Exceptional Cluster of Simultaneous Shallow Landslides in Rwanda: Context, Triggering Factors, and Potential Warnings
Abstract
:1. Introduction
2. The Study Area: Geologic and Geographic Contexts
3. Materials and Methods
3.1. Landslides Inventory
3.2. Topographic Data
3.3. Soil and Substratum Characteristics
3.4. Rainfall and Wind Data
4. Results
4.1. Geology and Soil Structure in the Karongi Area
- The O horizon (litter layer) is very limited (0 to a few centimetres in thickness), except in wooded areas where it is formed by leaf accumulation.
- The A horizon (humic topsoil) is generally restricted to a few centimetres to decimetres, except in some very specific areas on top of the ridges where it can reach up to 1 m.
- The E and B horizons (leaching layer and subsoil) are difficult to distinguish and generally form a near-homogeneous layer. When developed on meta-sandstones and schists, it is composed of a reddish to light brown mixture of sand and clay, 0.5 to 2 m thick. A few dispersed pebbles and blocks of basement rocks are frequently observed within these horizons. In places where the substratum is formed by graphitic schists, this E + B horizon is mainly composed of brown clay.
- The C horizon (weathered parent material) is represented by a centimetre- to decimetre-thick layer of clasts, ranging in size from gravels to blocks, moderately rounded to angular. Those clasts are mainly quartzite and locally derived meta-sandstones. Some of them show iron coating, suggesting the existence of a strong lateritic phase, although no evidence of iron crust has been observed.
- Depending on its dominant lithology, the R horizon (parent material) can be strongly weathered, especially when composed of graphitic schists.
4.2. Landslide Morphologies
4.3. Long-Term Climate and Extreme Weather Conditions in Spring 2018
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters, 2nd ed.; Routledge: London, UK, 2003; ISBN 978-0-415-25216-4. [Google Scholar]
- Kervyn, M.; Jacobs, L.; Maes, J.; Bih Che, V.; de Hontheim, A.; Dewitte, O.; Isabirye, M.; Sekajugo, J.; Kabaseke, C.; Poesen, J.; et al. Landslide Resilience in Equatorial Africa: Moving beyond Problem Identification! Belg. Rev. Belg. Géogr. 2015, 1, 1–22. [Google Scholar] [CrossRef]
- National Institute of Statistics of Rwanda. Fifth Rwanda Population and Housing Census, 2022 Main Indicators Report; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2023; pp. 1–150.
- Delvaux, D.; Mulumba, J.-L.; Sebagenzi, M.N.S.; Bondo, S.F.; Kervyn, F.; Havenith, H.-B. Seismic Hazard Assessment of the Kivu Rift Segment Based on a New Seismotectonic Zonation Model (Western Branch, East African Rift System). J. Afr. Earth Sci. 2017, 134, 831–855. [Google Scholar] [CrossRef]
- Pouclet, A.; Bellon, H.; Bram, K. The Cenozoic Volcanism in the Kivu Rift: Assessment of the Tectonic Setting, Geochemistry, and Geochronology of the Volcanic Activity in the South-Kivu and Virunga Regions. J. Afr. Earth Sci. 2016, 121, 219–246. [Google Scholar] [CrossRef]
- Moeyersons, J. Recherche Géomorphologique Rwanda. Bull. Soc. Géogr. Liège 1991, 27, 49–68. [Google Scholar]
- Ntwali, D.; Ogwang, B.A.; Ongoma, V. The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on WRF Model. Atmos. Clim. Sci. 2016, 6, 145–157. [Google Scholar] [CrossRef]
- Rwanda Environment Management Authority. Rwanda State of Environment and Outlook Report; Rwanda Environment Management Authority: Kigali, Rwanda, 2009; pp. 1–177.
