Estimation of Return Levels with Long Return Periods for Extreme Sea Levels by the Average Conditional Exceedance Rate Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Sets and Their Origins
2.1.1. Sea Levels in the Baltic Sea
2.1.2. Measurements of Sea Level
2.2. Statistical Methodology
2.2.1. Tests of Trend
2.2.2. Extreme-Value Analysis and the GEV Distribution
2.2.3. Return Levels
2.2.4. The ACER Method
3. Results
3.1. Trend Analysis
3.2. Estimation of Return Levels: Comparisons
3.3. Notes on the ACER Methodology
4. Summary and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Framework. Conditioning Approximations
Appendix A.2. The ACER Function
References
- Dey, D.; Roy, D.; Yan, J. Univariate extreme value analysis. In Extreme Value Modeling and Risk Analysis. Methods and Applications; Dey, D.K., Yan, J., Eds.; CRC Press, Chapman & Hall: New York, NY, USA, 2016; pp. 1–22. [Google Scholar]
- Belzile, L.R.; Dutang, C.; Northrop, P.J.; Opitz, T. A modeler’s guide to extreme value software. Extremes 2023, 26, 595–638. [Google Scholar] [CrossRef]
- Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate; AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 97–114. [Google Scholar]
- Volpi, E. On return period and probability of failure in hydrology. WIREs Water 2019, 6, e1340. [Google Scholar] [CrossRef]
- Fawcett, L.; Walshaw, D. Sea-surge and wind speed extremes: Optimal estimation strategies for planners and engineers. Stoch. Environ. Res. Risk. Assess. 2016, 30, 463–480. [Google Scholar] [CrossRef]
- Naess, A.; Gaidai, O. Estimation of extreme values from sampled time series. Struct. Saf. 2009, 31, 325–334. [Google Scholar] [CrossRef]
- Naess, A.; Gaidai, O.; Karpa, O. Estimation of extreme values by the average conditional exceedance rate method. J. Probab. Stat. 2013, 2013, 797014. [Google Scholar] [CrossRef]
- Skjong, M.; Naess, A.; Brandrud Naess, O.E. Statistics of extreme sea levels for locations along the Norwegian coast. J. Coast. Res. 2013, 29, 1029–1048. [Google Scholar] [CrossRef]
- Simpson, M.J.R.; Nilsen, J.E.Ø.; Ravndal, O.R.; Breili, K.; Sande, H.; Kierulf, H.P.; Steffen, H.; Jansen, E.; Carson, M.; Vestøl, O. Sea Level Change for Norway. Past and Present Observations and Projections to 2100. NCCS Report No. 1/2015. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/M405/M405.pdf (accessed on 22 January 2024).
- Ekman, M. Climate changes detected through the world’s longest sea level series. Glob. Planet. Chang. 1999, 21, 215–224. [Google Scholar] [CrossRef]
- Weisse, R.; Bellafiore, D.; Menéndez, M.; Méndez, F.; Nicholls, R.J.; Umgiesser, G.; Willems, P. Changing extreme sea levels along European coasts. Coast. Eng. 2014, 87, 4–14. [Google Scholar] [CrossRef]
- Weisse, R.; Dailidienė, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- Nordenskiöld, A.E. Beräkning af fasta landets höjning vid Stockholm. Öfversigt Kongl. Vetenskaps Akad. Förhandlingar 1858, 15, 269–272. [Google Scholar]
- Rutgersson, A.; Kjellström, E.; Haapala, J.; Stendel, M.; Danilovich, I.; Drews, M.; Jylhä, K.; Kujala, P.; Larsén, X.G.; Halsnæs, K.; et al. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dyn. 2022, 13, 251–301. [Google Scholar] [CrossRef]
- SMHI: Ekvationer för Medelvattenståndet i Rikets Höjdsystem 2000 (RH2000), 2023. Available online: https://www.smhi.se/polopoly_fs/1.195046!/mwreg_MWekvationer_2023.pdf (accessed on 6 February 2024).
- Posada, M. Statistical Analysis of Oceanographic Data: A Comparison between Stationary and Mobile Sea Leve Gauges. Master’s Thesis, Lund University, Lund, Sweden, 2014. [Google Scholar]
- Chandler, R.; Scott, M. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pohlert, T. Trend. Non-Parametric Trend Tests and Change-Point Detection. R-Package. Available online: https://cran.r-project.org/web/packages/trend/ (accessed on 14 February 2024).
- Pettitt, A.N. A non-parametric approach to the change point problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 14 February 2024).
- Bader, B.; Yan, J. EVA. Extreme Value Analysis wih Goodness-of-Fit Testing. R Package. Available online: https://cran.r-project.org/web/packages/eva/ (accessed on 14 February 2024).
- Dahlen, K.E. Comparison of ACER and POT Methods for Estimation of Extreme Values. Master’s Thesis, NTNU, Trondheim, Norway, 2010. [Google Scholar]
- Rydén, J.; Freyland, S. Estimation of return levels of sea level along the Swedish coast by the method of r largest annual maxima. In Proceedings of the 33rd International Ocean and Polar Engineering Conference, ISOPE-2023, Ottawa, ON, Canada, 19–23 June 2023; pp. 2762–2766. [Google Scholar]
- Rydén, J. A tale of two stations: A note on rejecting the Gumbel distribution. Acta Geophys. 2023, 71, 385–390. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef]
- Hieronymus, M.; Kalén, O. Should Swedish sea level planners worry more about mean sea level rise or sea level extremes? Ambio 2022, 51, 2235–2332. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Fiori, A.; Grimaldi, S.; Lombardo, F.; Koutsoyiannis, D. Save hydrological observations! Return period estimation without data decimation. J. Hydrol. 2019, 571, 782–792. [Google Scholar] [CrossRef]
Station | Latitude/Longitude | Period |
---|---|---|
Forsmark | (60.41, 18.21) | 1976–2022 |
Oskarshamn | (57.28, 16.48) | 1961–2022 |
Station: | Forsmark | Oskarshamn |
---|---|---|
p-value: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydén, J. Estimation of Return Levels with Long Return Periods for Extreme Sea Levels by the Average Conditional Exceedance Rate Method. GeoHazards 2024, 5, 166-175. https://doi.org/10.3390/geohazards5010008
Rydén J. Estimation of Return Levels with Long Return Periods for Extreme Sea Levels by the Average Conditional Exceedance Rate Method. GeoHazards. 2024; 5(1):166-175. https://doi.org/10.3390/geohazards5010008
Chicago/Turabian StyleRydén, Jesper. 2024. "Estimation of Return Levels with Long Return Periods for Extreme Sea Levels by the Average Conditional Exceedance Rate Method" GeoHazards 5, no. 1: 166-175. https://doi.org/10.3390/geohazards5010008
APA StyleRydén, J. (2024). Estimation of Return Levels with Long Return Periods for Extreme Sea Levels by the Average Conditional Exceedance Rate Method. GeoHazards, 5(1), 166-175. https://doi.org/10.3390/geohazards5010008