleCislaghi, A., Morlotti, E., Sacchetti, V. G., Bellingeri, D., & Bischetti, G. B. (2024). Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment. GeoHazards, 5(4), 1125-1151. https://doi.org/10.3390/geohazards5040053