- Depicker, A.; Govers, G.; Jacobs, L.; Campforts, B.; Uwihirwe, J.; Dewitte, O. Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika-Kivu rift region, Africa. Earth Surf. Dynam. 2021, 9, 445–462. [Google Scholar] [CrossRef]
- Depicker, A.; Jacobs, L.; Mboga, N.; Smets, B.; Van Rompaey, A.; Lennert, M.; Wolff, E.; Michellier, C.; Dewitte, O.; Govers, G. Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift. Nat. Sustain. 2021, 4, 965–974. [Google Scholar] [CrossRef]
- The Ministry of Disaster Management and Refugee Affairs. National Risk Atlas of Rwanda Electronic Version; The Ministry of Disaster Management and Refugee Affairs: Kigali, Rwanda, 2015; pp. 44–56.
- Ministry in Charge of Emergency Management. Annual Report 2016, Disaster Response and Recovery Unit Rwanda; 2016; pp. 1–4. Available online: https://www.minema.gov.rw/index.php?eID=dumpFile&t=f&f=77824&token=28ede27a12ae8ae92614e178eb1f6433967c3323 (accessed on 20 September 2024).
- Ministry in Charge of Emergency Management. Disaster Effects Situation in 2018; 2019; pp. 1–9. Available online: https://www.minema.gov.rw/index.php?eID=dumpFile&t=f&f=77827&token=4baf6cc97a55675f3cb61ab0f87637b69e4ef70b (accessed on 20 September 2024).
- Ministry in Charge of Emergency Management. Disaster Damages by Type of Disaster (01/01/2019-31/12/2019); 2020; pp. 1–4. Available online: https://www.minema.gov.rw/index.php?eID=dumpFile&t=f&f=77828&token=87be5c683ee8d16233eaf81a41790a104b437a0b (accessed on 20 September 2024).
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. 1980, 62, 23–27. [Google Scholar]
- Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2014, 70, 353–375. [Google Scholar] [CrossRef]
- Alsubal, S.; bin Sapari, N.; Harahap, I.S.H.; Al-Bared, M.A.M. A review on mechanism of rainwater in triggering landslide. IOP Conf. Ser. Mater. Sci. Eng. 2019, 513, 012009. [Google Scholar] [CrossRef]
- Saito, H.; Nakayama, D.; Matsuyama, H. Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology 2010, 118, 167–175. [Google Scholar] [CrossRef]
- Peng, J.; Fan, Z.; Wu, D.; Zhuang, J.; Dai, F.; Chen, W.; Zhao, C. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China. Eng. Geol. 2015, 186, 79–90. [Google Scholar] [CrossRef]
- De Falco, M.; Forte, G.; Marino, E.; Massaro, L.; Santo, A. UAV and field survey observations on the November 26th 2022 Celario flowslide, Ischia Island (Southern Italy). J. Maps 2023, 19, 2261484. [Google Scholar] [CrossRef]
- Jaedicke, C.; Kleven, A. Long-term precipitation and slide activity in south-eastern Norway, autumn 2000. Hydrol. Process. 2008, 22, 495–505. [Google Scholar] [CrossRef]
- Marques, R.; Zêzere, J.; Trigo, R.; Gaspar, J.; Trigo, I. Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): Relationships with the North Atlantic Oscillation. Hydrol. Process. 2008, 22, 478–494. [Google Scholar] [CrossRef]
- Rahardjo, H.; Leong, E.C.; Rezaur, R.B. Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrol. Process. 2008, 22, 506–523. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, R.; Meng, X.; Zhao, S.; Wang, S.; Ma, J.; Wang, H. Effects of changes in soil properties caused by progressive infiltration of rainwater on rainfall-induced landslides. Catena 2023, 233, 107475. [Google Scholar] [CrossRef]
- Moeyersons, J. A Possible Causal Relationship between Creep and Sliding on Rwaza Hill, Southern Rwanda. Earth Surf. Process. Landf. 1989, 14, 597–614. [Google Scholar] [CrossRef]
- Moeyersons, J. Les glissements de terrain au Rwanda occidental: Leurs causes et les possibilités de leur prévention. Cah. ORSTOM Sér. Pédol 1989, 25, 131–149. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/cahiers/PTP/30465.PDF (accessed on 20 September 2024).
- Bizimana, H.; Sonmez, O. Landslide Occurrences in the Hilly Areas of Rwanda, Their Causes and Protection Measures. Disaster Sci. Eng. 2015, 1, 1–7. [Google Scholar]
- Kuradusenge, M.; Kumaran, S.; Zennaro, M. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda. Int. J. Environ. Res. Public Health 2020, 17, 4147. [Google Scholar] [CrossRef]
- Nahayo, L.; Ndayisaba, F.; Karamage, F.; Nsengiyumva, J.B.; Kalisa, E.; Mind’je, R.; Mupenzi, C.; Li, L. Estimating Landslides Vulnerability in Rwanda Using Analytic Hierarchy Process and Geographic Information System. Integr. Environ. Assess. Manag. 2019, 15, 364–373. [Google Scholar]
- Nsengiyumva, J.B.; Luo, G.; Amanambu, A.C.; Mind’je, R.; Habiyaremye, G.; Karamage, F.; Ochege, F.U.; Mupenzi, C. Comparing Probabilistic and Statistical Methods in Landslide Susceptibility Modeling in Rwanda/Centre-Eastern Africa. Sci. Total Environ. 2019, 659, 1457–1472. [Google Scholar] [CrossRef] [PubMed]
- Ulvtorp, M. Kallner Floods and Landslides in the Bakokwe Catchment, Rwanda; Department of Building & Environmental Technology Lund University: Lund, Sweden, 2022; pp. 1–163. [Google Scholar]
- Nsengiyumva, J.B.; Luo, G.; Nahayo, L.; Huang, X.; Cai, P. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda. Int. J. Environ. Res. Public Health 2018, 15, 243. [Google Scholar] [CrossRef] [PubMed]
- Monsieurs, E.; Jacobs, L.; Michellier, C.; Basimike Tchangaboba, J.; Ganza, G.B.; Kervyn, F.; Maki Mateso, J.-C.; Mugaruka Bibentyo, T.; Kalikone Buzera, C.; Nahimana, L.; et al. Landslide Inventory for Hazard Assessment in a Data-Poor Context: A Regional-Scale Approach in a Tropical African Environment. Landslides 2018, 15, 2195–2209. [Google Scholar] [CrossRef]
- Nema, M.-L.; Saley Mahaman, B.; Diedhiou, A.; Mugabe, A. Local Perception and Adaptation Strategies to Landslide Occurrence in the Kivu Catchment of Rwanda. Nat. Hazards Earth Syst. Sci. Discuss. 2023. [Google Scholar] [CrossRef]
- Uwihirwe, J.; Hrachowitz, M.; Bogaard, T.A. Landslide Precipitation Thresholds in Rwanda. Landslides 2020, 17, 2469–2481. [Google Scholar] [CrossRef]
- Dewitte, O.; Dille, A.; Depicker, A.; Kubwimana, D.; Maki Mateso, J.-C.; Mugaruka Bibentyo, T.; Uwihirwe, J.; Monsieurs, E. Constraining Landslide Timing in a Data-Scarce Context: From Recent to Very Old Processes in the Tropical Environment of the North Tanganyika-Kivu Rift Region. Landslides 2021, 18, 161–177. [Google Scholar] [CrossRef]
- Rwanda Red cross on X. Available online: https://twitter.com/Rwandaredcross/status/993498780438802432 (accessed on 6 October 2023).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Cutten, H.; Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (Formerly the NE Kibara Belt): The Result of Prolonged Extensional Intracratonic Basin Development Punctuated by Two Short-Lived Far-Field Compressional Events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- Baudet, D.; Hanon, M.; Lemonne, E.; Theunissen, K. Lithostratigraphie Du Domaine Sedimentaire de La Chaine Kibarienne Au Rwanda. Ann. Soc. Geol. Belg. 1988, 112, 225–246. [Google Scholar]
- Theunissen, K.; Hanon, M.; Fernandez-Alonso, M. Carte Géologique Du Rwanda Au 1/250.000; Royal Museum for Central Africa: Tervuren, Belgium, 1991; Volume 1. [Google Scholar]
- Ebinger, C.J.; Deino, A.L.; Drake, R.E.; Tesha, A.L. Chronology of Volcanism and Rift Basin Propagation: Rungwe Volcanic Province, East Africa. J. Geophys. Res. Solid Earth 1989, 94, 15785–15803. [Google Scholar] [CrossRef]
- Smets, B.; Delvaux, D.; Ross, K.A.; Poppe, S.; Kervyn, M.; d’Oreye, N.; Kervyn, F. The Role of Inherited Crustal Structures and Magmatism in the Development of Rift Segments: Insights from the Kivu Basin, Western Branch of the East African Rift. Tectonophysics 2016, 683, 62–76. [Google Scholar] [CrossRef]
- USGS Earthquake Lists, Maps, and Statistics. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us7000kxts/executive (accessed on 18 March 2024).
- Petricec, V.; Lavreau, J.; Waleffe, A. Carte Lithologique Du Rwanda. Scale 1:250,000. Inst. Géogr. Natl. Belg. 1981, 1, G8431.C57. [Google Scholar]
- European Space Agency. Copernicus DEM—Global and European Digital Elevation Model (COP-DEM) [Dataset]; European Space Agency: Paris, France, 2019. [Google Scholar] [CrossRef]
- Muhire, I.; Ahmed, F.; Abutaleb, K.; Kabera, G. Impacts of Projected Changes and Variability in Climatic Data on Major Food Crops Yields in Rwanda. Int. J. Plant Prod. 2015, 9, 347–371. [Google Scholar]
- National Land Authority (NLA); Digital Elevation Model (DEM). 10 m Resolution, Rwanda|Data|GeoHub. Available online: https://geohub.data.undp.org/data/00d5add9be37e465398b081683c3ec03 (accessed on 5 July 2024).
- Rose, R. Slope Control on the Frequency Distribution of Shallow Landslides and Associated Soil Properties, North Island, New Zealand. Earth Surf. Process. Landf. 2013, 38, 356–371. [Google Scholar] [CrossRef]
- Akiyama, K.; Uchida, T.; Mori, N.; Tamura, K.; Yamakoshi, T. The Role of Soil Thickness on Shallow Landslide Initiation. Geophys. Res. Abstr. 2009, 11, 7905. [Google Scholar]
- Ho, J.-Y.; Lee, K.; Chang, T.-C.; Wang, Z.; Liao, Y.-H. Influences of Spatial Distribution of Soil Thickness on Shallow Landslide Prediction. Eng. Geol. 2011, 124, 38–46. [Google Scholar] [CrossRef]
- Acharya, G.; Cochrane, T.A.; Davies, T.; Bowman, E. The Influence of Shallow Landslides on Sediment Supply: A Flume-Based Investigation Using Sandy Soil. Eng. Geol. 2009, 109, 161–169. [Google Scholar] [CrossRef]
- Chang, K.-T. Introduction to Geographic Information Systems, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2019; ISBN 978-1-259-92964-9;1-444. [Google Scholar]
- Rooy, M. A Rainfall Anomaly Index Independent of Time and Space, Notos. Weather Bur. S. Afr. 1965, 14, 43–48. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4381. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilford, J.R. Lithology and soil relationships for soil modelling and mapping. Catena 2016, 147, 429–440. [Google Scholar] [CrossRef]
- Huang, C.; Byrne, T.B.; Ouimet, W.B.; Lin, C.-W.; Hu, J.-C.; Fei, L.-Y.; Wang, Y.-B. Tectonic foliations and the distribution of landslides in the southern Central Range, Taiwan. Tectonophysics 2016, 692, 203–212. [Google Scholar] [CrossRef]
- Taylor, R.G.; Howard, K.W.F. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping. Geomorphology 1998, 25, 173–192. [Google Scholar] [CrossRef]
- Burke, K.; Gunnell, Y. The African erosion surface: A continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geol. Soc. Am. Mem. 2008, 201, 66. [Google Scholar] [CrossRef]
- Guillocheau, F.; Simon, B.; Baby, G.; Bessin, P.; Robin, C.; Dauteuil, O. Planation surfaces as a record of mantle dynamics: The case example of Africa. Gondwana Res. 2018, 53, 82–98. [Google Scholar] [CrossRef]
- Rossi, G. Evolution des versants et mise en valeur agricole au Rwanda. Ann. Géogr. 1984, 515, 23–43. [Google Scholar] [CrossRef]
- Wassmer, P.; Schwartz, D.; Gomez, C.; Ward, S.; Barrere, P. Geomorphology and sedimentary structures of Upper Pleistocene to Holoce alluvium within the Nyabarongo valley (Rwanda). Palaeo-climate and palaeo-environmental implications. Geogr. Fis. Dinam. Quat. 2013, 36, 199–210. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sreekesh, S.; King, A. Characteristics of Extreme Rainfall in Different Gridded Datasets over India during 1983–2015. Atmos. Res. 2022, 267, 105930. [Google Scholar] [CrossRef]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme Temperature. Front. Environ. Sci. 2022, 10, 921659. [Google Scholar] [CrossRef]
- Tan, M.L.; Armanuos, A.M.; Ahmadianfar, I.; Demir, V.; Heddam, S.; Al-Areeq, A.M.; Abba, S.I.; Halder, B.; Cagan Kilinc, H.; Yaseen, Z.M. Evaluation of NASA POWER and ERA5-Land for Estimating Tropical Precipitation and Temperature Extremes. J. Hydrol. 2023, 624, 129940. [Google Scholar] [CrossRef]
- Dutta, R.; Markonis, Y. Does ERA5-Land Capture the Changes in the Terrestrial Hydrological Cycle across the Globe? Environ. Res. Lett. 2024, 19, 024054. [Google Scholar] [CrossRef]
- Siccard, V.; Lissak, C.; Gomez, C. Des instabilités de versant aux sources sédimentaires: Étude de la catastrophe géomorphologique du 5–6 juillet 2017 dans le bassin-versant du Chikugo (Kyūshū, Japon). Géomorphologie 2022, 28, 257–271. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of Factors Controlling Earthquake-Induced Landslides Caused by Chi-Chi Earthquake and Comparison with the Northridge and Loma Prieta Events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides Induced by the Wenchuan Earthquake and the Subsequent Strong Rainfall Event: A Case Study in the Beichuan Area of China. Eng. Geol. 2011, 122, 22–33. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; American Geophysical Union: Washington, DC, USA, 2006; p. 312. ISBN 978-0-87590-322-4. [Google Scholar]
- Van Westen, C.J.; Castellanos Abella, E.A.; Kuriakose, S. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Chok, Y.H.; Jaksa, M.; Kaggwa, W.; Griffiths, D. Assessing the Influence of Root Reinforcement on Slope Stability by Finite Elements. Int. J. Geo-Eng. 2015, 6, 12. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Hydrological Effect of Vegetation against Rainfall-Induced Landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef]
- Zayadi, R.; Putri, C.; Irfan, M.; Kusuma, Z.; Leksono, A.; Yanuwiadi, B. Soil Reinforcement Modelling on a Hilly Slope with Vegetation of Five Species in the Area Prone to Landslide in Malang, Indonesia. Environ. Res. Eng. Manag. 2022, 78, 56–72. [Google Scholar] [CrossRef]
- Iverson, R.M.; Denlinger, R.P. Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geoph. Res. 2001, 106, 537–552. [Google Scholar] [CrossRef]
- Iverson, R.M. The Physics of Debris Flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Liu, A.J.; Nagel, S.R. Jamming Is Not Just Cool Any More. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Mainsant, G.; Jongmans, D.; Chambon, G.; Larose, E.; Baillet, L. Shear-Wave Velocity as an Indicator for Rheological Changes in Clay Materials: Lessons from Laboratory Experiments. Geophys. Res. Lett. 2012, 39, L19301. [Google Scholar] [CrossRef]
- Josserand, C.; Tkachenko, A.V.; Mueth, D.M.; Jaeger, H.M. Memory Effects in Granular Materials. Phys. Rev. Lett. 2000, 85, 3632–3635. [Google Scholar] [CrossRef]
- Vassallo, R.; Grimaldi, G.M.; Di Maio, C. Pore water pressures induced by historical rain series in a clayey landslide: 3D modeling. Landslides 2015, 12, 731–744. [Google Scholar] [CrossRef]
- Umbanhowar, P.; van Hecke, M. Force Dynamics in Weakly Vibrated Granular Packings. Phys. Rev. E 2005, 72, 030301. [Google Scholar] [CrossRef]
- Lastakowski, H.; Géminard, J.-C.; Vidal, V. Granular Friction: Triggering Large Events with Small Vibrations. Sci. Rep. 2015, 5, 13455. [Google Scholar] [CrossRef]
- Kappus, M.E.; Vernon, F.L. Acoustic signature of thunder from seismic records. J. Geophys. Res. 1991, 96, 10989–11006. [Google Scholar] [CrossRef]
- Lin, T.L.; Langston, C.A. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. 2007, 34, L14304. [Google Scholar] [CrossRef]
- Lin, T.L.; Langston, C.A. Thunder-induced ground motions: 1. Observations. J. Geophys. Res. 2009, 114, B04303. [Google Scholar] [CrossRef]
- Lin, T.L.; Langston, C.A. Thunder-induced ground motions: 2. Site characterization. J. Geophy. Res. 2009, 114, B04304. [Google Scholar] [CrossRef]
- Sorrells, G.C.; McDonald, J.A.; Herrin, E.; Der, Z.A. Earth motion caused by local atmospheric-pressure changes. Geophys. J. Royal Astr. Soc. 1971, 26, 83–98. [Google Scholar] [CrossRef]
- Dybing, S.N.; Ringler, A.T.; Wilson, D.C.; Anthony, R.E. Characteristics and spatial variability of wind noise on near-surface broadland seismometers characteristics. Bull. Seismol. Soc. Am. 2019, 109, 1082–1098. [Google Scholar] [CrossRef]
- Johnson, C.W.; Meng, H.; Vernon, F.; Ben-Zion, Y. Characteristics of ground motion generated by wind interaction with trees, structures, and other surface obstacles. J. Geoph. Res. Solid Earth 2019, 124, 8519–8539. [Google Scholar] [CrossRef]
- Withers, M.M.; Aster, R.C.; Young, C.J.; Chael, E.P. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 1996, 86, 1507–1515. [Google Scholar] [CrossRef]
- De Angelis, S.; Bodin, P. Watching the wind: Seismic data contamination at long periods due to atmospheric pressure-field-induced tilting. Bull. Seismol. Soc. Am. 2012, 102, 1255–1265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byiringiro, F.-V.; Jolivet, M.; Dauteuil, O.; Arvor, D.; Hitimana Niyotwambaza, C. Exceptional Cluster of Simultaneous Shallow Landslides in Rwanda: Context, Triggering Factors, and Potential Warnings. GeoHazards 2024, 5, 1018-1039. https://doi.org/10.3390/geohazards5040049
Byiringiro F-V, Jolivet M, Dauteuil O, Arvor D, Hitimana Niyotwambaza C. Exceptional Cluster of Simultaneous Shallow Landslides in Rwanda: Context, Triggering Factors, and Potential Warnings. GeoHazards. 2024; 5(4):1018-1039. https://doi.org/10.3390/geohazards5040049
Chicago/Turabian StyleByiringiro, Fils-Vainqueur, Marc Jolivet, Olivier Dauteuil, Damien Arvor, and Christine Hitimana Niyotwambaza. 2024. "Exceptional Cluster of Simultaneous Shallow Landslides in Rwanda: Context, Triggering Factors, and Potential Warnings" GeoHazards 5, no. 4: 1018-1039. https://doi.org/10.3390/geohazards5040049
APA StyleByiringiro, F. -V., Jolivet, M., Dauteuil, O., Arvor, D., & Hitimana Niyotwambaza, C. (2024). Exceptional Cluster of Simultaneous Shallow Landslides in Rwanda: Context, Triggering Factors, and Potential Warnings. GeoHazards, 5(4), 1018-1039. https://doi.org/10.3390/geohazards5040049